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Abstract. It has been suggested that certain antiferromagnetic topological insulators
contain axion quasiparticles (AQs), and that such materials could be used to detect
axion dark matter (DM). The AQ is a longitudinal antiferromagnetic spin fluctuation
coupled to the electromagnetic Chern-Simons term, which, in the presence of an applied
magnetic field, leads to mass mixing between the AQ and the electric field. The electro-
magnetic boundary conditions and transmission and reflection coefficients are computed.
A model for including losses into this system is presented, and the resulting linewidth
is computed. It is shown how transmission spectroscopy can be used to measure the
resonant frequencies and damping coefficients of the material, and demonstrate conclu-
sively the existence of the AQ. The dispersion relation and boundary conditions permit
resonant conversion of axion DM into THz photons in a material volume that is inde-
pendent of the resonant frequency, which is tuneable via an applied magnetic field. A
parameter study for axion DM detection is performed, computing boost amplitudes and
bandwidths using realistic material properties including loss. The proposal could allow
for detection of axion DM in the mass range between 1 and 10 meV using current and
near future technology.
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1 Introduction

The quantum chromodynamics (QCD) axion [1–3] solves the charge-parity (CP) problem
of the strong nuclear force [4–6], and is a plausible candidate [7–9] to compose the
dark matter (DM) in the cosmos [10]. The axion mass is bounded from above [11–
13] and below [14, 15] by astrophysical constraints (for reviews, see Refs. [16–19], and
Appendix B), placing it in the range

1 peV . ma . 20 meV . (1.1)

The local DM density is known from stellar motions in the Milky Way [20]. As-
suming axions comprise all the (local) DM, the axion number density is given by na =
ρloc/ma. Due to the very small axion mass, the number density is very large and axions
can be modelled as a coherent classical field, φ. The field value is:

φ = Φ cos(mat) , (1.2)

where Φ is Rayleigh-distributed [21, 22] with mean
√

2ρloc/ma and linewidth ∆ω/ω ∼
10−6 given by the Maxwell-Boltzmann distribution of axion velocities around the local
galactic circular speed, vloc ≈ 200 km/s (see e.g. refs. [21, 23]).

Axions couple to electromagnetism via the interaction L = gaγφE · B. Thus, in
the presence of an applied magnetic field, B0, the DM axion field in Eq. (1.2) acts as a
source for the electric field, E. This is the inverse Primakoff process for axions, and leads
to axion-photon conversion in a magnetic field. The rate of axion-photon conversion de-
pends on the unknown value of the coupling gaγ and happens at an unknown frequency
ω = ma ±∆ω. For the QCD axion (as opposed to a generic “axion like particle” [16])
the mass and coupling are linearly related, gaγ ∝ ma, although different models for the
Peccei-Quinn [1] charges of fundamental fermions predict different values for the con-
stant of proportionality. The two historical reference models of Kim-Shifman-Vainshtein-
Zhakarov (KSVZ) [24, 25] and Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [26, 27] span
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a narrow range, while more recent generalisations with non-minimal particle content
allow for more variation [19, 28, 29].

The axion-photon coupling gaγ is constrained by a large number of null-results from
experimental searches and astrophysical considerations [20]. For experimentally allowed
values of (ma, gaγ), and accessible magnetic field strengths, the photon production rate
in vacuum is unobservably small. The power can be increased in two basic ways. If the
conversion happens along the surface of a magnetized mirror, then the produced photons
can be focused onto a detector [30]. This approach is broadband, and does not depend
on the axion mass. Reaching sensitivity to the QCD axion requires very large mirrors,
very sensitive detectors, and control over environmental noise. Alternatively, the signal
can be resonantly or coherently enhanced (e.g. Refs. [31, 31–40]). These approaches are
narrow band, and require tuning to the unknown DM axion frequency.

Depending on the model of early Universe cosmology, and the evolution of the ax-
ion field at high temperatures T � 1 MeV, the entire allowed mass range Eq. (1.1) can
plausibly explain the observed DM abundance. The mass range near 1 meV (correspond-
ing to frequencies in the low THz) is favoured in some models of axion cosmology (see
Appendix B), but is challenging experimentally due to the lack of large volume, tuneable
THz resonators, and efficient, low-noise, large bandwidth THz detectors.

In Ref. [41] (Paper I) we proposed an experimental scheme to detect axion DM using
axion-quasiparticle (AQ) materials based on topological magnetic insulators (TMIs) [42],
a proposal we called “TOORAD” for “TOpolOgical Resonant Axion Detection”. Since Li
et al. [42] first proposed to realise axion quasiparticles in the antiferromagnetic topolog-
ical insulator (AF-TI) Fe-doped Bismuth Selenide, (Bi1−xFex)2Se3, the quest to realise
related materials in the lab has picked up incredible pace. A currently favoured candi-
date Mn2Bi2Te5 [43], is, however, yet to be fabricated successfully. AQ materials allow
the possibility to explore aspects of axion physics in the laboratory [44]. The AQ res-
onance hyrbidises with the electric field forming an axion-polariton [42]. The polariton
frequency is of order the AF anisotropy field, with typical values O(1 meV), and is tune-
able with applied static field B [41]. This proposal opens the possibility for large volume
THz resonance, easily tuneable with an applied magnetic field, thus overcoming the first
hurdle to detection of meV axions. The proposal makes use of the current interest in
manufacture of low noise, high efficiency single photon detectors (SPDs) in THz [45].
The development of such detectors has benefits for sub mm astronomy and cosmology,
as well as application to other DM direct detection experiments [30].

The present paper expands on the ideas outlined in Paper I with more in depth
modelling and calculations. A guide to the results is given below.

Axion Quasiparticle Materials
We begin with a detailed treatment of the materials science, and outline a scheme to
prove the existence of AQs in TMIs, and measure their parameters.

• We introduce the basic model for the equations coupling the electric field and the
AQ. There are two parameters that determine the model: the AQ mass, mΘ, and
the decay constant, fΘ, as summarised in Section 2.1.

– 2 –



• Next in Section 2.2, we clarify the microscopic model for AQs in TMIs. We begin
with the symmetry criteria, followed by a microscopic model based on the Dirac
Hamiltonian. The AQ is the longitudinal fluctuataion of the antiferromagnetic
order parameter in the Hubbard model. The Appendix summarises the related
phenomenon of antiferromagnetic resonance and transverse magnons in the effec-
tive field theory of the Heisenberg model.

• Both mΘ and fΘ can be estimated from known material properties. We consider
(Bi1−xFex)2Se3, the candidate material from Paper I and Ref. [42], and also the
more recent candidate material Mn2Bi2Te5 [43]. The results of this study are given
in Tables 4 and 5.

• We next consider sources of loss. The largest sources of loss are identified to be
conductive losses to the electric field, and crystal and magnetic domain induced
line broadening for the AQ. The loss model is summarised in Table 6.

• Using the model thus developed, we present a computation of the transmission
spectrum of an AQ material. The spectrum shows two peaks due to the mixing
of the electric field and the AQ, the locations of which can be used to measure
the parameters mΘ and fΘ. The width of the resonances provides a measurement
of the loss parameters on resonance, which cannot otherwise be identified from
existing measurements. Such a measurement can be performed using THz time
domain spectroscopy [46]. The procedure is shown schematically in Fig. 6

Axion Dark Matter Detection
• Axion DM acts as a source to the AQ model developed in the previous sections.

Axion-photon conversion in a magnetic field sources photons, which hybridize with
the AQ forming polaritons, and thus acquire an effective mass. It is shown that
this model can be treated in the same way as a dielectric haloscope [47]. The
resonance in the polariton spectrum leads to an effective refractive index n < 1,
and an enhancement of the axion-induced electric field, see Fig. 16.

• We compute the power boost amplitude, β(ω), for a range of plausible values for
the model parameters, losses, and material thickness. See, for example, Fig. 17.

• The power enhancement is driven by the material thickness, d, which should ex-
ceed the wavelength of emitted photons. When losses are included, we identify
a maximum thickness above which the power enhancement decreases due to the
finite skin-depth. See Fig. 19.

• We perform forecasts for the limits on axion DM parameter space, (ma, gaγ), that
can be obtained for a range of plausible material and THz detector parameters. We
identify pessimistic and optimistic possibilities for the discovery reach, summarised
in Fig. 23.

We use units ~ = c = kB = 1 throughout most of the text, in combination with SI
where appropriate.
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2 Axion Quasiparticle Materials

2.1 General Remarks

Axion quasiparticles (AQs) are defined, for our purposes, as a degree of freedom, denoted
by δΘ, coupled to the electromagnetic Chern-Simons term:

Stopo = α

π

∫
d4x (δΘ + Θ0) E ·B , (2.1)

where Θ0 is the constant electromagnetic Chern-Simons term, equal to zero in ordinary
insulators and π in topological insulators (TIs). In these materials, surface currents are
accounted for by inclusion of a non-zero value for Θ0 (the topological magneto-electric
effect due to the Hall conductivity [48, 49]). In the presence of a dynamical AQ field,
δΘ, the static vacuum value Θ0 is allowed to take on a continuum of values between 0
and π. The total axion field is denoted by Θ = δΘ + Θ0. We review these concepts
further below, for a detailed presentation see Ref. [50].

The dynamics of the AQs are described by [42, 51]

SΘ = f2
Θ
2

∫
d4x

[
(∂tδΘ)2 − (vi∂iδΘ)2 −m2

ΘδΘ2
]
, (2.2)

where fΘ, vi and mΘ are the stiffness, velocity and mass of the AQ. The velocities vi
are of the order of the spin wave speed in typical antiferromagnets, vs ∼ 10−4c, see for
example Ref. [52]. In the coupled equations of motion for the electric field and the AQ
(see Section 3.2), fΘ enters in the combination1

b = α

π
√

2
Be√
εfΘ

= 1.6 meV
(25
ε1

)1/2 ( Be
2 T

)(70 eV
fΘ

)
. (2.3)

In addition to the action for the AQ we consider electromagnetic fields governed by
Maxwell’s equations in media, which depend on the complex valued dielectric function,
ε̃ = ε1 + iε2 = ε1 + iσ/ω (where σ is the conductivity), and magnetic susceptibility,
χm. Where there is no room for confusion we use ε1 = ε in some of the following. The
phenomenological model also requires the specification of a loss matrix, Γ.

2.2 Realisation in Dirac Quasiparticle Antiferromagnets

The idea to realise axion electrodynamics in solids was originally developed by Wilczek [44]
who, however, could not identify a magnetic solid that breaks parity and time-reversal
while preserving its combination: as we will see, necessary conditions for AQs. Recent
developments in nonmagnetic and magnetic electronic topological phases of matter, and
study of the topological magnetoelectric effect associated with the Chern-Simons term in
magnetoelectrics [53, 54] have led to the identification of several routes to realise axion
electrodynamics in energy bands of magnetic topological insulators and Dirac quasipar-
ticle antiferromagnets. The electronic, magnetic, topological energy bands can couple

1Note that we use the Lorentz-Heaviside convention, where 1 T ≈ 195 eV2.
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to spin fluctuations, and thus generate a dynamical axion phase on the electromagnetic
Chern-Simons term.

In this section we discuss the Dirac quasiparticle model of AQs in electronic energy
bands. We compare the symmetry criteria for static and dynamical axion topological
antiferromagnets, and discuss the most prominent material candidates.

2.2.1 Symmetry criteria for static and dynamical magnetic axion insulators

The topological Θ term is called also an axion angle as it can take any value between 0
and 2π. The operations of charge conjugation C, parity P (known as inversion symmetry
in condensed matter, a terminology we adopt throughout this section to distinguish it
from other types of parity operation in solids), and time-reversal T are the discrete
symmetries constraining the values of Θ, and which define the properties of fundamental
forces in nature via the CPT theorem. CP breaking means that the physical laws are not
invariant under combination of interchanging particle with its antiparticle with inverting
the spatial coordinates. If Θ 6= 0, π, then CP is violated. The combined CPT symmetry
is believed to be preserved (i.e. the so called CPT theorem) and thus the violation of
CP implies the violation of T symmetry, i.e. the reversal of the time coordinate, and
thus particle motion. Realisation of CP-broken theory and axion electrodynamics with
non-quantized axion angle can be achieved in materials with broken T symmetry [55–
57]. In materials, magnetic ordering can break the T symmetry. In this section we will
discuss the symmetries of magnetic axion insulators which exhibit nonzero pseudoscalar
axion quasiparticle Θ (we use capital letter to label the solid state quasiparticle axion
to distinguish it from the DM axion).

The nonzero axion response can be find in subgroup of conventional and topological
magnetoelectric materials. The conventional magneto-electric polarizability tensor is
defined as[58, 59]:

αij = (∂Pi/∂Bj)E = (∂Mj/∂Ei)B . (2.4)

Here Pi, Bj ,Mj , and Ei are electric polarisation, magnetic field, magnetization, and
electric field. The magnetoelectric polarizability tensor can be decomposed as [58]:

αij = α̃ij + Θe2

2πhδij , (2.5)

where the first term is the non-diagonal part of the tensor arising from spin, orbital
and ionic contribution [60]. The second term is the diagonal pseudoscalar part of the
coupling related to the axion angle Θ.

We will now review symmetry criteria for nonzero axion quasiparticle Θ. In solid
state potentials, discrete symmetries impose severe constraint on the existence and form
of the topological axion angle [61], and provide robust insight into the topological char-
acterisation of the energy bands [62–65]. The topological classification assigns two insu-
lators into the same category as long as it is possible to connect the two corresponding
Hamiltonians by a continuous deformation without closing an energy gap and while
preserving all symmetries [53, 54].
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 Axion quasiparticle response

Non-quantised Quantised 
Magnetoelectric point groups (Tab. 1)

(Antiferromagnetic) 
topological insulators Axion insulators 

Dynamical axion quasiparticle

Conventional diagonal 
magneto electric

Bulk Dirac quasiparticles 

Axion odd symmetry (Tab. 2)

Spin dynamics

(t)T
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Figure 1: Flowchart of generating dynamical axion quasiparticles with four building
bock systems.

Three symmetry based strategies attracted great interest in recent decades. First,
solid state quantum field theory considers parity, chiral, and particle-hole symmetries,
which are relevant for rather strongly correlated states of matter such as superconduc-
tors and lead to abstract multidimensional classification [66]. Second, more numerically
feasible symmetry analysis of Wannnier band structure. The Wannier band structure
refers to mixes of real and momentum space band structure, with hybrid Wannier charge
centres, which encodes the topological character of given states [57, 61, 67]. The formu-
lation is particularly useful for first-principle calculations of the axion angle. Third, we
can use space group or magnetic space group symmetries to derive symmetry indicators
of single particle energy bands [61, 64, 65, 68, 69].

The E.B term is odd under time-reversal symmetry, inversion symmetry and any
improper rotations, e.g. mirror symmetries [61, 63]. If the crystal has such a symmetry:

Θ = −Θ. (2.6)

The symmetry constraint would force any any periodic function to vanish. However, Θ
is periodic angle defined only modulo 2π and thus these symmetries enforce only

Θ = 0, or π. (2.7)

When none of these symmetries is present Θ can be still non-quantized.
Based on the magnetic symmetry classification, we can distinguish four classes

of pseudoscalar magneto-electric axion response materials shown in Fig. 1. First two
classes are conventional magnetoelectrics [70] and dynamical axion insulators [71] with
nonzero pseudoscalar part of the magnetoelectric polarisability tensor (and combined
PT symmetry [68, 69] such as Mn2Bi2Te5 [72]). Second two classes are the topological
insulators and axion insulators with quantized magnetoelectric response such as doped
Bi2Se3 or MnBi2Te4 [50, 53, 54, 59, 71].

The nonquantized value of Θ can be find in subset of 58 magnetic point groups
allowing for general magnetoelectric response. We summarise in Tab. 1 only the 40
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Components FM MPG AF MPG Material(
αxx αyy αzz

)
1 2 m′ m′m′2 (1′) (2/m′) 222 (m′m′m′) (Fe,Bi)2Se3

3 4 6 (3′) 4′ 4/m′ 6′ 6/m′(
αxx αxx αzz

)
3m′ 4m′m′ 32 (3′m′) 422 4′2m′ (4/m′m′m′) Cr2O3[73]

6m′m′ 622 6′m′2 (6/m′m′m′)(
αxx −αxx 0

)
4, 42′m′ 4′ (4′/m′), 4′22′ 4′mm′ 4m2 (4′/m′mm′)(

αxx αxx αxx
)

23, (m′3′), 432, 4′3m′ (m′3′m′)

Table 1: Table of antiferromagnetic and ferromagnetic nonquantized axion magneto-
electric symmetry groups and candidate material. In the first column we show only the
diagonal part of magnetoelectric polarizability tensor αij . The symbols 1 and 1′ mark
spatial inversion and time-reversal symmetry, respectively. FM and AF MPG refers to
ferromagnetic and antiferromagnetic magnetic point group [75].

mangetic point groups which allow for the nonzero diagonal magnetoelectric response
elements [73, 74]. We also list whether the material has allowed ferromagnetism (FM,
12 magnetic point groups) or is enforced by the point group symmetry to be antiferro-
magnetic (AF, 28 point groups) [75] together with several material examples. We see
that the magnetoelectric response can be anisotropic what was confirmed experimen-
tally [76]. Note that the third row of the Tab. 1 gives zero trace. This analysis excludes
from pseudoscalar magnetoelectric coupling materials which do exhibit only traceless
magnetoelectric coupling. When the system breaks P and T but preserves its combi-
nation, it can host also bulk Dirac quasiparticles [68]. We mark the PT symmetric
magnetoelectric pseudoscalar point groups by brackets in Tab. 1.

In topological insulators, such as Bi2Se3 (the nonmagnetic phase of crystal shown in
Fig. 2(a)) and Bi2Te3, the presence of T symmetry in combination with nontriivial band
inversion ensures the axion angle Θ to be π [77], requires zero surface Hall conductivity,
and the topological magneto-electric effect [78]. The topological magneto-electric effect
in topological insulators refers to a quantized magneto-electric response, and has been
observed also by magneto-optical measurements [77]. In fact, the quantization of Θ
in non-magnetic topological insulators can be taken as defining property of topological
insulators [78]. Recently, also antiferromagnetic topological insulator [79] was found
in MnBi2Te4 [80]. Antiferromagnetic topological insulator state is protected by time-
reversal symmetry coupled with partial unit cell translation t as we show in Fig. 2(b).

