28 research outputs found

    Cosmic dust fluxes in the atmospheres of Earth, Mars and Venus

    Get PDF
    The ablation of cosmic dust injects a range of metals into planetary upper atmospheres. In addition, dust particles which survive atmospheric entry can be an important source of organic material at a planetary surface. In this study the contribution of metals and organics from three cosmic dust sources – Jupiter-Family comets (JFCs), the Asteroid belt (AST), and Halley-Type comets (HTCs) – to the atmospheres of Earth, Mars and Venus is estimated by combining a Chemical Ablation Model (CABMOD) with a Zodiacal Cloud Model (ZoDy). ZoDy provides the mass, velocity, and radiant distributions for JFC, AST, and HTC particles. JFCs are shown to be the main mass contributor in all three atmospheres (68% for Venus, 70% Earth, and 52% for Mars), providing a total input mass for Venus, Earth and Mars of 31 ± 18 t d⁻¹, 28 ± 16 t d⁻¹ and 2 ± 1 t d⁻¹, respectively. The mass contribution of AST particles increases with heliocentric distance (6% for Venus, 9% for Earth, and 14% for Mars). A novel multiphase treatment in CABMOD, tested experimentally in a Meteoric Ablation Simulator, is implemented to quantify atmospheric ablation from both the silicate melt and Fe-Ni metal domains. The ratio of Fe:Ni ablation fluxes at Earth, Mars and Venus are predicted to be close to their CI chondritic ratio of 18, in agreement with mass spectrometric measurements of Fe+:Ni+ = 20.0–₈.₀+¹³·⁰ in the terrestrial ionosphere. In contrast, lidar measurements of the neutral atoms at Earth indicate Fe:Ni = 38 ± 11, and observations by the Neutral Gas and Ion Mass Spectrometer on the MAVEN spacecraft at Mars indicate Fe+:Ni+ = 43–₁₀+¹³. Given the slower average entry velocity of cosmic dust particles at Mars, the accretion rate of unmelted particles in Mars represents 60% of the total input mass, of which a significant fraction of the total unmelted mass (22%) does not reach an organic pyrolysis temperature (~900 K), leading to a flux of intact carbon of 14 kg d⁻¹. This is significantly smaller than previous estimates

    Suono e Spettacolo. Athanasius Kircher, un percorso nelle Immagini sonore.

    Get PDF
    The Society of Jesus made great propaganda efforts throughout the seventeenth century and chose the images and the play as a privileged means to communicate and persuade. Athanasius Kircher, a key figure of the seventeenth century, he decided to dominate the wild nature of sound through Phonurgia Nova, which includes a gallery of powerful symbolic images for Baroque aesthetics. The essay, through the grant of the images from the Library of the Department of Mathematics "Guido Castelnuovo" Sapienza University of Rome, aims to understand, through the pictures offered by Kircher, the sound phenomenon and the spectacle that this produces. In Phonurgia Nova a process of dramatization sound effects takes place, often through machines and "visions" applied to the theatrical reality, as experimental and astonishing environment beloved in baroque. Kircher illustrates the sound through explanatory figures, so to dominate the sound through the eyes. Sound is seen, admired and represented: its spectacle not only takes place through the implementation of sound machines or the "wonders" applied to the theater, but even through images, creating create a sense of wonder in in the erudite person of the seventeenth century

    Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry

    Full text link
    Fine aerosol particles in the urban areas of Shanghai and Los Angeles were collected on days that were characterized by their stagnant air and high organic aerosol concentrations. They were analyzed by nanospray-desorption electrospray ionization mass spectrometry with high mass resolution (m/Δm = 100,000). Solvent mixtures of acetonitrile and water and acetonitrile and toluene were used to extract and ionize polar and nonpolar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. A majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates that were detected at two locations have distinctly different molecular characteristics. Specifically, the organosulfates in the Los Angeles sample were dominated by biogenic products, while the organosulfates of a yet unknown origin found in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degrees of oxidation and unsaturation. The use of the acetonitrile and toluene solvent facilitated the observation of this type of organosulfates, which suggests that they could have been missed in previous studies that relied on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the uncommon organosulfates suggest that they may act as surfactants and plausibly affect the surface tension and hygroscopicity of atmospheric particles. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in the liquid phase could be the formation pathway of these special organosulfates. Long-chain alkanes from vehicle emissions might be their precursors

    Comparing the mechanism of water condensation and evaporation in glassy aerosol

    No full text
    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3–4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫10(3) s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 10(13) Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk

    Measurements of Thermodynamic and Optical Properties of Selected Aqueous Organic and Organic–Inorganic Mixtures of Atmospheric Relevance

    No full text
    Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH_4HSO_4, (NH_4)_2SO_4, and NH_4NO_3 have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications

    We Knew the Future All Along

    No full text
    corecore