83 research outputs found

    Using the full power of the cosmic microwave background to probe axion dark matter

    Get PDF
    The cosmic microwave background (CMB) places strong constraints on models of dark matter (DM) that deviate from standard cold DM (CDM), and on initial conditions beyond the scalar adiabatic mode. Here, the full \textit{Planck} data set (including temperature, EE-mode polarisation, and lensing deflection) is used to test the possibility that some fraction of the DM is composed of ultralight axions (ULAs). This represents the first use of CMB lensing to test the ULA model. We find no evidence for a ULA component in the mass range 1033ma1024 eV10^{-33}\leq m_a\leq 10^{-24}\text{ eV}. We put percent-level constraints on the ULA contribution to the DM, improving by up to a factor of two compared to the case with temperature anisotropies alone. Axion DM also provides a low-energy window onto the high-energy physics of inflation through the interplay between the vacuum misalignment production of axions and isocurvature perturbations. We perform the first systematic investigation into the parameter space of ULA isocurvature, using an accurate isocurvature transfer function at all mam_{a} values. We precisely identify a "window of co-existence" for 1025 eVma1024 eV10^{-25}\text{ eV}\leq m_a\leq10^{-24}\text{ eV} where the data allow, simultaneously, a 10%\sim10\% contribution of ULAs to the DM, and 1%\sim 1\% contributions of isocurvature and tensors to the CMB power. ULAs in this window (and \textit{all} lighter ULAs) are shown to be consistent with a large inflationary Hubble parameter, HI1014 GeVH_I\sim 10^{14}\text{ GeV}. The window of co-existence will be fully probed by proposed CMB-S4 observations with increased accuracy in the high-\ell lensing power and low-\ell EE and BB-mode polarisation. If ULAs in the window exist, this could allow for two independent measurements of HIH_I in the CMB using the axion DM content and isocurvature, and the tensor contribution to BB-modes.Comment: 15+8 pages, 12+4 figures, chains available online at http://www.dunlap.utoronto.ca/~hlozek/AxiChains, code at https://github.com/dgrin1/axionCAM

    Structure of axion miniclusters

    Get PDF
    The peak-patch algorithm is used to identify the densest minicluster seeds in the initial axion density field simulated from string decay. The fate of these dense seeds is found by tracking the subsequent gravitational collapse in cosmological N-body simulations. We find that miniclusters at late times are well described by Navarro-Frenk-White profiles, although for around 80% of simulated miniclusters a single power-law density profile of r−2.9 is an equally good fit due to the unresolved scale radius. Under the assumption that all miniclusters with an unresolved scale radius are described by a power-law plus axion star density profile, we identify a significant number of miniclusters that might be dense enough to give rise to gravitational microlensing if the axion mass is 0.2  meV≲ma≲3  meV. Higher resolution simulations resolving the inner structure and axion star formation are necessary to explore this possibility further

    Axion quasiparticles for axion dark matter detection

    Get PDF
    It has been suggested that certain antiferromagnetic topological insulators contain axion quasiparticles (AQs), and that such materials could be used to detect axion dark matter (DM). The AQ is a longitudinal antiferromagnetic spin fluctuation coupled to the electromagnetic Chern-Simons term, which, in the presence of an applied magnetic field, leads to mass mixing between the AQ and the electric field. The electromagnetic boundary conditions and transmission and reflection coefficients are computed. A model for including losses into this system is presented, and the resulting linewidth is computed. It is shown how transmission spectroscopy can be used to measure the resonant frequencies and damping coefficients of the material, and demonstrate conclusively the existence of the AQ. The dispersion relation and boundary conditions permit resonant conversion of axion DM into THz photons in a material volume that is independent of the resonant frequency, which is tuneable via an applied magnetic field. A parameter study for axion DM detection is performed, computing boost amplitudes and bandwidths using realistic material properties including loss. The proposal could allow for detection of axion DM in the mass range between 1 and 10 meV using current and near future technology

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of Υ(1S) and Υ(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The Υmesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the Υ mesons are found to be consistent with zero

    Measurement of prompt D0^{0} and D\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF
    The fiducial cross section for Y(1S)pair production in proton-proton collisions at a center-of-mass energy of 13TeVin the region where both Y(1S)mesons have an absolute rapidity below 2.0 is measured to be 79 ± 11 (stat) ±6 (syst) ±3 (B)pbassuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S)meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb1^{-1}. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)μ+^{+}μ^{-} in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two bquarks and two b̅ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5GeV, while a generic search for other resonances is performed for masses between 16.5 and 27GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S)resonance are set as a function of the resonance mass

    Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

    Get PDF

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →μ⁺μ⁻K⁺K⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Production of Λ⁺c_{c} baryons in proton-proton and lead-lead collisions at √S^{S}NN = 5.02 TeV

    Get PDF

    Observation of electroweak production of Wγ with two jets in proton-proton collisions at √s = 13 TeV

    Get PDF
    A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb1^{-1}. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj_{γjj} production in a restricted fiducial region is measured as 20.4 +/- 4.5 fb and the total cross section for Wγ_{γ} production in association with 2 jets in the same fiducial region is 108 +/- 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators
    corecore