The static axion insulators are magnetic topological insulators, such as MnBi2Te4 [81,
82], which break T symmetry via the presence of a magnetic ion (in this case, Mn). How-
ever, they exhibit axion response with Θ = π, protected by the presence of axion odd
symmetries such as inversions, see inversion centre in Fig. 2(b), or crystalline symmetries.
The axion-odd symmetries are the symmetries which reverse the sign of Θ and support
the so called Z2 classification [62, 63, 83]. Among the additional axion-odd symmetries
are improper rotations, and antiunitary proper rotations (for instance rotation combined
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(a) (b)

Te

Bi

T t
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Se

Fe,Bi

Figure 2: (a) Crystal structure of topological insulator Bi2Se3 consist from quintuple
layers forming rhombohedral unit cell. Antiferromagnetism of the magnetically doped
(Fe,Bi)2Se3 breaks spatial inversion P and time-reversal T symmetry, but preserve com-
bined PT symmetry. (b) Crystal structure of intrinsic antiferromagnetic axion insulator
MnBi2Te4. The quantized value of axion angle is protected by the inversion symmetry
P (we maek two inversion symmetry points in the lattice). The system exhibits also
partial unit cell translation t combined with time-reversal symmetry T .

with time-reversal). In the Table 2, we list axion angle quantizing symmetry operations,
g. We decompose the symmetry operation g = g‖ ◦g⊥ into the parts g‖ and g⊥ which are
parallel and perpendicular (in the surface plane) to the given surface normal ẑ[61]. We
remark that we list the point group operation, but in general we need to pay attention
to the nonsymmoprhic partial translations of the group, for details see [61].

Finally, the dynamical axion insulator allows for nonquantized dynamical axion
angle. The dynamics of the axion angle was suggested to be induced by chiral magnetic
effect, antiferromangetic resonance [72], longitudinal spin fluctuations [71] in an anti-
ferromagnet or spin fluctuations in paramagnetic state [84]. In Fig. 2(a), we show an
example of lattice with dynamical axion insulator state - Fe-doped (Bi1−xFex)2Se3 with
PT symmetric crystal. Here, the antiferromagnetism breaks the inversion and time-
reversal symmetries of the Bi2Se3 crystal. The symmetry breaking is desribed by mass
term M5 which corresponds to the band-gap in surface state. The combined PT sym-
metry is in the (Bi1−xFex)2Se3 crystal preseved and enforces Kramers degenerate bands.
This can be seen by acting PT symmetry on the Bloch state to show that these two
states have the same energy and are orthoghonal [68, 69, 85–87]. The presence of PT
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g g‖ g⊥
Operations reversing ẑ

Mz

Mz

E
P C2
S3,4,6 C3,4,6
C̄2T MdT

Operations preserving ẑ
ET

E

ET
C2,3,4,6T C2,3,4T
Md Md

Table 2: Axion angle quantizing symmetries. E , P,Mz,Md, C2,3,4,6, S3,4,6, and T mark
unitary symmmetry operations of identity, inversion, mirror parallel and perpendicular
to surface normal ẑ, rotational axis, improper rotations, and time-reversal, respectively.
Overbar marks inversion. Adapted after [61].

allows for antiferromagnetic Dirac quasipaticles [68, 69] with plethora of unconventional
and practically useful response such as large anisotropic magnetoresistance [68, 88]. We
discuss the material physics requirements for dynamical axion insulator in the section
followed by section on minimal effective model of a dynamical axion insulator.

2.2.2 Material candidates
In this section we list requirements for a dynamical axion insulator which is also suitable
for dark axion detection [89]. In addition to constraints comming from requiring dynam-
ical axion quasiparticles, we need to ensure strong coupling of the Θ magneto-electric
response to the fluctuations of the magnetic order parameter. The concept was originally
developed for the longitudinal fluctuations in the Néel order parameter in magnetically
doped topological insulators ((Bi1−xFex)2Se3 in Ref. [42]) and recently extended into
the instrinsic antiferromagnet Mn2Bi2Te5 [72]. This dynamical axion field is quite weak
due to the low magnetoelectric coupling and trivial electronic structure in conventional
materials such as Cr2O3[90] and BiFeO3 [91] with Θ = 10−3 and 10−4, respectively,
see Tab. 3. The dynamical axion effect (i.e. a large Θ response to external perturba-
tions) can be enhanced in the proximity of the topological phase transitions[72]. We
now summarise the material criteria for a dynamical axion quasiparticles for detecting
dark matter axion:

• Nonzero dynamical axion angle. The material symmetry allows for dynamical
axion insulator state and axion spin density wave [71, 72, 84] with mass in the
range of meV. This is one of the main advantage of using axion quasiparticles in
antiferromagnets for detecting light and weakly interacting DM axions [92].

• Large bulk band-gap [56]. The material is in bulk semicondcuting or insulating
with a large bulk band-gap, without disturbing bulk metallic states. In turn its
low energy physics is governed solely by the axion coupling.
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• Topological mass term M5 should be of order of dynamical axion fluctuation mass
ma to ensure resonance with DM axion [71, 92].

• Large fluctiation in axion angle. This can be achieved close to the magnetic and
topological phase transition as δΘ(r, t) = δM5/g, and 1/g ∼ 1/M(0) [72]. The
topological phase transition should be approached from the topological side. Prac-
tically, one can tune this mass term by alloying. The alloying can effectively tune
the strength of the spin orbit interaction. However, the proximity close to the
magnetic transition can compromise narrow linewidth, see next point.

• Trade-off among narrow linewidth and sensitivity. Narrow linewidth of the axion
respones where the thermal fluction and scattering are supressed. This imposis
tmeperature constraints (i.e. T � TN , T � m5). In contrast, enhanced response
close the mangetic phase transition could enhance sensitivity.

• Robust magnetic ordering with elevated critical (Néel) temperature.

• As we will see in chapter about power output we need large spin-flop fields (> 1 T)
again favouring antiferromagnetic ordering.

• Linear coupling of magnetic fluctuations to generate measurable axion polariton
which is used for the detection of the dark matter axion. Li et al. [71] has used
linear coupling of the longitudinal spin wave mode. From this perspective, the rel-
atively streightforward generations of dynamical axion by chiral magnetic effect or
(anti)ferromagnetic resonance are not suitable. For the conventional transeversal
spin waves would produce rahter quadratic coupling. This point is an open prob-
lem, however, the antiferromangetic spin density wave states [93] with longitudinal
component are also possible candidates at the moment.

• Magnetic and relativistic chemistry of low energy state manifold [56]: 3d states
ensuring magnetism and time-reversal symmetry breaking and heavy elements with
strong atomic spin-orbit interaction. Low energy states of common topological
insulators are often heavy p-states which have low correlations and do not support
magnetism.

The last point can be justified by considering limitation of existing axion insulators
proposals. 3d and 4d elements do have large electronic correlations but rather small
spin-orbit interaction and thus it is difficult to tune the system into/close to the topo-
logical state. 4f and 5f elements pose heavy masses and narrow bands with excpetion
of rate Kondo topological insulators [94]. 5d pyrochlore [95] and spinel [56] elements
are computationally predicted to host axion states within relatively small window of
correlations strength complicating manufacturing the material.

To summarize, the most promissing material systems are intrinsic antriferomagnetic
axion insulators [81], magnetically doped topological insulators [71], certain conventional
magnetoelectrics [96] and heterostructures of topological insulators [97]. The PT sym-
metric antiferromagnetism seems to be favourable over ferromagnetism as it naturaly
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Table 3: Table of magneto-electric insulating material classes and candidates. FM (AF)
marks (anti)ferromagnetism, TC the critical temperature, and ∆ the bulk band gap.

Phase Material class TC (K) ∆ [meV] Θ

Magnetoelectric BiFeO3 643 950 0.9× 10−4 [91]
Cr2O3 343 1300 1.3× 10−3 [90]

Magnet/TIs CrI3/Bi2Se3/MnBi2Se4 >10 5.6 π [97]

Intrinsic P AFs MnBi2Te4 <25 <220 π

EuIn(Sn)2As(P)2 16 <100 π

Doped TIs Cr(Fe)-Bi2Se3 ∼10 [98] ∼30 nonquantized
Intrinsic PT AFs Mn(Eu)2Bi2Te5 6 ∼50 0.83π [97]

provides for Dirac quasiparticles with tunable axion quasiparticles masses, longitudinal
spin waves, larger spin-flop fields, elevated Néel temperatures, possibility to combine
chemistry required for magnetism and spin-orbit coupling in single material platform.
We list some of the promissing building block materials and systems for dynamical axion
quasiparticles in the Tab. 3. Besides listing materials which are directly dynamical axion
insulators we added also materials which can be used as starting configurations to build
the dynamical axion insulator, for instance, by alloying of the static axion insulators.

We emphasize that the bulk energy bands encode the information about the dynam-
ical axion insulator response, and its surface states [71]. We can see this on expression
for the intrinsic magnetoelectric susceptibility, axion coupling, can be calculated in the
Bloch representation as [71]:

Θ = − 1
4π

∫
BZ
d3kεαβγ Tr

[
Aα∂βAγ − i

2
3AαAβAγ

]
. (2.8)

Here we explictily see the axion angle relation to the non-abelian Berry connection
Aα,nm(k) = 〈unk |i∂kα |um〉 constructed from the Bloch functions |unk〉. The trace is
over occupied valence bands.

The first-principle calculations of the axion angle is reserch topic on its own [57, 61].
For the sake of brevity we will adopt here simpler approach. We can use first-prinicple
calculations and symmetry analysis to identify and parametrize low energy effective
Hamiltonian for which the calculation of axion angle and its dynamical response is
numerically less demanding. We will now describe dynamical axion quasiparticle model
which is applicable to Fe-doped Bi2Se3 [71] and intrinsic antiferromagnet Mn2Bi2Te5 [72]
and also heterostructures [97].

2.2.3 Dirac model of axion quasiparticles

We can derive the minimal model of dynamical axion insulator starting from the Dirac
quasiparticle model for the bulk states of topological insulator Bi2Se3 [99]. The low
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energy physics can be captured by four-band Hamiltonian in the basis of bonding and
antibonding Bi pz states |P2−z , ↑ (↓)〉 and

∣∣P1+
z , ↑ (↓)

〉
[71, 72, 99]:

HDirac = ε0(k) +
5∑

a=1
da(k)Γa. (2.9)

Here Γa refer to the Dirac matrices representation:

Γ(1,2,3,4,5) = (σx ⊗ sx , σx,⊗sy, σy ⊗ I2×2, σz ⊗ I2×2 , σx ⊗ sz) (2.10)

in the basis (|P1+
z , ↑〉, |P1+

z , ↓〉, |P2−z , ↑〉, |P2−z , ↓〉). σ and s are orbital and spin Pauli
matrices. The 4 × 4 matrices Γa satisfy the Clifford algebra {Γa,Γb} = 2δab with Γ5 =
Γ1Γ2Γ3Γ4. This model can be tuned to the trivial (Θ = 0) or topological insulator state
(Θ = π). To induce nonzero δΘ and dynamical axion state we need to add P and T
symmetry breaking terms due to the antiferromagnetism.

The crystal momentum dependent coefficients take the form:

d1,2,3(k) = A1,2,3(k) +mx,y,z, (2.11)
ε0(k) = C + 2D1 + 4D2 − 2D1 cos kz − 2D2 (cos kx + cos ky) (2.12)

d4(k) =M(k) = M0 − 2B1 − 4B2 + 2B1 cos kz + 2B2 (cos kx + cos ky) (2.13)
d5(k) = M5. (2.14)

Here the fourth term M(k) controls the topological phase transition from the trivial to
topological insulator, is invariant under T , and we denote M(k = 0) = M0. The topo-
logical insulating phase is achieved when M,B1, B2 > 0 [99]. The symmetry breaking
terms are the masses mx,y,z and M5 (a CP-odd chiral mass term). We see that the spatial
inversion P = σz ⊗ I2x2 and time-reversal operators T = iI2x2 ⊗ syK do not commute
with the Hamiltonian, while their combination does. Here K is complex conjugation.

Only the last mass term M5 induces linear perturbations to Θ as we will show
further, and without loss of generality one can set mx,y,z = 0. In turn, the M5 term opens
a surface band gap in the surface states Dirac Hamiltonian as we show in Fig. 3. The
A,B,C, D, and masses M,M5 constants are material dependent and can be determined
by fitting the electronic structure calculated from the first-principles [71, 97, 99, 100].
We also remark, that for calculating the complete response of the material we need to
know the full periodic Hamiltonian Eq. (2.14).

When its sufficient to study small wavector excitations we can use continuum vari-
ant, k,p-expansion, around momentum points Xf , where q = k −Xf :

Hf (q) = qxα1 + qyα2 + qzα3 +M0α4 +M5fα5. (2.15)

Here we use the standard Dirac equation basis:

β = α4 =
(
I 0
0 −I

)
, αi=1,2,3 =

(
0 σi
−σi 0

)
⇒ α5 =

(
0 I
I 0

)
. (2.16)
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Figure 3: (a) Minimal model energy bands of edge states (red) of dynamical axion
insulator with parity and time-reversal breaking antiferromangetic term M5 = 0.5M0,
where M0 is bulk (blue) Dirac band-gap. The wavector corresponds to given valley index
f in the text.

Furthermore, the subscript f denotes the valley degree of freedom in the low-energy
electronic band of the system, and can be understood as the Dirac quasiparticle flavour.
In the AFI phase of the Bi2Se3 family doped with magnetic impurities such as Fe [42],
there is a single Dirac fermion and M5,1 = M5,2 = 0, M5,3 = −(2/3)Unz. (In the AFI
phase of the Fu-Kane-Mele-Hubbard (FKMH) model [51], there are three Dirac fermions
and M5,a = Una (a = x, y, z).) Here, n = (〈SA − SB)/2 = nxex + nyey + nzez denotes
the mean-field AF order parameter (i.e., the Néel field, with SA,B the spin of ions on
A and B-type lattice sites) and U is the on-site electron-electron interaction strength
(i.e. the Hubbard term, see below). The kinetic term ∑3

µ=1 qµαµ is spin-dependent as a
consequence of spin-orbit coupling.

We derive the effective action consisting of the Néel field n = n0 + δn and an
external electromagnetic potential Aµ, where n0 denotes the ground state of the Néel
field and δn denotes the fluctuation due to excitations. For this purpose, it is convenient
to adopt a perturbative method. We start with the total action of an AF insulator
described by Eq. (2.15) with an external electromagnetic potential Aµ:

Seff [ψ, ψ̄,n, Aµ] =
∫
dtd3r

∑
f

ψ̄f (r, t)
[
iγµDµ −M0 + iγ5M5f

]
ψf (r, t), (2.17)

where t is real time, ψf (r, t) is a four-component spinor, ψ̄f = ψ†fγ
0, Dµ = ∂µ + ieAµ,
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and we have used the fact that α4 = γ0, α5 = −iγ0γ5 and αj = γ0γj (j = 1, 2, 3).
Here, the gamma matrices satisfy the identities {γµ, γ5} = 0 and {γµ, γν} = 2gµν with
gµν = diag(1,−1,−1,−1). By integrating out the fermionic field ψf , we obtain the
effective action Weff for n and Aµ as

Z[n, Aµ] =
∫
D[ψ, ψ̄]eiSeff = exp

∑
f

Tr ln
[
G−1

0f (1 +G0fVf )
]

= exp

∑
f

Tr
(
lnG−1

0f

)
−
∑
f

∞∑
n=1

1
n

Tr (−G0fVf )n


≡ eiWeff [n,Aµ]. (2.18)

In order to obtain the action of the low-energy spin-wave excitation, i.e., the AF magnon,
we set the Green’s function of the unperturbed part as G0f = (iγµ∂µ−M0 + iγ5M5f )−1,
and the perturbation term as Vf = −eγµAµ+iγ5δM5f . Note that we have used iγµDµ−
M0 + iγ5(M5f + δM5f ) = G−1

0f + Vf . In the random phase approximation, the leading-
order terms read

iWeff [n, Aµ] = −1
2
∑
f

Tr
(
G0f iγ

5δM5f
)2

+
∑
f

Tr
[
(G0feγ

µAµ)2
(
G0f iγ

5δM5f
)]
,

(2.19)

where the first and second terms on the right-hand side correspond to a bubble-type
diagram and a triangle-type digram, respectively.

To compute the traces of the gamma matrices we use the following identities:

tr(γµ) = tr(γ5) = 0, tr(γµγν) = 4gµν , tr(γµγνγ5) = 0, tr(γµγνγργσγ5) = −4iεµνρσ.
(2.20)

The first term in Eq. (2.19) is given explicitly by

Tr
(
G0f iγ

5δM5f
)2

=
∫

d4q

(2π)4

∫
d4k

(2π)4 tr
[
G0f (k)iγ5δM5f (q)G0f (k + q)iγ5δM5f (−q)

]
= 4

∫
d4q

(2π)4

∫
d4k

(2π)4
[kµ(k + q)µ −M2

0 +M2
5f ]δM5f (q)δM5f (−q)

(k2 −M2
0 −M2

5f )[(k + q)2 −M2
0 −M2

5f ]

≡
∫

d4q

(2π)4 Πf (q)δM5f (q)δM5f (−q), (2.21)

where k2 = gµνkµkν = kµk
µ = k2

0 − k2. We have used G0f (k) = (γµkµ + M0 +
iγ5M5f )/(k2 − M2

0 − M2
5f ), {γµ, γ5} = 0, and {γµ, γν} = 2gµν . After performing a

contour integration, we arrive at the action of the form∑
f

Tr
(
G0f iγ

5δM5f
)2

= i
∑
f

Jf

∫
dtd3r

[
(∂µδM5f )(∂µδM5f )−m2

f (δM5f )2
]
, (2.22)
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where Jf and mf are the stiffness and mass of the spin-wave excitation mode, which are
given respectively by [42]

Jf = ∂2Πf (q)
∂q2

0

∣∣∣∣∣
q→0

=
∫

BZ

d3k

(2π)3

∑4
i=1 d

2
i

16|d|5 , (2.23)

Jfm
2
f = Πf (q)|q→0 = M2

5f

∫
BZ

d3k

(2π)3
1

4|d|3 , (2.24)

where |d| =
√∑5

a=1 d
2
a, q → 0 indicates the limit of both q0 → 0 and q → 0, and

here f denotes the flavour. Equation (2.22) is nothing but the action of the Néel field
described by the non-linear sigma model [101]. In the present low-energy effective model
[Eq. (2.17)], the information on the anisotropy of the Néel field is not included. On the
other hand, many (actual) AF insulators have the easy-axis anisotropy. Hence the term∑
f m

2
fδn

2
f will be replaced by a term like m2(δn · eA)2 with eA denoting the easy axis.

The second term in Eq. (2.19) is the triangle anomaly, which gives the Chern-Simons
term. The final result is [102, 103]

∑
f

Tr
[
(G0feγ

µAµ)2
(
G0f iγ

5δM5f
)]

= i
α

2π

∫
dtd3rδΘ(r, t)εµνρλ∂µAν∂ρAλ

= i
α

π

∫
dtd3rδΘ(r, t)E ·B, (2.25)

where [51]

δΘ(r, t) =
∑
f

tan−1
[
Mf + δM5f (r, t)

M0

]
−
∑
f

tan−1
[
Mf

M0

]
≈ −

∑
f

δM5f (r, t)
M0

. (2.26)

From Eq. (2.25) we find that the fluctuation of the γ5 mass M5f behaves just as a
dynamical axion field. From Eqs. (2.22) and (2.25), we finally arrive at the action of the
AQ [42, 104]:

SAQ = M2
0J
∫
dtd3r

[
(∂µδΘ)(∂µδΘ)−m2

ΘδΘ2
]

+ α

π

∫
dtd3rδΘ(r, t)E ·B , (2.27)

where have used that for systems described by the Dirac Hamiltonian (Eq. (2.15)) the
quantity labelled g in the action given in Ref. [42] can be set equal to the bulk band
gap M0. We identify the decay constant as M2

0J = fΘ
2/2, and note that the spin wave

speed appears in the spatial derivatives by choice of units.

2.3 AQ as Longitudinal Magnon

For concreteness, let us consider the AF insulator phase of (Bi1−xFex)2Se3 and Mn2Bi2Te5
such that there is a single degree of freedom with M5,1 = M5,2 = 0, and M5,3 =
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−(2/3)Un‖, where n‖ is parallel to the easy-axis anisotropy. In terms of the AF or-
der parameters the AQ is given by expanding eq. (2.26), leading to

δΘ ≈ 2U
3M0

δn‖ . (2.28)

Thus, we see that the AQ δΘ is the longitudinal fluctuation in the AF order.
The EFT of transverse magnons is presented in Appendix A.1, and is based on the

Heisenberg model. The Heisenberg model is the strong coupling limit of the Hubbard
model used to describe the AQ, but nonetheless it provides some insight into the physics,
which we discuss briefly. The EFT describes the AF order parameter, n. Let us denote
the components of n as n‖ along the easy-axis and n⊥,1,2 orthogonal to it. In the EFT
we have that:

δn‖ ≈ −
δn2
⊥,1
2 −

δn2
⊥,2
2 . (2.29)

Thus the AQ is related non-linearly to the transverse magnons of the Heisenberg EFT.
In the Dirac model for the AQ, the interaction between δΘ and electromagnetism

is given entirely by the chiral anomaly, i.e. the interaction δΘE ·B. On the other hand
the Heisenberg EFT contains the spin interaction Lem = µBs ·H, with s = ṅ × n at
leading order. As we have just established, however, the Heisenberg model fields are not
linearly related to the AQ in the Hubbard model with t/U � 1. We therefore neglect the
interaction Lem in our subsequent calculations based on the effective action Eq. (2.27).
If only the axion, δΘ ∝ δn‖, is present, then indeed ṅ× n = 0.

However, if the AFMR fields δn⊥ are also excited, then Lem mixes the fields and
leads to the Kittel shift in the frequencies of these fields ω = µBH0 +

√
m2
s + v2k2 (see

Appendix A.1). The Kittel shift would also mix the AFMR fields with the axion. It
is not clear to us how to model these two effects, the AQ and AFMR with an applied
field, at the same time because the two descriptions are valid in opposite regimes of the
Hubbard model parameters. The splitting µBH0 � ms for fields H0 ∼ 1 T, and so our
subsequent results would not be changed drastically by such an effect. Nevertheless, the
splitting may be possible to observe experimentally if it is present. This remains an open
question.

We have not been able to derive an EFT for the AQ longitudinal magnon along
the same lines as the EFT of AFMR given in the Appendix. One possibility for such
a theory generalises the AF-ordering to a general spin density wave ordering vector Q.
In this case, one arrives at a quadratic Lagrangian for the transverse and longitudinal
magnons2 with coupling to external sources [93]. However, in addition to these desired
ingredients there are also spinor degrees of freedom, the “holons” describing the spin-
charge separation. Another possibility, which we suggest, is to generalise the Néel order
parameter to an SU(2) doublet with the AQ a Goldstone boson associated to a Chiral
U(1) subgroup under which the Dirac quasiparticles are charged.

2Other approaches to the longitudinal mode include Refs. [105, 106].
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Table 4: Material parameters for AQ materials. Mn2Bi2Te5 has not been experimentally
realised, and parameters in the references are calculated ab initio, rather than measured.
Values in parentheses were assumed in Ref. [42]. We assume the dielectric constants for
both materials are equal to the undoped Bi2Se3 extrapolated to low energy [108, 109].

Symbol Name (Bi1−xFex)2Se3 Mn2Bi2Te5

µBHE Exchange 1 meV [110] 0.8 meV [97]
µBHA Anisotropy 16 meV [107] 0.1 meV [97]

Vu.c. Unit cell volume 440 Å3 270 Å3

U Hubbard term 3 eV [107] 3 eV [97]
M0 Bulk band gap 0.03 eV (0.2 eV) [107] 0.05 eV [97]
t Nearest neighbour hoppinga 0.04 eV 0.04 eV
S Magnetic moment 4.99 [107] 4.59 [97]
TN Néel temperature 10 K [98] 6 Kb

ε1 Dielectric constant 25 (100) 25
a The hopping parameters t are derived from HE assuming half-filling.
b Estimated from the Liechtenstein magnetic force theorem, TN = 3µBHE/2kB [111].

2.4 Parameter Estimation

Three unknown quantities determine the AQ model: the mass mΘ, decay constant fΘ,
and speed vs (from the spatial derivatives, giving the wave speed). We generally work
in the limit vs � c and ignore the magnon dispersion relative to the E-field. This leaves
two parameters, mΘ and fΘ. We show in detail in section 3.1 how both mΘ and fΘ can
be determined experimentally from the polariton resonances and gap via transmission
spectroscopy (related to the total reflectance measurement proposed by Ref. [42]). In this
section, however, we wish to estimate these parameters from known material properties.

We consider two candidate materials, firstly the magnetically doped TI (Bi1−xFex)2Se3
of Ref. [42]. Reference [107] considered a number of different TIs doped with different
magnetic ions, and found that only (Bi1−xFex)2Se3 is both antiferromagnetic and in-
sulating. (Bi1−xFex)2Se3 has been successfully fabricated. However, the magentism is
fragile due to the doping (required around 3.5%), and the region of the phase diagram
exhibiting the AQ is small. Therefore, we also consider the new class of intrinsically
magnetic TIs, MnxBiyTez, of which only Mn2Bi2Te5 is thought to contain an AQ, but
has yet to be fabricated. Material properties for both cases are listed in Table 4, while
the derived parameters are given in Table 5. Our estimates for the derived parameters
are discussed in the following.

The microscopic model for the AQ is derived from the Hubbard model in the weak
coupling limit. In the Hubbard model, one allows hopping of spins between lattice sites.
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Table 5: Derived AQ parameters. “Material 1” is our best approximation to
(Bi1−xFex)2Se3. We report the results of Ref. [42], who assumed a cubic lattice to
evaluate the band integrals, but rescaled by our values of M0. We use a combination
of normalisation to the cubic lattice result, and the material properties in Table 4 to
estimate the parameters for “Material 2”, our best approximation to Mn2Bi2Te5.

Symbol Name Equations “Material 1” “Material 2”
mΘ AQ mass (2.35), (2.38) 2 meV 1.8 meV
fΘ AQ decay constant (2.34), (2.37) 30 eV 70 eV

The Hubbard Hamiltonian is:

H = −t
∑
〈ij〉,σ

a†iσajσ + U
∑
i

ni↑ni↓, (2.30)

where a†iσ and aiσ are the creation and annihilation operators for a spin σ at lattice
site i and the first sum is over nearest neighbour sites. ni↑ and ni↓ are the spin up
and spin down density operators for the ith lattice site. The first term describes the
kinetic energy of the system, whose scale is given by the hopping parameter t. The
second term describes the interaction between spins on the same site, with scale given
by the Hubbard term U . In the limit of half filling and U � t, the Hubbard model is
equivalent to a Heisenberg model with JH ∼ t2/U [112]. The exchange field is related
to the Heisenberg Hamiltonian via Eq. (A.15) as

HE = 2SJH
gµB

, (2.31)

where S is the ion spin and g is the spectroscopic splitting factor [113] (see Appendix A
for more details). This relation was used in Table 4 to set the hopping parameter t given
U , S and µBHE and taking g = 2.

The electron band energies di, Eqs. (2.23), (2.24), appearing in the microscopic
model are normalized with respect to t. The Brillouin zone (BZ) momentum, k, on the
other hand, is normalised with respect to the unit cell. This suggests normalizing the
integrals Eqs. (2.23,2.24) as (we consider only the case with a single Dirac fermion from
now on and drop the subscript f):

J =
∫

BZ

d3k

(2π)3

∑
i d

2
i

16|d|3 = I1
Vu.c.t3

, (2.32)

(note that this J is not Heisenberg JH , in fact JH ∝ 1/J) and

m2
ΘJ = M2

5

∫
BZ

d3k

(2π)3
1

4|d|3 = M2
5
I2

Vu.c.t3
, (2.33)

– 18 –



where Vu.c. is the volume of the unit cell. It then follows that the AQ mass is:

mΘ = M5

√
I2
I1

= 2SU
3

√
I2
I1
. (2.34)

Notice that for an exact Dirac dispersion for d, the integrals over the BZ vanish if the
Dirac mass, M0, vanishes, as we expect from the Gell–Mann-Oakes-Renner relation [114].
However, these integrals should be evaluated for d’s computed in the full theory, i.e. ab
initio density functional theory for the Hubbard model.

In the full theory, the normalized integrals I depend on the ratio t/U . In terms of
the Hubbard model parameters we have M5 = (2/3)Unz, where nz = S is the normalised
AF order. The decay constant is:

fΘ
2 = 2M2

0
I1

Vu.c.t3
, (2.35)

Using a cubic lattice model, Ref. [42] computed the BZ integrals for (Bi1−xFex)2Se3.
The integrals depend on the ratio t/U , so we can also use this result for Mn2Bi2Te5 if
we extract the values of the normalised integrals.

Reference [42] report b = 0.2 meV at 2 T and mΘ = 2 meV. Ref. [42] assumed values
for the dielectric constant (taken at the gap instead of near the spin wave resonance) and
bulk band gap (taken from the model without doping [115]) of (Bi1−xFex)2Se3, which
we wish to update (in Table 4, the values assumed by Ref. [42] are given in parentheses).
Fortunately, both of these quantities can be factored out of the relevant expressions to
arrive simply with the normalised integrals. We find:

I1 = 4× 10−7 , I2 = 4I1 × 10−8 . (2.36)

Leading to the derived model parameters:

fΘ = 30 eV
(

M0
0.03 eV

)0.5 ( Vu.c.

440Å3

)−0.5 ( t

0.04 eV

)−1.5 ( I1
4× 10−7

)0.5
(2.37)

mΘ = 2 meV
(

S

4.99

)(
U

3 eV

)( I2/I1
4× 10−8

)0.5
. (2.38)

The derived parameters are presented in Table 5, where we adopt the less committal
names “Material 1” and “Material 2” for (Bi1−xFex)2Se3 and Mn2Bi2Te5 respectively,
to acknowledge the limitations of our estimates.

Note that in Table 4 we quote the anisotropy field µHA, but that this plays no
role in our estimation of the AQ parameters. The anisotropy field in fact determines
the transverse magnon masses (see Appendix A.1), and not the mass of the longituninal
AQ. In Paper I we mistakenly assumed to use the transverse magnon mass for the AQ
(along with a doping fudge factor). The transverse and longitudinal modes turn out to
have similar masses. While we do not know of a fundamental reason for this coincidence,
they are both clearly governed by the same O(meV) magnetic energy scales.
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Table 6: Summary of the loss model. Elements of Γ are specified before diagonalising
the kinetic term (see Eq. 3.28). The only E-field loss is the conductance. The total AQ
loss is given by the sum of the remaining terms. Loss channels deemed negligible include
AQ decay to photons, AQ-photon scattering, and off-diagonal losses.

Type of losses Symbol Parameterisation Reference values Comments

Conductance Γρ ε2 ω 10−4 ω
Extrapolated from
optical wavelengths

Gilbert damping Γlin αG (1 + χ−1
m )ω 10−9 ω χm given in Ref. [118]†

Magnon scattering Γ4m n/a Boltzmann-suppressed
for T < m

Impurities
& domains Γcryst. (δL/L)ω [10−4, 10−3]ω Typical impurity scale

L ∼ 1 µm [118]
† We thank Chang Liu for providing this result.

Finally, we mention the important spin flop transition (for a detailed description
and bibliography, see ref. [116]). Large magnetic fields cause spins to align and induce
net magnetization. The magnetization increases linearly for fields larger than the spin-
flop field, HSF, eventually destroying the AF order. The spin flop field for MnBi2Te4
is 3.5 T [117]. In easy axis systems, the AF order is destroyed completely when the
magnetization saturates. This occurs at the spin flip transition for fields larger than the
exchange field, HE . Large applied fields that destroy AF order will also destroy the AQ.
For the exchange fields given in table 4 we expect these transitions to happen in the
many Tesla regime. In the following we consider fields up to 10 T for illustration.

2.5 Damping and Losses

As discussed below, the magnon and photon losses are crucial in determining how effec-
tive an AQ material is for detection of DM. In order to detect the AQ and measure its
properties, it is essential that any experiment is carried out at temperatures below the
Néel temperature. Fortunately both candidate materials have TN > 4 K, and so initial
measurements can be made at more accessible liquid Helium temperatures. As we dis-
cuss below, there are at least two sources of loss (conductance, and magnon scattering)
that become less important at low temperatures. When using AQ materials to search
for DM, it could therefore be advantageous to operate at T � ωa dilution refrigerator
temperatures.

2.5.1 Resistivity and the Dielectric Function
Material conductance (inverse resistivity) appears in the E-field equations of motion as
a damping term Γρ = 1/ρ = 0.6 meV [ρ/Ω cm)]−1, from which we see that a resonance
near 1 meV requires ρ � 1 Ω cm) for Q = ω/Γ � 1. For a resonance involving the
electric field, one requires large resistance, i.e. low conductance.

Ref. [119] measure ρ in the optical (ω ∼ 1 eV) at T ≈ 1 K of ρ = 2× 10−3 Ω cm for
undoped Bi2Se3, lowering to ρ = 5× 10−4 Ω cm with doping. However, it is shown that
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Figure 4: Bi2Se3 dielectric function, ε2, as a function of wavelength λ in the optical
regime (ω ≈ 1 eV). Measurements are from Ref. [108, 109] for the more favourable
trigonal case. The results are well fit by a powerlaw, ε2 ∝ λp with p = −1.52.

annealing the TI at high T can increase ρ to be as large as 1 Ω cm. For MnBi2Te4 the
situation is similar, with two different measurements giving a longitudinal ρ ≈ 10−3 Ω cm
at T ∼ O(few K) [120]. In the case of MnBi2Te4, resistivity can be raised by doping with
antimony (Sb) [121]. Even so, topological insulators are actually very poor insulators at
typical electronic frequencies.

The measurements of bulk ρ for both Bi2Se3 and MnBi2Te4 are taken at high energy
near the band gap around 1 eV, and far from the spin wave resonance frequency at low
energies. References [108, 109] studied the dielectric function of Bi2Se3 as a function
of probe wavelength for the trigonal and orthorhombic phases. The complex dielectric
function is ε̃(ω) = ε1 − iε2. For energies below the gap, E . 1 eV, ε1 has value around
25 at the longest wavelenths measured and is only slowly decreasing, while ε2 tends to
zero rapidly at large wavelengths in the trigonal case (which is thus more favourable for
our purposes). The value of ε1 is considerably smaller than the ε1 = 100 estimate used
in Paper I and assumed in Ref. [42]. As we show below, smaller values of ε1 are highly
desirable for DM detection.

The resistivity is given by ρ(ω) = 1/[ωε2(ω)]. A narrow linewidth on resonance
requires to ε2(ω+) � 1. Measurements in Ref. [109] extend to a maximum wavelength
2800 nm where ε2 ∼ 1. A simple power law extrapolation to THz wavelengths gives
ε2(1 meV) = 9.5 × 10−5 (see fig. 4). Thus, the resistivity on the polariton resonance
at wavelengths of order 1 mm is significantly higher than the bulk measurements in
the optical. The value of ε2 is different for different crystal structures of Bi2Se3, and we
consider only the most favourable case with the highest resistivity. We take the value ε2 =
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10−4 as a reference scale, however, we do not include any further frequency dependence,
which would certainly be different for different materials, such as Mn2Bi2Te5. The
resistivity on resonance can be determined from the linewidth as measured by THz
transmission spectroscopy, as we demonstrate in Section 3.2.

2.5.2 Magnon Losses
As we have discussed, the AQ is not described by the same EFT as ordinary AF-magnons.
However, due to the relation between the AQ and the magnon fluctuation, we use the
well-studied magnon case as a means to assess the possible magnitude of the axion
linewidth, and the qualitative possibilities. Furthermore, as we will see, the dominant
contribution is estimated to be due to material impurities, which do not depend on the
microscopic model for the AQ. We split the magnon losses into different contributions:

Γm =
∑
i

Γi, (2.39)

where the index i sums over terms defined in the following subsections.
Ref. [122] gives a comprehensive account of non-linear wave dynamics relevant to the

magnon linewidth. Early works on magnon scattering and linewidth include Ref. [123].
The recent pioneering work of Refs. [124, 125] showed how neutron diffraction with en-
ergy resolution down to 1 µeV can be used to confirm the theoretical predictions for the
AF-magnon linewidth, and the dependence on temperature and momentum across the
whole Brillouin zone, including many of the contributions discussed in the following. We
focus on a few channels for losses, by means of example, closely following Ref. [125]. Scat-
tering channels that we have not considered include AF-magnon-ferromagnetic magnon
scattering, and magnon-phonon scattering: these are discussed in e.g. Ref. [122].

In the present work, we are only concerned with the q ≈ 0 mode at T � TN , where
many contributions can be neglected. In this regime, as we show in Section 3.2, the total
AQ contribution to the linewidth can be measured using THz transmission spectroscopy.

“Linear” Losses and Gilbert Damping, Γlin

Losses are historically incorporated for spin waves by the introduction of the phenomeno-
logical Gilbert damping term into the Landau-Lifshitz equation, making the Landau-
Lifshitz-Gilbert (LLG) equation. Gilbert damping is a linear loss, since it simply rep-
resents decay of spin waves due to torque. There is not a universally accepted first
principles model of Gilbert damping. One possible model is presented in Ref. [126],
where Gilbert damping is shown to arise due to spin orbit coupling in the Dirac equa-
tion (other models include Refs. [127, 128]). In this case, the damping term is written
as:

Γlin = αG(1 + χ−1
m )ω . αG = eµΣs

8m2
e

, (2.40)

where me is the electron mass and χm is the dimensionless magnetic susceptibility (vol-
ume susceptibility in SI units), and Σs = S/Vu.c.. The dimensionless prefactor αG is
of order 10−12 for (Bi1−xFex)2Se3 and Mn2Bi2Te5. The value of χm was measured for
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Figure 5: Left: Four magnon scattering. In EFT, the amplitude can be calculated as
shown in Ref. [129]. As shown in Ref. [125], it is the leading contribution to the magnon
linewidth for T ∼ TN . For temperatures far below the spin wave mass, this term
is Boltzmann suppressed. Right: Feynman diagram for the s-channel of the process
Eq. (2.49) mediated by the axion term in the Lagrangian. The parametric dependence
of the vertex factors is shown in red. This process is suppressed by two powers of α
compared to the four magnon amplitude, Eq. (2.45).

MnBi2Te4 in Ref. [118] and found to be of order χm ≈ 10−3 for T < TN (see Table 6).
Thus the relative width, Γ/ω, is of order 10−9, which is negligible compared to the other
sources of loss in the following. Furthermore, χm is small enough to be neglected in the
magnetic permeability (with c = 1), µm = 1 + χm, which we fix to unity.

Magnon-Magnon Scattering, Γ4m

Reference [125] showed that two-to-two magnon scattering is the dominant contribution
to the linewidth above ∼ 10 K in the antiferromagnets Rb2MnF4 and MnF2 as measured
by neutron scattering. The linewidth at 10 K due to this process is Γm ≈ 10µeV, falling
rapidly at lower temperatures. We will show how this behaviour arises below. Indeed,
as noted in [124], for q → 0 and T → 0, all scattering contributions to the magnon
linewidth vanish. Ref [124] also find that this is true for scattering between the magnon
and longitudinal spin fluctuations such as the axion. We find it useful to derive in some
detail the scattering contribution to the linewidth, and demonstrate why it vanishes at
low temperature, since this is the most well understood part of our loss model.

The magnon modes obey a Boltzmann equation. Mode coupling via non-linearities
induces an effective lifetime for any initial configuration. Mode coupling arises from the
four-magnon amplitude:

δθ(k1) + δθ(k2)←→ δθ(k3) + δθ(k4) , (2.41)

which has matrix element M(k1, k2, k3, k4), and is shown in Fig. 5. The state with mo-
mentum k1 is the mode in the condensate of interest, k2 is a thermal magnon. Magnons
k3 and k4 are modes scattered out of the condensate, and thus losses. This matrix ele-
ment appears in the collisional Boltzmann equation for the magnon distribution function
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f1 ≡ f(k1) as (see e.g. Ref. [130]):

df1
dt =

∫ 4∏
i=2

dΦi(2π)4δ(3)(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

|M|2[f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)] , (2.42)

= −
∫ d3k2

(2π)3 f1f2|v1 − v2|σ , (2.43)

where dΦi = d3ki
(2π)3 is the non-relativistic phase space element for state with momen-

tum ki, the Dirac delta’s enforce energy-momentum conservation, ki represents the
3-momentum of the ith particle, and the fi factors assume the particles are bosons.
Ref. [125] caution that when such integrals are evaluated numerically, one should be
careful to include the Umklapp processes, related to conservation of crystal momen-
tum.v

We formulate the integral non-relativistically as the material picks out a preferred
frame for the magnons. In the second line, the first term in the square brackets represents
production of states k1, k2 (the inverse process in Eq. 2.41), while the second term
represents losses. In the last line we have assumed f3 = f4 = 0 for unoccupied final
states, and used the definition of the differential cross section (this structure is familiar
from particle physics scattering theory [131]). Ref. [122] derives an equivalent equation
beginning from the LLG equation, which also shows this non-linear loss term explicitly
in terms of the four-magnon amplitude.

Eq. (2.43) is the collisional Boltzmann equation, ∂tf1 = C[f1], where C[f1] is the
scattering integral. Factoring out f1 for the condensate, the scattering integral takes the
form C[f1] ∼ 1/τ and we identify the relaxation time τ for the distribution function to
change significantly from its initial state. This gives the result that:

Γ4m = 1/τ ∼ 〈σv〉 , (2.44)

where the angle brackets denote the thermal average, i.e. phase space integral with the
thermal distribution f2.

Magnons can be described by EFT, as discussed in Appendix A.1. The four magnon
amplitude is given by the equivalent of the QCD pion amplitude evaluated around non-
zero quark masses [129].

M = 1
4√ω1ω2ω3ω4

v4
m

F 2
2
{δabδcd

( 2
v2
m

ω1ω2 − 2k1 · k2 +m2
m

)
+ δacδbd

(
− 2
v2
m

ω1ω3 + 2k1 · k3 +m2
m

)
+ δadδbc

(
− 2
v2
m

ω1ω4 + 2k1 · k4 +m2
m

)
}, (2.45)

where a, b, c, d = 1, 2 denote the magnon polarizations, vm is the magnon velocity and
mm is the magnon mass.

This is the amplitude appropriate to a non-relativistic normalization, with 1 par-
ticle per unit volume rather than the usual 2ω particles per unit volume in relativistic
quantum mechanics.
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In this case, the cross section is related to the T-matrix above as [129]:

dσ = |M|
2

v
(2π)4δ4(k1 + k2 − k3 − k4) d

3k3
(2π)3

d3k4
(2π)3 , (2.46)

where v = |v1 − v2| is the relative velocity of the incoming particles.
We integrate over k3 and k4 to obtain the total cross section for given incoming

momenta k1 and k2:

σ(k1, k2) =
∫

d3k3
(2π)3

d3k4
(2π)3dσ =

∫
dk4

(2π)3dΩk2
4
|M|2

v
(2π)δ(ω1+ω2−ω3−ω4))

∣∣∣∣
(k1+k2−k3−k4=0)

,

(2.47)
where ω4 =

√
k2

4v
2
m +m2

m and ω4 =
√

(k1 + k2 − k4)2v2
m +m2

m. At this point in the
calculation, we might be tempted to move to the centre of mass frame. However, this
would change the magnon velocity vm, with the new magnon velocity depending on Ω,
leading to a magnon dispersion relation that depends on Ω. Therefore, it is in our best
interests to remain in the rest frame of the material. We thus obtain the differential
cross section:

dσ

dΩ = 1
(2π)2

1
v

|M|2k2
4

k3
ω3

+ k4
ω4

, (2.48)

where k3, ω3, k4, ω4 are defined by conservation of energy and momentum for a given Ω.

Now let us consider the scaling of Γ4m with temperature T . We note first that the
factor of v in Γ4m is cancelled by the factor of 1

v in dσ
dΩ . We will focus first on the scaling

of the line widths measured in [125] at temperatures from 3 K to 0.8TN for magnons with
momentum k1 = 0 to k1 = qZB at the edge of the zone boundary. The contributions of
T to Γ4m are as follows:

• Thermal magnons have an energy set by T . We assume that T & mm, such that
thermal magnons can be excited. We therefore take ω2 ∼ k2 ∼ T .

• The scaling of the outgoing momenta with T depends on the relative sizes of T
and ω1. The energy at the zone boundary in [125] is 6.6 meV for Rb2MnF4 and
6.3 meV for MnF2, while the temperature ranges from 3 K = 0.26 meV to 0.8TN ,
corresponding to 2.6 meV and 4.6 meV respectively. Therefore both cases where
T > ω1 and cases where ω1 > T are measured. When T � ω1, the temperature
provides most of the energy in the scattering process and we have k3, ω3, k4, ω4 ∼ T .
When T � ω1, the energy of the damped magnon provides most of the energy in
the scattering process and we have k3, ω3, k4, ω4 ∼ ω1.

• The number of thermal magnons also scales with T . Assuming that there is no
significant mass gap at k2 = 0 for the magnons considered in [125], we have∫
d3k2f2 ∼ T 3, as for a black body.

• We have also
∫
d3k3d3k4 ∼ T 2 when T � ω1 from the factor of k2

4 in the phase
space integral.
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• As T & mm, the ω1 and k1 terms in M dominate. Using the scalings above, this
gives M∼ T−1/2.

Putting these elements together, we find Γ4m ∼ T 3T 2T−1 = T 4 for ω1 � T and
Γ4m ∼ T 3T−1 = T 2 for ω1 � T . We can compare this prediction with the measured
result in Figure 4 in [125]. For low magnon wavenumber q (corresponding to low ω1,
we have Γ4m ∼ T 4 as expected. As q is increased, the scaling with T decreases towards
Γ4m ∼ T 2 as predicted. However, the measured Γ4m ∼ T when q = 0 case is not
explained by this analysis.

We would also expect that for temperatures much lower than the magnon mass,
very few thermal magnons would be excited, and Γ4m would be exponentially suppressed.
For a magnon mass mm ∼ 1 meV, this corresponds to T < 10 K.

Starting from the Boltzman equation, we have argued that magnon-magnon scat-
tering decays with T , reproducing the experimentally observed trends in [125], and is
then exponentially suppressed at temperatures below the magnon mass. The scattering
contribution to the antiferromagnetic magnon linewidth is calculated analytically for
several low T regimes in [123]. This yields a power law fall off with T in each case.

We therefore conclude that, at low T , and particularly for temperatures below the
magnon mass, the magnon scattering contribution to the linewidth is negligible.

Axion-Photon Scattering, Γγm
Scattering of magnons from thermal photons contributes to the magnon line-width Γm.
This process is induced by the four particle amplitude

δθ(k1) + γ(k2)←→ δθ(k3) + γ(k4) , (2.49)

i.e. magnon/AQ-photon scattering mediated by the Chern-Simons interaction, Eq. (2.1).
Inspecting the Feynman diagram, Fig. 5 (right panel), this amplitude is suppressed by
two powers of the fine structure constant α with respect to the four magnon amplitude,
and so we do not expect magnon-photon scattering to be significant compared with
magnon-magnon scattering. The inverse process, scattering thermal magnons from the
electric field, is similarly suppressed, and thus likely to be subdominant to conductive
losses to E.

Axion Lifetime, Γmγγ
The Chern-Simons interaction leads to direct decay of an AQ into two photons. The
contribution to the width is:

Γmγγ = α2

256π3
m3
s

f2
Θ

= 6.7× 10−22 eV
(
ms

meV

)3 (100 eV
fΘ

)2
, (2.50)

corresponding to a lifetime on the order of months. This process can be safely neglected
compared to all other scales in the problem.
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Off-Diagonal Losses
The off-diagonal terms in the loss correspond to loss terms of the form dφk

dt ∼ 〈Ak〉 and
dAk
dt ∼ 〈φk〉. As we generically expect dφk

dt ∼ 〈φk〉 and dAk
dt ∼ 〈Ak〉, these will all be of

the form:

dφk
dt
∼ 〈Ak〉〈φk〉, (2.51)

dAk
dt
∼ 〈Ak〉〈φk〉. (2.52)

These off-diagonal loss terms are therefore not present at linear order in the per-
turbations Ak and φk.

Impurities and Domains, Γcryst.

At low temperatures, the dominant contribution contribution to the magnon linewidth
in Ref. [125] is attributed to scattering of magnons off magnetic domains and crystal
impurities, which is T -independent .

In the simplest picture, scattering from magnetic domains leads to a lifetime:

τ ∼ Lmag.
2v(q) , (2.53)

where v(q) is the velocity of the mode with momentum q, and Lmag. is the size of
the domain. The Ref. [118] crystals of MnBi2Te4 have estimated magnetic domain
size Lmag. ∼ 1µm. We require the axion-polariton to propagate at least through the
thickness, d, of the sample, and thus magnetic domains appear to strongly affect the
skin depth and resonance width of axion-quasiparticle dominated polaritons in the limit
d� Lmag..

However, in the q → 0 limit the magnon wavelength exceeds the size of a domain
and Eq. (2.53) ceases to apply. Furthermore we consider the limit vs = 0 and ignore
the magnon propagation compared to the electric field. It is currently unknown how
scattering from domains will affect such long wavelength mixed modes. On one hand,
it may be that the domain walls appear as small scale fluctuations that decouple from
large wavelength modes. Conversely, given that the domain walls disrupt the short range
interactions that support the small q magnons it is possible that they have non-trivial
effects despite the scale separation.

A second T -independent contribution to the linewidth, which is expected to remain
in the q → 0 limit, is due to scattering from impurities. This was accounted for in
Ref. [125] with the simple phenomenological model for the impurity density:

Γcryst. =
(
δL

L

)
ω(k) (2.54)

where δL is the lattice constant, and L is the spacing between impurities, thus δL/L is
the average number of lattice sites between impurities. The model Eq. (2.54) accounts in
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the same manner for magnetic and crystal impurities. In Ref. [118] the crystal impurities
occur on the same scale as the magnetic domains, Lcryst. ∼ 1µm, while δL ∼ (Vu.c.)1/3 ∼
6 Å leading to:

Γcryst. = 7× 10−4ω

(
δL

6 Å

)( 1µm
Lcryst.

)
. (2.55)

We estimate that crystal impurity scattering is the dominant contribution to the
AQ linewidth in the regime of interest. Given the lack of conclusive calculations or
measurements in the literature (or even, as far as we can tell, a detailed model), we
regard this as a question best resolved by experimental studies. Indeed, an understanding
of the dynamics of small q magnons and axion-polaritons is an interesting off-shoot of
the studies proposed in Section 3. However, given the importance of this linewidth
contribution to our proposed dark matter search, we must adopt a reference value. We
adopt the range given in Table 6, Γcryst. ∈ [10−4, 10−3] meV, corresponding to impurity
separations of order 1µm.

3 Discovering the Axion Quasiparticle

One of the methods proposed by Ref. [42] to detect the presence of AQs in TMIs was
total-reflectance measurement, and idea we explore further here. In the following we
show to compute the transmission function of TMIs using axion electrodynamics. The
transmission function is shown to display a gap, leading to total reflectance. Further-
more, by using a wideband THz source, such a measurement can also determine the
axion-polariton resonant frequencies, and loss parameters. The concept of this THz
transmission spectroscopy measurement is shown in Fig. 6. Similar measurements have
been performed on antiferromagents (e.g. Ref. [46]), which demonstrate AFMR and
determine the magnon linewidth (losses on resonance) for an electromagnetic source. 3

Such a measurement has not to date been performed on any AQ candidate material.

3.1 Axion Electrodynamics and Boundary Conditions

In this section, we review the axion-Maxwell equations for TMIs. We then derive a one-
dimensional model as well as the correct interface conditions for all fields involved. Based
on the one-dimensional model, we compute the reflection and transmission coefficients
for incoming THz radiation.

3Crucially, for our purposes, such a measurement uses precisely the same physics (oscillating E-field
source) as occurs for dark axion detection. This is in contrast to neutron scattering of antiferromagnets
(e.g. Ref. [125]), which determines the linewidth for a different excitation mechanism.
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Figure 6: Proposed transmission experiment to detect the axion-polariton. Left: THz
source power spectrum. Centre: Transmission experiment concept. A source field, which
propagates along the negative z-direction is incident on a TMI. An external B-field Be
is applied parallel to the TMI surface. If AQs exist in the material, the dispersion
relation has a gap where no propagating modes exist, thus altering the spectrum of
the transmitted radiation. Right: Theoretical transmission spectrum. The green line
corresponds to the case where a dynamical AQ is present. The gap is indicated by the
vertical green dotted lines. The width on resonance, Γres, serves to measure the polariton
losses.

3.1.1 General formulation
The macroscopic axion-Maxwell equations for a three-dimensional TMI are [42]

∇ ·D = ρf −
α

π
∇(δΘ + Θ0) ·B , (3.1)

∇×H − ∂tD = Jf + α

π
(B∂t(δΘ + Θ0)−E ×∇(δΘ + Θ0)) , (3.2)

∇ ·B = 0 , (3.3)
∇×E + ∂tB = 0 , (3.4)

∂2
t δΘ− v2

i ∂
2
i δΘ +m2

ΘδΘ = ΛE ·B , (3.5)

where δΘ is the pseudoscalar axion quasiparticle (AQ) field, Θ0 ∈ [0, π] a constant, f2
Θ

the AQ decay constant, vi (with i = x, y, z) is the spin wave velocity, mΘ the spin wave
mass, E is the electric field, B the magnetic flux density, D the displacement field, H
the magnetic field strength, ρf the free charge density, and Jf the free current density,
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which fulfill the continuity equation ∇ · Jf + ρ̇f = 0 as in usual electrodynamics. In
what follows we often use the linear constitutive relations

D = εE and H = µ−1B, (3.6)

where ε and µ are the scalar permittivity and permeability, respectively. Note that it is
important to include the Θ0 term in the equations above: while Θ0 is some constant in
the TMI, it is always zero in vacuum. Applying the nabla operator can therefore give a
delta function at the boundaries of the TMI, i.e. a boundary charge term.

Equations (3.1) and (3.2) can be written such that the terms including the dy-
namical AQ field δΘ can be interpreted as additional contributions to polarization and
magnetization, i.e.

∇ ·DΘ = ρf , (3.7)
∇×HΘ − ∂tDΘ = Jf , (3.8)

∇ ·B = 0 , (3.9)
∇×E + ∂tB = 0 , (3.10)

where we define

DΘ = D + α

π
(Θ0 + δΘ) B , (3.11)

HΘ = H − α

π
(Θ0 + δΘ) E . (3.12)

To derive interface conditions for the electromagnetic fields, we consider two domains
labeled 1 and 2. Both domains have different ε, µ, and Θ0. Transforming Eqs. (3.7)–
(3.10) into their integral representation, and applying Gauss’s (Stokes’) theorem to an
infinitesimal volume (surface) element, leads to the following interface conditions for the
electromagnetic fields:

n× (E2 −E1) = 0 , (3.13)
n · (DΘ,2 −DΘ,1) = σS , (3.14)

n · (B2 −B1) = 0 , (3.15)
n× (HΘ,2 −HΘ,1) = JS , (3.16)

where σS and JS are free surface charge and current densities (both assumed to be zero in
what follows) and n is a unit vector pointing from domain 1 to domain 2. It is important
to stress that Eqs. (3.13)–(3.16) are interface conditions, not boundary conditions.

As described above, interface conditions follow from the differential equation in
their integral form. In contrast, boundary conditions can be applied at the boundary
domains for which a partial differential equation is solved, and do not follow from the
integral representation of the differential equation. This is also the reason why the
interface conditions are specified only for the electromagnetic fields, and not for the
dynamical axion field δΘ. In this section we only consider the case of a TMI surrounded
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by a non-topological material/vacuum with Θ0 = 0. We then only need to impose
interface conditions for the electromagnetic fields; while they exist in both the TMI and
the adjacent region, the dynamical AQ only exists in the TMI. The AQ is therefore only
subject to boundary conditions. We revisit and deepen this discussion in Section 3.2,
in the context of calculating reflection and transmission coefficients for a layer of TMI
surrounded by vacuum.

3.1.2 One dimensional model
To develop a one-dimensional model, we assume that all fields only depend on the
z-coordinate and time. Furthermore, all fields are taken to be transverse fields, i.e.
Bz = Hz = Dz = Ez = 0. Then, in a domain with constant Θ0, Eqs. (3.1)–(3.5) reduce
to:

∂z

(
−Hy

Hx

)
− ∂t

(
Dx

Dy

)
− Jf = α

π

[(
Bx
By

)
∂tδΘ +

(
−Ey
Ex

)
∂zδΘ

]
, (3.17)

∂z

(
−Ey
Ex

)
+ ∂t

(
Bx
By

)
= 0 , (3.18)

∂2
t δΘ− v2

z∂
2
zδΘ +m2

ΘδΘ = Λ(ExBx + EyBy) , (3.19)

where we assumed that no free static charges exist, i.e. ρf = 0.4 The interface con-
ditions (3.14) and (3.15) are trivially fulfilled in the one-dimensional model since the
z-components of all electromagnetic fields vanish, and n = êz.

3.1.3 Linearization
The sources in Eqs. (3.17) and (3.19) are non-linear and, therefore, finding analytic
solutions is in general not possible. However, we are interested in the special case
of solving the equations in presence of a strong, static external B-field Be = Beêy.
We may therefore separate the total B-field into a static and a dynamical part, i.e.
B → Be + B(x, t). Similarly, the free current Jf can be split into a part which sources
Be, and an additional reaction current, i.e. Jf → Jf0 + Jf . Physically, the reaction
current describes losses of the electromagnetic fields in the materials. Note that Be

fulfils ∇×He = Jf0, and Jf0 satisfies the continuity equation ∇ · Jf0 = 0. With these
assumptions the resulting equations are:

∂z

(
−Hy

Hx

)
− ∂t

(
Dx

Dy

)
− σ

(
Ex
Ey

)
= α

π

[(
Bx
Be

)
∂tδΘ +

(
−Ey
Ex

)
∂zδΘ

]
, (3.20)

∂z

(
−Ey
Ex

)
+ ∂t

(
Bx
By

)
= 0 , (3.21)

∂2
t δΘ− v2

z∂
2
zδΘ +m2δΘ = Λ(ExBx + EyBe) , (3.22)

4This does not mean that Jf vanishes. Since ρf and Jf are connected via a continuity equation, Jf
only has to fulfil ∇ · Jf = 0 if ρf = 0.
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where we substitute the reaction current Jf with the loss term σE (Ohm’s law). When
deriving Eqs. (3.20) and (3.22), we used that the external field Be is much larger than
the y-component of the reaction B-field, By. Note that it is straightforward to include
an external source field in E and B.

Let us now justify why the non-linear terms on the right-hand side in Eqs. (3.20)
and (3.22) can be linearized. Consider the two distinct cases where a strong external
laser field is parallel or orthogonal to the static external B-field: first, assume that the
external laser field is parallel to Be = Beêy. Note that

Be
∂tδΘ
∂zδΘ

≈ 3× 104 V
m

(
Be
1 T

)
, (3.23)

where we approximated ∂tδΘ
∂zδΘ with a typical spin wave velocity, which is on the order

of vs = 10−4 [52]. Typical THz sources have a power around P = 10−5 W, which leads
to Ey = 27 V

m for a beam surface area of 10 mm2. Equation (3.23) is therefore fulfilled
for sufficiently large external B-fields. With these considerations we see directly that
Be∂tδΘ� ∂zδΘEx since Ex is even smaller than Ey. It follows that the non-linear term
in the second component on the right-hand side in Eq. (3.20) can be neglected.

Next, we consider the two source terms in the first equation in the reft-hand side
of Eq. (3.20). The term Ey∂zδΘ dominates over the term Bx∂tδΘ since Ey contains the
external laser source. However, the large source term Be∂tδΘ in the term in Eq. (3.20)
is larger than the dominating source in the first term: Be∂tδΘ� Ey∂zδΘ, cf. Eq. (3.23).
From Eq. (3.21) it is clear that ∂tBy = −∂zEx and therefore due to Hy ∼ By the source
of the first component in (3.20) sources the Ey-component. Therefore we can ignore the
non-linear sources in the first equation in (3.20) and focus only on the Ey-component,
e.g. the large linear source in the second equation in (3.20). The non-linear term ExBx
in Eq. (3.22) can also be neglected since it is much smaller than the term EyBe, which
includes two external fields.

Second, in the case that the external laser field is orthogonal to Be = Beêy, the
dominating source of the Klein-Gordon equation, cf. Eq. (3.22) is the linear term EyBe.
Note that the fields Bx and Ey can only be induced by polarization rotation and are both
on the order of α

π . However, since 3× 108 V
m

(
Be
1 T

)
� Ex, we can linearize the source

term of the Klein-Gordon, cf. Eq. (3.22), i.e. ExBx � EyBe. The second component of
Eq. (3.20) can be linearized because any available THz lasers has an amplitude that is
below the limit in Eq. (3.23). The first component of Eq. (3.20) can also be linearized,
i.e. the source terms are neglected since both source terms include electromagnetic fields
that are only generated via polarization rotation.

In summary, whether an external laser E-field is parallel or orthogonal to Be, the
equations can be linearized, and they reduce to:

∂2
zEx − n2∂2

tEx − µσ∂tEx = 0 , (3.24)

∂2
zEy − n2∂2

tEy − µσ∂tEy = α

π
µBe∂

2
t δΘ , (3.25)

∂2
t δΘ− v2

z∂
2
zδΘ +m2

ΘδΘ = ΛEyBe , (3.26)
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where we explicitly use the linear constitutive relations, cf. Eq. (3.6). Furthermore the
refractive index is given by

n2 = ε µ . (3.27)

The material properties µ, ε, mΘ, σ, Θ0, vz, and Λ are constants in the equations of mo-
tion. Regions with different material properties are linked by using interface conditions
for the fields.

The corresponding interface conditions are given in Eqs. (3.13) and (3.16) with
n = êz. Equation (3.13) remains unchanged after linearization, while the definition of
HΘ in Eq. (3.16) changes due to the linearization to HΘ = H + α

πΘ0E.

3.1.4 Losses
Losses can appear in the linearized equations of motion (3.24)–(3.26) in case of a finite
conductivity σ. However, magnon losses, and losses that mix between magnons and
photons, are not included. We now generalize Eqs. (3.24)–(3.26) to include all possible
types of losses. The equations then read:

K∂2
t X − Γ∂tX + MX = 0 , (3.28)

where we define

X =

ExEy
δΘ

 , K =

1 0 0
0 1 α

π
Be
ε

0 0 1

 , Γ =

Γρ 0 0
0 Γρ Γ×,1
0 Γ×,2 Γm

 ,

M =

 k2

n2 0 0
0 k2

n2 0
0 −ΛBe v2

zk
2 +m2

Θ

 , (3.29)

and where Γρ = σ/ε is the photon loss, Γm is the equivalent loss for magnons, and Γ×,1/2
are mixed losses that can arise when photons and magnons interact. We retain these for
the most general treatment, and set them to zero later. Note that not all Γs have the same
mass dimension since [Γρ] = [Γm] = 1, while [Γ×,1] = 3 and [Γ×,2] = −1. The approach
also gives the possibility to define different refractive indices n and photon losses Γρ
for the Ex and Ey components. However, these effects can only become important
when polarization rotation effects are discussed in detail. In the following, polarization
rotation effect are computed, however they are not discussed at a level of detail, such
that including different refractive indices for different polarizations would not change
the results significantly.

The interface conditions (3.13)–(3.16) remain the same in the presence of losses,
because it is assumed that all losses are bulk losses.

3.2 Transmission and Reflection Coefficients
The presence of an AQ leads to a gap in the dispersion relation, which does not include
any propagating modes. Based on this, Li et al. [42] proposed a transmission measure-
ment (cf. Fig. 6) to determine the band gap in a TMI polariton spectrum, opened by
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the presence of the AQ (cf. Fig. 7). We now compute the transmission and reflection
coefficients, and we demonstrate how to experimentally determine the parameters of
interest – in particular the relevant terms of the loss matrix Γ.

3.2.1 Solution of linearized equations

Our strategy for solving the linearized equations is as follows: we solve the equations
for each spatial domain of constant material properties. We then apply the appropriate
interface conditions to match the solutions in the different domains.

Lossless case (Γ = 0). The dispersion relation for the Ex-component, see Eq. (3.24),
is the usual photon dispersion relation:

k2 = n2ω2 ≡ k2
p . (3.30)

The Ey-component mixes with the AQ and, in the vz = 0 case, we find a typical polariton
dispersion [42, 132]:

ω2
± = 1

2
[
ω2

LO + k2

n2

]
± 1

2
[(
ω2

LO −
k2

n2
)2 + 4b2 k

2

n2

]1/2
, (3.31)

where we have defined

b2 ≡ α

π

ΛB2
e

ε
, (3.32)

ω2
LO ≡ b2 +m2

Θ . (3.33)

The case vz 6= 0 is discussed later since vz is on the order of the spin wave velocity 10−4

and therefore the expected effect is small.
We show ω± as a function of the wave number k in the left panel of Fig. 7. The

horizontal black lines indicate the gap between mΘ and ωLO, where total reflection is
expected. The resulting frequencies for mΘ and ωLO are in the THz regime what makes
clear why THz sources are needed to probe the gap in the dispersion relation. ω+
converges for large k to a photon dispersion (dashed blue line). ω− has for small k an
almost photon-like dispersion ω− = k

n
m√

b2+m2 (dashed red line).
Inverting Eq. (3.31) gives:

k2 = n2ω2
[
1− b2

ω2 −m2
Θ

]
≡ k2

Θ ≡ n2
Θω

2 . (3.34)

We show k as a function of ω in the right panel of Fig. 7. In the limit of b→ 0, Eq. (3.34)
becomes the usual photon dispersion relation. For ω2 we have two solutions, while the
solution for k2 can be described by a single function. Inside the bandgap, k2 is negative,
thus k is purely imaginary, and no propagating mode is present. In the following section
it is explicitly shown that this leads to total reflection and zero transmission.
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Figure 7: Polariton dispersion relation, arising from the mixing of AQs and photons
for a spin wave velocity vz = 0. We use typical material values for a Mn2Bi2Te5 TMI,
cf. table 5 and eq. (2.3), and n = 5 and µ = 1. The external B-field is Be = 2 T. The
left panel shows the ω± mode, which has a bandgap between mΘ and ωLO (horizontal
lines). The right panel illustrates the inverse of the dispersion relation for k. Inside the
bandgap (vertical lines), k is only imaginary, and hence no propagating modes exist.

The most general ansatz for the field evolution in a TMI medium are

Ex(z) = Ê+
x e

ikpz + Ê−x e
−ikpz , (3.35)

Ey(z) = Ê+
y e

ikΘz + Ê−y e
−ikΘz , (3.36)

δΘ(z) = δΘ̂+eikΘz + δΘ̂−e−ikΘz , (3.37)

where we omitted the time dependence e−iωt in each line. After plugging the solutions
into the equations of motion, cf. Eq. (3.28) the following relations are obtained:

δΘ̂± = ΘEÊ
±
y , ΘE = ΛBe

m2
Θ − ω2 , (3.38)

or, equivalently,

Ê±y = EΘδΘ̂± , EΘ = −α
π

µω2Be
k2
p − k2

Θ
. (3.39)

In the following, the relations in Eq. (3.38) are used to reduce the number of unknowns
in the ansatz (3.37):

δΘ(z) = ΘEÊ
+
y e

ikΘz + ΘEÊ
−
y e
−ikΘz. (3.40)

The remaining constants Ê±y can be determined by using the interface conditions (explic-
itly shown in Section 3.2.2). The AQ field δΘ is completely determined, cf. Eq. (3.40),
and no boundary conditions for δΘ have to be applied when, for example, a layer of TMI
surrounded by vacuum is considered. It will become clear in the following that this is a
consequence of the vz = 0 limit.
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Figure 8: Dispersion relation for a non-zero spin wave velocity of vz = 0.01. This
exaggerated value was chosen because for realistic value of 10−4 the effect of band crossing
of the + mode is not visible. We use typical material values for a Mn2Bi2Te5 TMI, cf.
table 5 and eq. (2.3), and n = 5 and µ = 1. The external B-field is Be = 2 T.

Note that the relations in Eq. (3.39) could have also been used to reduce the
constants in Eq. (3.36). However, a short calculation reveals that this would result in
the same outcome, regardless whether the relations in Eq. (3.38) or (3.39) was used to
reduce the constants.

A finite spin wave velocity, vz 6= 0, leads a slightly modified dispersion relation:

ω2
± = 1

2
[
ω2

LO + k2(v2
z + 1

n2 )
]
± 1

2
[(
ω2

LO + k2(v2
z −

1
n2 )

)2 + 4b2 k
2

n2

]1/2
. (3.41)

Equation (3.41) is not a typical polariton dispersion relation, since the sign of vz under
the square root is positive, not negative. The dispersion relation for ω± from Eq. 3.41 is
shown in the left panel of Fig. 8, where we used an unrealistically large vale of vz = 0.01
for illustrative purposes. Typical values for vz are on the order of 10−4. A non-zero
value of vz leads to a gap-crossing of the ω− mode. However, due to the smallness of
the spin wave velocity compared to the speed of light, the gap crossing happens at large
values of the wave number k.

Inverting Eq. (3.41) yields two modes for k2,

k2
± = 1

2v2
z

[
ω2 −m2

Θ + n2ω2v2
z ±

((
m2

Θ + ω2(n2v2
z − 1)

)2 + 4ω2n2b2v2
z

)1/2]
, (3.42)

whereas we only obtained one mode for k2 in the vz = 0 case, cf. Eq. (3.34). The
functional dependence of Eq. (3.42) is shown in the right panel of Fig. 8. The imaginary
part of the k− mode, which for vz = 0 was only present inside the gap, now keeps rising
outside of the gap for frequencies ω < mΘ. The k+ mode crosses the gap such that
for ω > ωLO two propagating modes exist. However the wavelength of the k+ mode is
always much shorter than the wavelength of the k− mode.
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The most general ansatz in the case of non-vanishing spin wave velocity is:

Ex(z) = Ê+
x e

ikpz + Ê−x e
−ikpz, (3.43)

Ey(z) = Ê++
y eik+z + Ê+−

y e−ik+z + Ê−+
y eik−z + Ê−−y e−ik−z, (3.44)

δΘ(z) = δΘ̂++eik+z + δΘ̂+−e−ik+z + δΘ̂−+eik−z + δΘ̂−−e−ik−z . (3.45)

Relations for the unknown constants in the ansatz (3.43)–(3.45) can be derived in
complete analogy to the vz = 0 case. However, we would now need to specify boundary
conditions for the dynamical axion in order to determine all constants. We do not
perform the explicit calculation here since we expect the difference to the vz = 0 case to
be minimal, thanks to the smallness of the spin wave velocity. To see this, consider the
following argument:

Let an incoming electromagnetic wave in vacuum be described by A0eikpz. In the
TMI material with vz 6= 0, two modes are present. Around ω ∼ ωLO, the first mode ks
has a wavelength that is much shorter than kp, while the second mode kl has a much
longer wavelength than kp, i.e. |ks| � |kp| � |kl|. This is exactly the situation that we
face (cf. Fig. 8), where ks = k+ and kl = k−.5 Neglecting reflections, the fraction of
the amplitudes of the two modes in medium 1 are

∣∣∣∣Al1As1
∣∣∣∣ =

∣∣∣ka−kpkp−kl

∣∣∣ ≈ ∣∣∣ kskp ∣∣∣ � 1, where

the index 1 refers to medium 1. Therefore the amplitude of long wavelength mode Al1
is much larger than the amplitude of the short wavelength mode As1. Based on these
arguments, the contribution of the k+ mode can therefore be neglected – even though it
is in principle present. In what follows, we will consequently assume that vz = 0.

Case with losses (Γ 6= 0). If material losses are included, the dispersion relations
(3.30) and (3.34) are modified. The dispersion relation of the Ex-component is

k2 = n2 ω2
(

1 + i
Γρ
ω

)
=: k2

p (3.46)

and the dispersion relation for the mixed system of Ey and δΘ is

k2
Θ ≡ k2 = n2ω2

(
1 + b2

−iΓmω +m2
Θ − ω2 + i

Γρ
ω

)

+ n2ω

 iBe
(
α
π

Γ×,2ω2

ε + ΛΓ×,1
)
− ωΓ×,1Γ×,2

−iΓmω +m2
Θ − ω2

 . (3.47)

The first part of the dispersion relation in Eq. (3.47) only includes the diagonal losses
Γm and Γρ, while the second part also includes mixed losses. We argued in Section 2.5
that mixed losses are smaller than the diagonal losses Γρ and Γm. We therefore neglect
mixed losses in what follows.

5Note that due to the fact that we plot k+ only up to 100 meV, the much larger values of k+ around
ωLO are not visible in the right panel of Fig. 8.
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Figure 9: Dispersion relation of the axion-polariton for magnon and photon losses, Γm
and Γρ. Mixed losses are neglected. Left: Γρ = 0.4 meV and Γm = 0. Photon losses
introduce an almost constant imaginary part to the dispersion relation if the chosen
frequency interval is not too large. Middle: Γρ = 0 and Γm = 0.05 meV, right: Γρ = 0
and Γm = 0.2 meV. The larger the magnon loss, the larger the FWHM of the imaginary
part in the dispersion relation. We use typical material values for a Mn2Bi2Te5 TMI, cf.
table 5 and eq. (2.3), and n = 5 and µ = 1. The external B-field is Be = 2 T.

Rewriting the dispersion relation (3.47) without mixed losses gives:

k2
Θ ≡ k2 = n2ω2

(
1 + (m2 − ω2)ωb2

Γ2
mω

2 + (m2
Θ − ω2)2 + i

Γmωb2
Γ2
mω

2 + (m2
Θ − ω2)2 + i

Γρ
ω

)
. (3.48)

Equation (3.48) shows that the Γρ contribution is unaffected by any other material
properties, and it stays approximately constant when ω does not vary too much. We
show an example for Γm = 0 in the left panel of Fig. 9. While the peak of the resonance
is not affected much by the losses, Γρ introduces an almost constant imaginary for all
frequencies. In contrast, magnon losses Γm are dominant around mΘ. This can be seen
from the third term in Eq. (3.48) which represents a Lorentzian curve that peaks around
ω = mΘ and has a full width at half maximum (FWHM) of Γm. In the middle and right
panels of Fig. 9 we show examples for Γρ = 0. The larger Γm, the larger the FWHM of the
imaginary part in the dispersion relation. In other words, frequencies away from the gap
are damped more strongly when Γm is large. Furthermore, the resonance becomes less
pronounced for large Γm. As a consequence, it will be difficult to confirm the existence
of the gap in the spectrum, and the presence of a dynamical AQ, when large losses are
present. We investigate this more quantitatively in Section 3.2.3, where we calculate the
reflection and transmission coefficients for a single TMI layer.

In the presence of losses the most general solution, cf. Eq. (3.35)–(3.37), is still
valid. However, the relations in the Eqs. (3.38) and (3.39) are modified:

δΘ̂± = ΘEÊ
± , ΘE = ΛBe + iωΓ×,2

−ω2 +m2
Θ − iωΓm

, (3.49)

or, equivalently,

Ê±y = EΘδΘ̂± , EΘ = α

π

ω2µBe + in2ωΓ×,1
k2

Θ − k2
p

. (3.50)
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Figure 10: Multilayer system of different materials. Each medium is characterized by
εr, µr, Γr, and Θ0

r . The external B-field has the same strength and polarization in each
medium.

It can be checked that Eqs. (3.49) and (3.50) reduce to Eqs. (3.38) and (3.39) in the
limit of Γ → 0. In complete analogy to the case without losses, Eq. (3.49) determines
the dynamical AQ field, cf. Eq. (3.40).

3.2.2 Matrix formalism for many interfaces
In the previous section, we discussed the solutions of the one-dimensional axion-Maxwell
equations in a homogeneous TMI. Here, we consider N + 1 media, separated by N
interfaces, as shown in Fig. 10. Let the first interface be located at z0 = z1, and the
last interface at zN . We label each medium with an index r, i.e. r = 0, . . . , N . For
example, the permittivity and permeability of medium r are thus denoted by µr and εr,
respectively. Recall that, in all media, we set vz = 0 and define the constant external
B-field to be Be = Be êy.

We now develop a matrix formalism to link the solutions in different materials to
each other. This makes it possible to compute the scattering of incoming electromagnetic
radiation from a multilayer system. The simplest application is the computation of the
reflection and transmission coefficients for THz radiation that hits a layer of TMI; we
discuss this case at the end of this section.

The most general ansatz in medium r is given by:

Erx = Ê+
x,re

ikrp(z−zr) + Ê−x,re
−ikrp(z−zr) ,

Ery = Ê+
y,re

ikrΘ(z−zr) + Ê−y,re
−ikiΘ(z−zr) ,

δΘr = Θr
EÊ

+
y,re

ikrΘ(z−zr) + Θr
EÊ
−
y,re
−ikrΘ(z−zr) , (3.51)

where, compared to Eqs. (3.35)–(3.37), we introduce different phase shifts zr for each
medium. The expressions for kp, kΘ, and EΘ were derived already in Eq. (3.30), (3.34),
and (3.38) for the case Γ = 0 and in Eq. (3.46), (3.47), and (3.49), for the case Γ 6= 0.
Applying the interface conditions (3.13) and (3.16) for the electromagnetic fields at zr
yields the following system of equations:

tr = M−1
r Mr−1 Pr−1tr−1 , (3.52)
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with

tr =


Ê+
x,r

Ê−x,r
Ê+
y,r

Ê−y,r

 , Mr =


1 1 0 0
0 0 1 1
krp
ωµr

− krp
ωµr

−α
πΘ0

r −α
πΘ0

r

−α
πΘ0

r −α
πΘ0

r −
krΘ
ωµr

krΘ
ωµr

 , (3.53)

and
Pr = diag

(
ei∆

p
r , e−i∆

p
r , ei∆

Θ
r , e−i∆

Θ
r

)
. (3.54)

The phases are defined as: ∆Θ
r ≡ krΘ(zr+1 − zr) and ∆p

r ≡ krp(zr+1 − zr).
Let us define the matrix S to relate the incoming field amplitude from medium 0

to the outgoing field amplitude in medium N :

tN = S t0 . (3.55)

For instance, for a single interface, S is given by

S = M−1
1 M0 P0 (3.56)

and, for two interfaces, S is given by

S = M−1
2 M1 P1M−1

1 M0 P0 . (3.57)

Finally, for N interfaces, we find S to be given by

S = M−1
N MN−1 PN−1 M−1

N−1 MN−1PN−2 MN−2 · · ·M−1
2 M1 P1M−1

1 M0 P0 . (3.58)

For electromagnetic radiation coming into the system from medium 0, Ê+
x0 and Ê+

y,0
are known and Ê−x,N = Ê−y,N = 0. The other unknown field values can be determined
from the elements of S, i.e. Sij , via

Ê+
x,N

Ê−x,0
Ê+
y,N

Ê−y,0

 =


−1 S12 0 S14
0 S22 0 S24
0 S32 −1 S34
0 S42 0 S44


−1

·


−S11Ê

+
x0 − S13Ê

+
y0

−S21Ê
+
x0 − S23Ê

+
y0

−S31Ê
+
x0 − S33Ê

+
y0

−S41Ê
+
x0 − S43Ê

+
y0

 . (3.59)

3.2.3 Layer of topological magnetic insulator
Let us now apply the matrix formalism to a system with N = 2. However, note that the
matrix approach developed here is able to describe more complicated systems, consisting
of many layers. One particular example could be a layered system of different topological
insulators with different material properties. The matrix formalism with N > 2 could
be useful in DM searches to increase the boost factor using additional layers of TMI or
dielectric.

We now calculate the reflection and transmission coefficients for one TMI layer. In
the language of the matrix formalism the system has N = 2 boundaries, and hence three
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media. Media 0 and 2 are vacuum while medium 1 is a TMI, hosting a dynamical AQ.
The THz laser radiation is coming from medium 0 and hits the layer of TMI. In what
follows, we omit the subscripts r that label the materials because the only non-vacuum
medium is the TMI, i.e. medium 1.

We assume that the laser polarization is oriented in the y-direction, parallel to
the external B-field. In this case, we obtain – to lowest order in α

πΘ0 – the following
reflection and transmission coefficients:

Ty = 2ik̃(
k̃2 + 1

)
sin ∆ + 2ik̃ cos ∆

+O
((

α

π
Θ0
)2
)
, (3.60)

Ry = −

(
k̃2 − 1

)
sin ∆(

k̃2 + 1
)

sin ∆ + 2ik̃ cos ∆
+O

((
α

π
Θ0
)2
)
, (3.61)

where k̃ = kΘ
ωµ ,∆ ≡ dkΘ and d = z2 − z1 is the thickness of the layer. Note that,

although k̃ depends on the expansion parameter we did not expand k̃ because otherwise
the expansion for the transmission and reflection coefficients would not be valid around
the resonance. The calculated transmission and reflection coefficients are valid for both
the case with and without losses since we assume all losses to be bulk losses. Ty and Ry
agree with the normal transmission and reflection coefficients of a dielectric disk [47] if
the coupling b of the AQ to the photon is set to zero, i.e. kΘ → nω, corresponding to
fΘ →∞.

We show the full functions for the reflection and transmission coefficients without
losses (Γ = 0) in Fig. 11. The coefficients are shown for different values of the laser
frequency ω and sample thickness d. The left column assumes the presence of a dynamical
AQ, while the figures in the right column show the case when no dynamical AQ is present.
Note that in both cases Θ0 = 0.8π is assumed although the shown results for Ty and Ry
do not depend on Θ0 to lowest order, cf. equations (3.60) and (3.61).

First, we discuss the figures in the top and middle row, which show the reflection
and transmission coefficients for the Ey-components. If a dynamical AQ is present,
the dispersion relation kΘ becomes imaginary between mΘ and ωLO. The gap between
these two frequencies is marked with the two vertical lines. For large thicknesses d,
all frequencies in the gap are reflected, and none are transmitted. This is a direct
consequence of the purely imaginary kΘ in the gap. For small values of the thickness,
the gap size is reduced. This happens around ωLO, i.e. the upper part of the gap, since the
imaginary part gets reduced (the skin depth becomes larger) the more ωLO is approached
from smaller frequencies, cf. right panel of Fig. 7. When going away from the gap, the
figures in the left and right columns agree more and more. This is as expected since the
dispersion relation kΘ differs only significantly from a normal photon dispersion around
the gap. In the case of no dynamical AQ (left panel) we notice a clear non-zero reflection
and transmission inside the gap. Comparing the figures on the left- and right-hand side,
it is clear that the AQ causes anO(1) modification of the Ty and Ry coefficients compared
to the spectrum when no dynamical AQ is present.
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Next, we discuss the bottom row of Fig. 11, which shows the transmission coef-
ficient for the Ex-component. If no dynamical AQ field is present (right panel) but
we have a topological material with Θ0 = 0.8π, the transmission Tx vanishes. This
may be surprising at fist glance because there is mixing at the interface of ordinary TIs
and, hence, also a polarization rotation. However, the transmission in the x-component
vanishes since the polarization rotations at the two interfaces cancel each other. If in
addition to the static Θ0 = 0.8π a dynamical AQ is present (left panel), we get a small
non-zero transmission Tx. The signal is much smaller than in the case of the Ty co-
efficient. This is because the incoming laser is polarized in the Ey component and a
non-zero Ex-component can only be induced due to a nonzero Θ0, i.e. mixing at the
interfaces, which is proportional to the small parameter α

πΘ0. In conclusion, we should
first look for the AQ by studying the Ey-component because the AQ modification of this
component is much larger than for the Ex-component.

However, once the AQ is found, one can also use the Ex-component to determine,
for example, Θ0 of the material by reflection and transmission measurements. Is is also
possible to study the influence of non-linear effects with the x-components. In Eq. (3.20)
it was shown that the laser sources the x-component in a non-linear fashion. This effect
is neglected here because the equations are linearized.

Figure 12 shows the transmission coefficient Ty for different losses. The figures are
produced for our benchmark material Mn2Bi2Te5 with n = 5, µ = 1 and Θ0 = 0.8π. In
the top row we illustrate the influence of photon losses Γρ for a TMI with a dynamical
AQ (left panel) and for a normal TI (right panel). The transmission at large layer
thicknesses becomes smaller independently of the resonance. This is due to the fact that
Γρ appears in the dispersion relation (3.48) as an additional term which is approximately
constant in the small shown frequency interval. The skin depth is of the order of Γ−1

ρ . It
is therefore advantageous to have thin material samples for distinguishing between the
case of a DA (left panel) and no DA (right panel). However, should not be too thin. For
very small thicknesses the frequencies inside the gap lead to a transmission coefficient
Ty that is not very small anymore. Note that the effect of losses for large d becomes
more pronounced for larger refractive indices n.

In the bottom row of Fig. 12 photon losses are zero and the effect of magnon losses
Γm is illustrated. We do not show the case without an AQ because without AQ there
are no magnon losses and one should compare to the already existing Fig. 11 (middle
row, right). The larger the magnon losses, the more pronounced is the widening of the
gap. This can be understood by looking at the dispersion relation in Eq. (3.48). Magnon
losses Γm introduce a Lorentzian shaped imaginary part to the dispersion relation. The
width of the Lorentzian is proportional to Γm. Due to the Lorentzian shape of the
damping imaginary part in the dispersion relation also frequencies that are not directly
in the gap – but close to the gap – can become highly damped. This effect becomes
more pronounced the thicker the sample is.

From the previous discussion it becomes clear that finding the AQ will depend
very sensitively on the losses and thickness of the material. The losses that we show in
Fig. 12 are exaggerated and in reality we expect them to be much smaller. Therefore

– 42 –



from Fig. 12 we find that with a layer thickness on the order of 0.03 mm and 0.3 mm AQ
can be most effectively be detected.

Once the AQ is detected the characterization of the parameters of the TMI is of
huge importance. In Section 4 and 5 it is shown how a TMI can be used as dark matter
axion detector. To estimate the induced photon signal from a DA, AQ and photon mixing
the parameters of the TMI have to be known precisely. In the following we demonstrate
that fitting measurements to the presented results can determine the parameters of the
TMI.

In Fig. 13, photon losses Γρ are varied between Γρ = 3× 10−4 meV and 0.3 meV,
and magnon losses between Γm = 3× 10−4 meV and 0.3 meV. The layer thickness is fixed
to d = 0.03 mm. In each figure, we show three different external B-field values. The
values of mΘ and ωLO are marked with a vertical black and coloured lines, respectively.
The weaker the external B-field, the smaller the gap.

Figure 13 makes again clear that the larger the losses the harder it is to distinguish
the case where a dynamical AQ is present (solid coloured curves) from the case that not
dynamical AQ (dashed black line) is present. For relatively small losses, the distinction
between the curves is very clear. We therefore conclude that comparing these results to
future measurements will make it possible to explicitly determine the material param-
eters, i.e. losses, refractive index, Θ0, and the parameters that enter the AQ mass mΘ
and the gap size parameter b.

We now investigate further the resonance around ωLO, cf. Fig. 13. When the losses in
Fig. 13 are small the resonance frequency fres = ωres

2π corresponds to ωLO. However, with
higher losses, the resonance frequency ωres moves to higher frequencies, i.e. fres >

ωLO
2π .

With increasing losses, the resonance smears out until it vanishes completely. Figure (13)
allows us to directly read off the amount of losses that would still be acceptable AQ
detection (for a sample of thickness d = 0.03 mm). The resonance peaks to the right
of ωLO in Fig. 13 are not symmetric. We therefore define the width of the resonance
peak, Γres, as two times the frequency interval that ranges from the frequency at the
transmission maximum down to the smaller frequency at half the transmission maximum.

The ratio fres
Γres

is called the Q-factor. It describes the quality of the resonance in the
sense that large Q-factors give rise to a well-defined resonance, whereas low Q-factors
show that the resonance is highly damped. In Fig. 14, the Q-factor is shown with respect
to the applied external B-field for different losses. We consider the case of dominant
conductive losses (red) and dominant magnon losses (blue). The largest Q-factor is
observed at small external B-field, and the low magnon losses lead to the largest Q.
This is consistent with the intuition that at low B-field the polariton is largely magnon-
like. For larger external B-fields the difference between the two cases becomes small, as
both sources of loss contribute almost equally.
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Figure 11: Reflection and transmission coefficients for a laser that hits a material
with (left) and without (right) a dynamical AQ. The laser polarization is in the y-
direction, parallel to the external B-field. The materials have Θ0 = 0.8π, n = 5, and
µ = 1. Typical material values for a Mn2Bi2Te5 TMI with an external B-field Be of 2 T
are chosen, cf. Table 5 and Eq. (2.3). mΘ and ωLO are marked with the black vertical
lines. The Ry (Ty) coefficient is always close to one (zero) inside the gap if a dynamical
AQ is present. The Tx coefficient is only non-zero is a AQ is present. However the effect
of an AQ in the Ex-component is much smaller than in the Ey-component since the
Ex-component can only be induced via polarization rotation with non-zero Θ0.

– 44 –



1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

Γρ =10−1 meV

0.0

0.2

0.4

0.6

0.8

1.0

|T
y
|

0.24 0.36 0.48 0.60 0.73
f [THz]

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

Γρ =10−1 meV

0.0

0.2

0.4

0.6

0.8

1.0

|T
y
|

0.24 0.36 0.48 0.60 0.73
f [THz]

1.5 2.0 2.5 3.0

ω [meV]

0.00

0.05

0.10

0.15

0.20

0.25

d
[m

m
]

Γm =10−1 meV

0.0

0.2

0.4

0.6

0.8

1.0

|T
y
|

0.24 0.36 0.48 0.60 0.73
f [THz]

Figure 12: Transmission coefficients for the Ey-component (parallel to the external
B-field) for exaggerated photon and magnon losses, Γρ and Γm. We show the results for
when a dynamical AQ field (left) and if no dynamical AQ is present; (right). In both
cases we have Θ0 = 0.8π. We use typical material values for a Mn2Bi2Te5 TMI, cf.
table 5 and eq. (2.3), and n = 5 and µ = 1. The external B-field is Be = 2 T. mΘ and
ωLO are marked with the black vertical lines.
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Figure 13: Transmission coefficient Ty for a layer of TMI with thickness d = 0.03 mm
for different B-fields (colours) are shown. Panels vary the losses Γρ (from left to right)
and Γm (from top to bottom). The vertical black line indicates the value of mΘ = 2 meV,
while the other vertical lines indicate the value of ωLO for different values of the external
B-field. The larger the external B-field, the larger the gap between mΘ and ωLO. We
use typical material values for a Mn2Bi2Te5 TMI, cf. table 5 and eq. (2.3), and n = 5
and µ = 1. The dashed black line shows the result when no dynamical AQ δΘ is present,
while the solid coloured lines are for the case with a dynamical AQ.
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4 Axion Dark Matter and Axion Quasiparticles

4.1 Dark axion, axion quasiparticle and photon mixing

Paper I proposed using dynamical AQs in TMIs to detect DAs. This is possible since
DAs can mix resonantly with axion polaritons. Compared to Paper I, we work out
a more detailed calculation for the emitted photon signal by taking into account the
correct interface conditions and material losses. This, in turn, allows us to present a
more rigorous calculation of the sensitivity reach for DA searches using TMIs.

As a starting point, we use the three-dimensional equations of motion, Eqs. (3.1)–
(3.5). We linearize these and derive a one-dimensional model in analogy to Section 3.1.3.
In what follows, the one-dimensional model is used to derive the photon signal generated
by DAs passing through a magnetized TMI that hosts dynamical AQs.

4.1.1 General formulation

To describe the threefold mixing between AQs, DAs, and photons, we need to add
the Klein-Gordon equation for DAs, which is sourced by the electromagnetic fields, to
Eqs. (3.1)–(3.5). Additional source terms, arising due to the presence of DAs, have
therefore to be added to Eqs. (3.1) and (3.2). Doing so results in the following equations

1 2 3 4 5
Be [T]

50

100

150

200

f r
e
s

Γ
re

s

d=0.03 mm

Γρ [meV], Γm [meV]

10−2, 10−5

10−5, 10−2

Figure 14: TMI Quality factor, Q = fres/Γres, for different losses, with respect to the
external B-fields. fres is the frequency of the maximal transmission peaks around ωLO,
cf. Fig. 13. The TMI layer has a thickness of d = 0.03 mm.
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of motion:

∇ ·D = ρf −
α

π
∇(δΘ + Θ0) ·B − gaγ∇a ·B , (4.1)

∇×H − ∂tD = Jf + α

π

[
B∂t(δΘ + Θ0)−E ×∇(δΘ + Θ0)

]
+gaγ (B∂ta−E ×∇a) , (4.2)

∇ ·B = 0 , (4.3)
∇×E + ∂tB = 0 , (4.4)

∂2
t δΘ− v2

i ∂
2
i δΘ +m2

ΘδΘ = Λ E ·B , (4.5)
(∂2
t −∇2 +m2

a) a = gaγ E ·B . (4.6)

where a is the pseudoscalar DA field, gaγ is the DA-photon coupling, and ma is the DA
mass, in addition to the other variables already defined in Eqs. (3.1)–(3.5).

In Section 3.1.1 we already noted that one cannot obtain interface conditions from
the Klein-Gordon equation for an interface between media with and without AQs. How-
ever, DAs are expected to permeate any medium due to the necessarily feeble interactions
of dark matter, and their presence in the Galaxy. Therefore, for two media that both
contain DAs, Eq. (4.6) can be used to derive an interface condition for the DA field.

Consider an infinitesimal volume element between two media, say, between medium 1
and medium 2. We integrate over this infinitesimal volume element and apply the di-
vergence theorem. It follows that the normal derivative of the DA field between two
interfaces has to be continuous,

n · (∇a1 −∇a2) = 0 . (4.7)

Furthermore, we require that the DA field be continuous over the interface:

a1 − a2 = 0 . (4.8)

We stress that the continuity of the axion field in Eq. (4.8) does not follow from the
axion-Maxwell equations, but is a reasonable approximation. In other words, as DAs
only interacts with matter through very small couplings, and we are interested in the
conversion of axions to photons again by a very small coupling, any modification due to
the axion interacting with the interface is at higher order, and thus negligible.

4.1.2 Linearized one-dimensional model
Let us again assume the presence of a strong and static external B-field, Be. Without
loss of generality, let Be be polarized in the y-direction, i.e. Be = Be êy. Then, similar
steps as in Sections 3.1.2 and 3.1.3 lead to the following linearized equations of motion:(

∂2
z − n2∂2

t − σµ∂t
)
Ey = µBe∂

2
t

(
α

π
δΘ + gaγa

)
, (4.9)(

v2
z∂

2
z − ∂2

t −m2
Θ
)
δΘ = −ΛBeEy, (4.10)(

∂2
z − ∂2

t −m2
a

)
a = −gaγBeEy . (4.11)
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The photon signal in the Ex-component, induced by DAs, is always an order α
πΘ0

smaller than the Ey-component. This is due to the fact that only the Ey-component
mixes with DAs and AQs. The Ex-component can only be generated due to the mixing at
the interface, which is proportional to α

πΘ0. The main photon signal is therefore polarized
parallel to the external B-field in experimental DA searches, i.e. in the Ey-component.
Due to the suppression of the Ex-component, it will be even more challenging to detect a
signal in the Ex-component. This justifies neglecting the Ex-component in what follows.

In addition to the linearization assumptions made in Section 3.1.3, we further as-
sume that the non-linear terms, which include the DA, can also be linearized. This as-
sumption is justified because of the small coupling and non-relativistic nature of Galactic
DAs, for which ∂ta/∂za ≈ 10−3.

The interface conditions for the electromagnetic fields after linearization are ob-
tained with the linearized fields DΘ = D + α

π (Θ0 + δΘ) Be and HΘ = H − α
πΘ0E. In

the one-dimensional model, the conditions n·(DΘ2−DΘ1) = 0 and n·(B2−B1) = 0 are
always fulfilled, since transverse waves are assumed to vanish, i.e. Bz = 0 and Ez = 0.
The only non-trivial interface conditions are:

n× (HΘ,2 −HΘ,1) = 0 , (4.12)
n× (E2 −E1) = 0 , (4.13)

where n = êz and it is assumed again that no free surface charges and currents are
present.

Including bulk losses in the one-dimensional model does not change the interface
conditions. The magnon losses Γm, photon losses Γρ, and mixed losses Γ×,1 and Γ×,2 are
included in complete analogy to Section 3.1.4. The resulting equations of motion are:

K ∂2
t X − Γ ∂tX + M X = 0 , (4.14)

where we define

X =

EyδΘ
a

 , K =

1 α
π
Be
ε

gaγBe
ε

0 1 0
0 0 1

 , Γ =

 Γρ Γ×,1 0
Γ×,2 Γm 0

0 0 0

 ,

M =

 k2

n2 0 0
−ΛBe v2

zk
2 +m2

Θ 0
−gaγBe 0 k2 +m2

a

 . (4.15)

No losses for the DA are included since a valid DM candidate must, by necessity, have
an astronomically long lifetime (indeed, the QCD axion in the mass range of interest
satisfies this constraint by many orders of magnitude).

4.2 Dark matter signal calculation

In this section, we solve the linearized equations of motion (4.14). We first consider the
lossless case and then generalize the solutions to include losses. Material properties are
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always considered piecewise homogeneous, We introduce a matrix formalism to calculate
emitted photon and axion power from an experimental setup with multiple TMI layers.
We apply the matrix formalism to our benchmark setup, a single-TMI layer surrounded
by vacuum. Using a multi-layer might be able to boost the signal, similar to multi-layer
proposals for the MADMAX haloscope [47], although the higher frequencies considered
here would lead to significant mechanical challenges if any tuning was required. Note
that we set vz = 0 in our calculations, cf. Section 3 for an explanation.

4.2.1 Solution of the one-dimensional model
Lossless case (Γ = 0). We first focus on the case without losses. The dispersion
relation implied by Eq. (4.14) is:(

k2 − k2
a + k2

Θ
2

)2

= b2ak
2
p +

(
k2
a − k2

Θ
2

)2

, (4.16)

where b2a = g2
aγB

2
e

ε was defined in analogy to to b2 = α
π

ΛB2
e

ε . The dispersion relations, up
to leading order in the DA-photon coupling, therefore are

k+ = kΘ +O(g2
aγ) , (4.17)

k− = ka +O(g2
aγ) . (4.18)

The most general ansatz for the fields is:

E = Ê++eikΘz + Ê+−e−ik+z + Ê−+eik−z + Ê−−e−ik−z ,

δΘ = δΘ̂++eik+z + δΘ̂+−e−ik+z + δΘ̂−+eik−z + δΘ̂−−e−ik−z ,

a = sâ++eik+z + â+−e−ik+z + â−+eik−z + â−−e−ik−z . (4.19)

In the following, we focus on the DA zero-velocity limit, i.e. ka = 0. This is an appro-
priate approximation for dark matter and the most general ansatz in Eq. (4.19) reduces
to:

E = Ê++eikΘz + Ê+−e−ik+z + Ê−,

δΘ = δΘ̂++eik+z + δΘ̂+−e−ik+z + δΘ̂− ,
a = â++eik+z + â+−e−ik+z + â− , (4.20)

where we omit the y index of the E-field since we ignore the Ex-component. The case
of finite axion velocity was explored in Ref. [133].

Plugging Eq. (4.20) into the equations of motion, Eqs. (4.9)–(4.11), we obtain
relations between the constants in the general ansatz. After plugging these relations
back into the ansatz (4.20), we obtain: E

δΘ
a

 = Ê++

 1
Θ+
E

a+
E

 eik+z + Ê+−

 1
Θ+
E

a+
E

 e−ik+z + â−

E−aΘ−a
1

 , (4.21)
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where the following variables were defined:

ΘE = ΛBe
m2

Θ − ω2 , aE = gaγBe
k2 , (4.22)

Ea = ω2µgaγBe
k2 − k2

Θ
, Θa = ΘEEa . (4.23)

From Eq. (4.21) it becomes clear that the dynamical AQ is completely determined by
fixing the variables Ê++, Ê+−, and â−. In the next section we show that these variables
can be fully determined by using the interface conditions for the electromagnetic and
DA fields. Therefore no boundary conditions for the AQ need to be applied.6

The case with losses (Γ 6= 0). When losses are included, the full dispersion relation
k2
± takes on a more complicated form. However, in the limit gaγ → 0 we find that
k2
− → k2

a and k2
+ → k2

Θ, where k2
Θ is given by Eq. (3.47). In what follows, aE and Ea

are needed also in the case of losses. aE in Eq. (4.22) does not get modified in the case
of losses, and Ea has the same form as in Eq. (4.23). However, we now require the full
form of kΘ from Eq. (3.47).

4.2.2 Matrix formalism
In the previous section, we described the solution of the linearized equations in a homo-
geneous medium. Here, we discuss solutions for the fields in a multilayer system that
consists of N + 1 media, cf. Fig. 10. We use the same labels for the media as as in Sec-
tion 3.2.2. There are N interfaces, which we label by r = 0, . . . , N . The first interface is
at z0 = z1 and the last interface is at zN . The material properties in Eq. (4.21) of each
medium are labeled with the corresponding index r as a subscript. The constant Θ0

does not influence the emitted photon signal at lowest order and is therefore neglected
in the following. We further introduce a phase similar to the case of AQ-photon mixing
is introduced in the ansatz, cf. Eq. (3.51). The external B-field Be is the same in all
media and is polarized in the y-direction. Recall that we consider the DA zero-velocity
limit with a zero spin wave velocity.

Applying the interface conditions for the electromagnetic fields, cf. Eq. (4.12), (4.13),
and (4.13) and for the DA, cf. Eq. (4.7), at zr between medium r − 1 and r we obtain
the following system of equations:

tr = M−1
r Mr−1 Pr−1 tr−1 , (4.24)

with

Mr =

 1 1 E−a,r
kr+
µr
−kr+
µr

0
a+
E,r a

+
E,r 1

 , tr =

Ê++
r

Ê+−
r

â−r

 (4.25)

6If we were to consider a finite spin wave velocity, we would obtain three modes k2
1,2,3. In this case,

the most general ansatz would have six unknowns per field, and we would have to specify boundary
conditions for the AQ.
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and, defining ∆+
r ≡ kr+(zr+1 − zr) ,

Pr = diag(ei∆
+
r , e−i∆

+
r , 1) . (4.26)

In complete analogy to Section 3.2.2 the S-matrix, which relates the states in media
0 and N to each other, is defined via

tN = S t0 . (4.27)

The expressions for one, two, . . . , N interfaces are the same as in Eqs. (3.56)–(3.58).
The unknown fields can be calculated from the S-matrix as follows:Ê

++
N

Ê+−
0
â−N

 = −â−0

−1 S12 0
0 S22 0
0 S32 −1


−1

·

S13
S23
S33

 , (4.28)

where the amplitude of the DAs is known and, has to lowest order the same magnitude
in each medium |â−0 | = |â−r | for all r = 1, . . . , N . The emitted E-field in medium N that
propagates in the positive z-direction is called Ê++

N . The emitted E-field that propagates
in the negative z-direction is called Ê+−

0 .

4.2.3 Layer of topological insulator

Let us now consider the case of a single TMI layer (hosting a dynamical AQ) surrounded
by vacuum. Dark axions are present in the form of an background field that oscillates in
time with a frequency that is determined by the DA mass, ma. The DAs mix with the
AQs and photons. In terms of the matrix formalism, there are two interfaces (N = 2),
with media 0 and 2 are vacuum, and medium 1 is a TMI of thickness d. The TMI has
constant refractive index n2 = ε7 and losses Γ. The external B-field is present in all
media. The DAs have the same magnitude in each medium, which is determined by the
axion dark matter density ρa: |â−0 |2 = |â−r |2 = 2ρa/m2

a.
The three-way mixing between DAs, AQs, and photons produces a photon at the

boundary, which propagates away from the TMI layer. Note that, since we neglect
the spin wave velocity, the system behaves essentially as a two-level system of massive
photons and DAs. The emitted E-fields in media 0 and 2 are denoted by Ê+−

0 and
Ê++

2 , respectively. Recall that Ê+−
0 is the E-field amplitude that is emitted in negative

z-direction in medium 0 and Ê++
2 is the emitted photon signal emitted in the positive

z-direction in medium 2. We assume that the DA particles are effectively at rest. In this
limit there is no preferred direction and the magnitudes of Ê++

2 and Ê+−
0 are the same.

7A nontrivial permeability, µ 6= 1, can be incorporated straight-forwardly into the matrix formalism,
described in the previous sections. However, we set µ = 1 for simplicity and because this is a good
approximation for the TMI materials discussed in Section 2.4.
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Lossless case (Γ = 0). The full formula for Ê++
2 from the matrix formalism is im-

practical. We therefore quote the result first order in the DA-photon coupling, which,
assuming that gaγ is sufficiently small, should be a good approximation:

Ê++
2 = â−0

sin(∆/2)
(
n2

Θ − 1
)

nΘ (nΘ sin(∆/2) + i cos(∆/2)) gaγ Be +O
(
(gaγ Be)2

)
, (4.29)

where we define the phase depth ∆ = dkΘ = dωnΘ (where kΘ is the lossless solution to
the dispersion relation, eq. (3.34)) and the effective refractive index is

n2
Θ = n2

(
1− b2

ω2 −m2
Θ

)
. (4.30)

Furthermore, we used in the language of the matrix formalism, such that a+
E,0 = gaγ Be

ω2 =
a+
E,2, E−a,0 = −gaγ Be = Ea,2, and a+

E,1 = gaγ Be
n2

Θω
2 , E−a,1 = −gaγ Be

n2
Θ

. From now on, terms of
the order O

(
(gaγ Be)2) are omitted to simplify the expressions. We also normalize the

field amplitude Ê++
2 to the DA-induced field in vacuum, E0 = gaγ Be a

−
0 ,

Ê++
2
E0

= − sin(∆/2)
(
1− n2

Θ
)

nΘ (nΘ sin(∆/2) + i cos(∆/2)) . (4.31)

Note that Eq. (4.31) has the same form as in the case of fields emitted from as a dielectric
disk [47], with the effective refractive index nΘ, which is equivalent to introducing a
photon mass.

From analysing Eq. (4.31), it becomes clear that a resonance occurs if the condition

∆ = ∆j = nΘ(ωj)ωjd = (2j + 1)π , j ∈ N0 , (4.32)

is fulfilled. Here, ωj are the resonance frequencies, which are are located at

ω2
j = ω2

LO

2 +

√
ω4

LO

4 + ∆2
j

b2

n2d2 = ω2
LO + δω2

j +O
(

4∆2
jb

2

n2d2ω4
LO

)
, (4.33)

where we have defined

δω2
j ≡

∆2
jb

2

n2d2ω2
LO
. (4.34)

From Eq. (4.33), it is evident that – in the lossless limit – the resonance frequencies
are always larger than ωLO, i.e. ωLO < ω0 < ω1 < . . .. As the thickness of the TMI
increases, d → ∞, the resonant frequencies converge to the limiting value, i.e. ωj →
ωLO. Furthermore, Eq. (4.33) implies that the resonance frequency ωj can be tuned
via the external B-field, since b ∝ B. In Section 5.1 we investigate the frequency and,
equivalently, DA mass range that can be scanned with our benchmark materials and
realistic external B-fields.
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To understand why the frequencies defined via Eq. (4.32) are indeed resonance
frequencies, consider the following: Equation (4.32) implies that cos ∆j = 0 and, hence,
the emitted field in Eq. (4.31) is Ê++

2 ∼ 1/n2
Θ − 1 ∼ 1/n2

Θ for small nΘ. In fact, the
smaller nΘ the more pronounced the resonance and, from Fig. 7, we can see that this is
the case when ωj ∼ ωLO. Consequently, resonances that are further away from ωLO (i.e.
j > 0) have less pronounced peak values, such that the maximal value of Ê++

2 is always
obtained for j = 0. Furthermore, Eq. (4.33) reveals that resonances are more pronounced
for larger sample thickness d of a given TMI. We now investigate the resonances in more
detail and provide analytical expressions for their widths and maximum values.

Around the resonances we have |nΘ| � 1, and Eq. (4.31) can be approximated as:

Ê++
2
E0

= − 1
n2

Θ + i nΘ cot
(

∆
2

) . (4.35)

Expanding n2
Θ around ω2

j yields, to lowest order,

n2
Θ = n2 δω

2
j

b2
, (4.36)

where we require that b2 > δω2
j . The expansion of cot(∆/2) leads, to lowest order, to

cot
(∆

2

)
= −1

2
ωjdn

2

2nΘ(ωj)b2
(
ω2 − ω2

j

)
. (4.37)

The emitted fields in Eq. (4.35) can then be approximated about the resonances as
follows:

Ê++
2
E0

= − iAj
iγjωj + (ω2 − ω2

j )
, (4.38)

with

γj = 4
d

ω2
j − ω2

LO

ω2
j

≈
4∆2

jb
2

n2d3ω4
LO
, (4.39)

Aj = 4b2
n2ωjd

≈ 4b2
n2ωLOd

, (4.40)

where we used that in a resonant case ωj is close to ωLO.
The power output on resonance is:

P = |E0|2

2 β2A , (4.41)

where A is the surface area of the TMI layer and where we used that the Poynting vector
in z-direction has magnitude 1

2 |Ê
++
2 |2. The power boost factor β2 is defined as

β2 =
∣∣∣∣∣Ê++

2
E0

∣∣∣∣∣
2

. (4.42)
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Figure 15: Effect of material thickness, d, on the boost factor. In the lossless
limit for one layer β is given by Eq. (4.31). We assume zero DA velocity (vDM = 0, valid
when the resonance is wide compared to the DA linewidth). Typical material values for
Mn2Bi2Te5 TMI with an external B-field Be of 2 T are chosen, cf. Table 5 and Eq. (2.3).
Vertical lines mark the frequencies ωLO and the resonance frequencies ωj . The resonance
boost increases, and bandwidth decreases, as the thickness d increases.

Following Ref. [47], we refer to the unsquared β as the boost factor.
The full width at half the maximum value (FWHM) of β2 about the resonance ωj

is given by γj . The highest value at the resonance, the peak amplitude, ωj is given by

β2(ωj) =
A2
j

γ2
jω

2
j

≈
(
dωLO

∆j

)4

≈ 1
nΘ(ωj)4 . (4.43)

With Eq. (4.43) it now becomes explicitly clear that the higher modes have a lower
maximum resonance value, since ∆j < ∆j+1. Also large layer thicknesses d increases
the maximal emitted E-field on resonance. Therefore to achieve a certain amount of
signal boost from one layer of TMI a relatively large layer thickness d > 1/ω is needed.
Equation (4.39) tells us the necessary information about the width of the resonance. First
note, that going to larger modes j or larger b will increase the FWHM γj . Relatively
thick TMI layers, i.e. large d, yield a very narrow resonance. Therefore a good balance
for d has to be found because d should be relatively large to reach a high resonance
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value. The refractive index n does not affect the maximum value of the resonance, cf.
Eq. (4.43). However large n makes the FWHM γj very small. We therefore conclude
that it is advantageous to have low n materials fro broadband response.

In Fig. 15 the boost amplitude β is shown for our benchmark material Mn2Bi2Te5
for four different layer thicknesses. For the the thinnest case, d = 0.2 mm, no clear
enhancement of the boost factor is reached, since for this relatively small thickness we
obtain a resonance frequency ω0 (dashed vertical line) that is too far away from ωLO

(solid vertical line) such that nΘ(ω0) is not much smaller than unity. For d = 2 mm we
have a resonance at ω0. A larger width, but a lower maximum value, is realized at the
second resonance peak ω1. According to Eq. (4.39), the width of the resonance around
ω1 should be broader by a factor of about (∆1/∆0)2 = 9 than the resonance width
around ω0.

For thicker samples still, d = 5 mm, d = 10 mm the resonant boost at ω0 increases
further. In particular from Eq. (4.43) we find that the peak heights scale as (d1/d2)2.
Furthermore, the width of the peak around ω0 shrinks as d increases. From Eq. (4.39)
we can directly read off that the width shrinks by a factor (d2/d1)3. For d = 10 mm
the linewidth of β is on the order of the DA linewidth, 10−6ma. Without taking into
account material losses the linewidth of the power boost factor is larger that the axion
linewidth if

γj > 10−6ωj ≈ 10−6ωLO. (4.44)
Equation (4.44) tells us the requirements for the material parameters such that the power
boost factor bandwidth is larger than the axion linewidth.

Before we discuss the influence of material losses we want to give a clearer physical
picture of the observed resonances. In Fig. 16 we consider three domains. The middle
domain is a TMI layer with thickness d and with an effective refractive index nΘ = 1

2 .
The two outer domains are vacuum with n = 1. The axion induced field, which is shown
in blue, is one in vaccum and enhanced inside the TMI, cf. Eq. (4.22). The enhancement
of the axion induced field in the TMI layer is proportional to 1

n2
Θ

. Consider now the
interface between the TMI and the left vacuum. To fulfil the continuity requirement
of the total electric field, propagating modes (red) are emitted to both sides. One can
check that this is indeed the case by adding the red and blue amplitudes at the interface.
The emitted amplitude in vacuum is one, while the propagating fields inside the TMI
are enhanced, since they are proportional to 1

n2
Θ

. The outlined scenario happens at both
interfaces of the TMI. Let us first consider the emitted radiation that propagates inside
the TMI from left to right. The radiation hits the right interface. The transmission
and reflection coefficients determine the fraction of the radiation, which is transmitted
to the outside or reflected. For plane waves we have T = 2nΘ

1+nΘ
and R = nΘ−1

1+nΘ
. The

important point is that the transmitted radiation is added in phase (T > 0) to the
radiation which is emitted from the right interface to the outside. The part of radiation
which is reflected at the right interface receives a phase shift since R < 0. Therefore
the reflected radiation is coherently added to the radiation which is emitted from the
right surface to the left in the TMI. A similar scenario happens at the left interface.
Now since nΘ � 1 the transmission coefficient is small and the reflection coefficient is
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Figure 16: Physical understanding of the resonant enhancement of the emitted electro-
magnetic fields from the mixing between DAs, AQs and photons. The TMI layer (gray)
of thickness d has an effective refractive index nΘ = 1

2 < 1 and is surrounded by vacuum.
The axion induced field (blue) is enhances inside the TMI and since the total electric
field has to be continuous over the two interfaces propagating modes (red) are emitted
off both interfaces. The E-fields are given in units of the axion-induced field in vacuum,
E0. Due to the smallness of nΘ around the resonance the transmission coefficient for the
fields which propagate inside the TMI is small, while the reflection coefficient is large.
Therefore effectively the TMI works as a cavity. After bouncing many times between
the two interfaces the effective emitted field is proportinal to β � 1. In the specific ex-
ample of nΘ the emitted field is four times larger than the axion induced field in vacuum
(β = 4). A more detailed description can be found in the text.

large. Therefore the radiation bounces many times between both interfaces. After each
bounce a small fraction of the radiation is transmitted to the outside. This is exactly
how a cavity works and due to the fact that the transmitted fields to the outsides are all
added coherently the total emitted field is enhanced by the boost factor β = 1/n2

Θ. The
total emitted field is shown in green in Fig. 15. With this physical picture in mind we
can also understand why larger thicknesses d lead to larger β’s on resonance. To fulfill
the resonance condition nΘ(ωj)ωjd = π we need a smaller nΘ(ωj) the larger we make d.
However making nΘ(ωj) smaller leads to a larger axion induced field and therefore also
to a larger total emitted field.

Case with losses (Γ 6= 0). In the case of losses we can use that gaγ is a relatively
small coupling and therefore k+ → kΘ, where kΘ now includes losses, cf. Eq. (3.47).
k− → ka = 0 in the axion zero velocity limit. Furthermore we have shown in Section 4.2.1
that the relations for aE and Ea still hold when we include the losses into the effective
refractive index. In conclusion we can use Eq. (4.31) also if losses are present. The only
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Figure 17: Effect of losses on the boost factor. TMI layer of thickness d = 1 mm.
Other parameters are as Fig. 15. Left: Varying magnon losses Γm, with Γρ = 0. Right:
Varying photon losses Γρ with Γm = 0.

thing that we have to do is to use the effective refractive index which includes losses:

n2
Θ = n2

(
1 + b2

m2
Θ − ω2 − iωΓm

+ i
Γρ
ω

)
. (4.45)

We subsequently neglect mixed losses.
We begin by expanding the boost factor around the resonance frequencies ωj , which

remain unmodified by the losses, cf. Eq. (4.32). Then an expansion can be done in
complete analogy to the lossless case. For |1 − n2

Θ(ωj)| ≈ 1 the emitted field takes the
same form as in the lossless case, cf. Eq. (4.35), where nΘ is given now by Eq. (4.45).
We now expand the two terms, n2

Θ and cot
(

∆
2

)
, that appear in the denominator in

Eq. (4.35). We find

n2
Θ(ωj) = n2

(
δω2

j

b2
+ iΓ̃2

j

)
(4.46)

with Γ̃2
j ≡

Γρ
ωj

+ ωjΓm
b2 . In deriving Eq. (4.46) we have assumed that b2 > δω2

j and
b2 > ωjΓm. If such a condition is not fulfilled, the material is likely too lossy to be useful
in DA detection. Next we consider the nearly lossless limit, i.e. δω2

j

b2 > Γ̃2
j . In this case

the relevant expressions for us are nΘ(ωj) = n
δωj
b

(
1 + i1

2
Γ̃2
j

δω2
j
b2
)

and n2
Θ(ωj) = n2 δω

2
j

b2 ,
where we have written down only the important leading order terms. Next we expand
the cot

(
∆
2

)
term:

cot
(∆

2

)
= cot

(∆
2

)
ω2=ω2

j

+
[
∂

∂ω2 cot
(∆

2

)]
ω2=ω2

j

(
ω2 − ω2

j

)
+ · · · (4.47)
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where we approximate ω ≈ ωj for the linear dependencies and the dots represent
higher order terms, which we do not have to consider for a reasonable expansion. The
expansion in Eq. (4.47) can be simplified in the small thickness limit, Im [∆(ωj)] <
1.Equation (4.47) then simplifies to:

cot
(∆

2

)
= −i Im [∆(ωj)]

2 − 1
4

∆j

δω2
j

(
ω2 − ω2

j

)
(4.48)

Putting everything together we obtain – as in the lossless case, cf. Eq. (4.38) – a
Lorentzian shaped functional dependence around the the resonance frequencies. The
width of the curve receives an additional term in the presence of losses:

γj =
4b2∆2

j

n2ω4
LOd

3 +
(

Γm + b2

ω2
LO

Γρ
)
. (4.49)

and the amplitude Aj remains unchanged with respect to the lossless case.
In Fig. 17 we show the boost factor β around the first resonance ω0 for a layer

thicknesses of d = 1 mm for different values of the loss parameters Γρ and Γm. We
observe that each loss parameter has a similar quantitative effect on redicing the boost
factor peak, with magnon losses being only slightly more important. This is due to the
fact that Γm directly enters the resonance, cf. Eq. (4.45), while photon losses Γρ only
enter via an additional term that is added to the other terms of the dispersion relation.

Next let us discuss the effect of losses on the higher resonance frequencies. In Fig. 18
we show the first two resonance peaks at ω0 and ω1 for d = 5 mm. In the lossless case
we have β(ω0) ≈ 500, cf. Fig. 15. The reduction of the ω0 resonance is therefore more
severe than the resonance at ω1. This is simply the case because the system is more
resonant at ω0 and losses lead to a larger reduction. We conclude that losses may lead
to a scanning strategy in the end that uses a higher resonance mode j > 0. However, the
final scanning strategy can only be given when the losses are determined experimentally.

We can see from Eq. (4.49) that the point where losses dominate is a function of
the refractive index, thickness of the material and intrinsic losses. While, in the lossless
case, increasing the thickness of the layer increases the resonance, we can see that this
is limited by the losses, which give a width independent of d. Looking at the the height
of the resonance in the loss dominated limit is quite revealing

β(ωj) = Aj
γjωj

= 4b2
n2ω2

LOd

1
4b2∆2

j

n2ω4
LOd

3 + b2
ωLO

(
ωLOΓm
b2 + Γρ

ωLO

) loss dom.≈ 4

dn2
(
ω2

LO
b2 Γm + Γρ

) .
(4.50)

Unlike the lossless case, increasing d now hinders the resonance height, if not its width.
Similarly, while n does not effect γj , again the height is significantly reduced on reso-
nance, further discouraging high n materials. Once the loss term of a material is known,
the optimal thickness can be found by requiring that losses do not dominate.

To get an idea of the scale of the maximum losses that still allow for useful DA
detection, we plot the maximum of β at the first resonance ω0 as a function of d in
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Figure 18: Effect of losses on the higher resonance peaks. TMI layer of thickness
d = 5 mm. Other parameters are as Fig. 17. The value of β at ω0 without losses is around
β ≈ 500, cf. Fig. 15 (bottom left). Therefore the relative reduction due to losses at the
resonant frequencies is larger at ω0 than at ω1.
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Figure 19: Maximal boost factor β on resonance at ω0 with respect to the TMI layer
of thickness d for different levels of loss. Material parameters correspond to Mn2Bi2Te5
with B = 2 T. The bands show variation of the refractive index from n = 3 (upper curve
of the bands) to n = 7 (lower curve of each band).

Fig. 19. The different colours indicate different losses. We also vary the refractive index
around our best guess value, n = 5: the upper band for each colour corresponds to
n = 3, while the lower to n = 7. Lower values of n lead to greater boost factor maxima.

From Fig. 19 we can read off that for given material parameters there is an optimal
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thickness, which maximizes β on resonance. Analytically one can show

dopt = 2
ωLO

(∆j

n

) 2
3

 1
Γρ
ωLO

+ ΓmωLO
b2

 1
3

. (4.51)

Note that the otimal thickness dopt gives a thickness that is consistent with the small

d limit that we have used in the expansion only if 2
(
n2Γ̃2

j∆j

) 1
3 < 1. This inequality

is fulfilled for the cases that we are interested in. In the zero loss limit the optimal
thickness dopt diverges . However it is important to stress that in this limit γj → 0
and our optimal thickness has to be understood as the thickness that maximizes β on
resonance. Which thickness will be the optimal one with respect to a scanning strategy
and sensitivity reach will be discussed in the next section. If the losses are finite they
enter with the third root. Also note that scanning different frequencies changes ωLO and
therefore in principle for each scanning frequency a different optimal layer thickness is
needed. It is not possible to change the layer thickness for each scanning frequency, and
therefore the true optimal thickness will depend on the details of the frequencies to be
scanned and the scan strategy.

Note that in Fig. 19 we are approximating the boost factor as a resonance. However,
as β → 1 the boost factor is no longer well described by a Lorentzian. For the purposes
of an experiment, all advantage over say a dish antenna is then lost. To estimate the
highest allowable losses, we can note that the strongest resonance occurs when δj = Pi
and d = dopt. By requiring that β � 1 we then find the requirement

Γρ
ωLO

+ ΓmωLO
b2

� 1
2n2 . (4.52)

Thus the highest allowable losses are actually set by the refractive index of the material,
at least in order to ensure a resonance occurs.

5 Dark Matter Discovery Potential

In this section, we review the suitability of TMIs hosting AQs for DA detection. We sys-
tematically investigate the discovery reach of the proposed single-TMI-layer benchmark
experiment, and the necessary requirements for THz detectors. Astrophysical limits on
the axion mass and coupling, and motivation for axion DM in the milliectronvolt range,
is reviewed in Appendix B.

5.1 Scanning range

Before considering THz detection technology and the reach of the proposed experiment
in terms of the DA coupling, gaγ , we first determine the range of DA masses that
can in principle be accessed using TMIs. Recall from Section 4.2.3 that the resonance
frequencies of the experiment, ωj , can be tuned by changing the external magnetic field,
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Be. To estimate the resulting range, we look at the first resonance ω0 since |β(ω0)| >
|β(ωj)| for all j > 0. Doing so, we find that

ω0(Be) ≈ ωLO(Be) =
√
m2

Θ + b2(Be) , (5.1)

where mΘ is the AQ mass and b is given by Eq. (2.3). In the limit of Be → 0 we simply
have ω0 → mΘ, while for very strong B-fields of Be = 10 T and our our benchmark
parameters in Table 8 (our best approximation to Mn2Bi2Te5), we find that

1.8 meV = mΘ < ω0 < 8.2 meV . (5.2)

As of now, the DA mass is unknown, so it is desirable to cover a wide range of axion
masses with a given TMI crystal. Since typical magnetic fields in the lab are restricted
to the order of a few tesla, we cannot arbitrarily increase Be and hence need to maximise
the relative response of the AQ to Be, viz.

1
mΘ

db
dBe

= α

π
√

2
1√

εfΘmΘ
≈ 0.46

T

(25
ε

)1/2 (70 eV
fΘ

)(1.8 meV
mΘ

)
. (5.3)

This means that smaller fΘ, mΘ, or ε are beneficial for a TMI in order to cover a larger
range of frequencies for a given maximum possible value of the applied B-field.

A large relative AQ response in Eq. (5.3) is only beneficial if the applied B-field
value can be controlled to sufficiently high accuracy over the course of the measurement.
This is because fluctuations in Be will translate into fluctuations in ω0, which might result
in the resonance around ω0 fluctuating in and out of the bandwidth of the detector. The
magnet design for TOORAD will thus require relatively precise control of the B-field,
and could be a limitation in cost, field strength, or total volume.

5.2 Detectors for THz Radiation

Searching for dark DAs is challenging because the resultant photon signal is very weak
and can be hidden in wide range of frequencies, since the DA mass in unknown. To
improve our chance of success, we need to understand the intrinsic and extrinsic back-
ground noise of our photon detection system, coupling efficiency of photon detectors to
our proposed experimental setup, and scalability in collecting more photons from the
material that hosts the AQ. In earlier sections, we have discussed the generation of elec-
tromagnetic radiation in the THz (millimeter wave) regime using AQs for DA detection.
We will focus here to the available technology to detect these photons with energies from
0.01 to a few THz.

Detectors that have high sensitivity for the search of DAs in our frequency range
of interest include amplifiers, heterodyne mixers, bolometers, and single-photon detec-
tors (SPDs). We shall consider experiments performing at temperatures much lower than
the frequency, i.e. T � ω to avoid the thermal photons from the blackbody radiation and
to focus on the fundamental limit of photon detection [134–137]. Since amplifiers and
heterodyne mixers, e.g. superconductor-insulator-superconductor (SIS) and hot-electron
bolometric mixers, are sensitive to the voltage or the electric field of the signal, we can
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Table 7: Comparison of detector technologies for searching dark matter using quasi-
particle axions. See the main text for explanations of the symbols.

Detector type Fundamental noise limit Metric
Amplifiers &

heterodyne mixers quantum noise ~ω [134, 136, 137] TQ

Bolometers thermal fluctuations
√

4GthkBT0 [135, 138] NEP

Calorimetric SPDs energy resolution
for finite bandwidth

√
CthkBT 2

0 [139, 140] dark count rate

put them into one category, while bolometers and SPDs go into another. We present a
comparison of all detector types discussed in what follows in Table 7.

State-of-the-art amplifiers and mixers can detect a very weak signal from as little
as a few photons by parametric amplification or non-linear mixing processes. As the
signal-to-noise ratio is given by the ratio of the number of photons in the signal to that
in the amplifier noise, the amplifier noise can be quantified naturally in units of photon
quanta, i.e. ~ω, or amplifier noise temperature, i.e. TQ = ~ω/kB. For the linear, phase-
preserving amplification, the minimum amplifier noise is one quanta [134, 136, 137]. Half
of this comes from the quantum fluctuation from the parametric pumping port used in
modulation for the amplification gain, whereas another half from the quantum noise
in the signal port. At lower microwave frequencies, quantum noise-limited amplifiers
have been achieved based on parametric effects [141–143] and, at higher frequencies,
in SIS detectors [136, 144], hot electron bolometric mixers [145, 146], and plasmonic
mixers [147]. However, the insertion loss and insufficient first amplification gain may
degrade the overall performance, resulting in a higher system noise temperature Tsys ≥
TQ. For a total measurement time, tmeas, and measurement bandwidth, BW, the average
noise is given by the Dicke radiometer formula,

Noise = Tsys√
BWtmeas

(5.4)

Instead of amplifying the voltage, bolometers are high-sensitivity, square-law de-
tectors that measure the power of microwave and far-infrared radiation. They operate
by first absorbing the incident radiation and subsequently inferring the radiation power
from the temperature rise due to the increase of its internal energy. The bolometer
sensitivity is quantified by noise equivalent power (NEP), measured in units of W/

√
Hz,

i.e. the power fluctuations of the bolometer in absence of any incident power dur-
ing a 1-second averaging window. Previous experiments project NEP values as low as
10−21 W/

√
Hz [148]. The sensitivity of this technique is not limited by quantum fluctua-

tions, but rather by the fundamental thermal fluctuations [135, 138]. This fundamental-
fluctuation-limited NEP is given by

√
4GthkBT0 with Gth being the thermal conductance

of the bolometric material to the thermal bath, and T0 is the bolometer (bath) temper-
ature. Therefore, bolometers for DA detection will require to operate at the lowest
achievable temperatures with the least thermal conductance to its surrounding.
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In addition to power detection by bolometer, single-photon detectors (SPD) is an-
other viable option to capture the photons generated from DAs. Efficient DA searches
will require the SPD to have simultaneously a high quantum efficiency to register every
precious photon, and a low dark count rate to minimize the false positive signal. Natu-
rally, these two requirements are competing against each other because a higher quantum
efficiency also means the detector can be triggered by noises to produce a count in the
absence of photons. Fortunately at cryogenic temperatures, we can employ supercon-
ductors to detect photons efficiently and accurately. When the photon energy is larger
than the superconducting gap energy, ∆S, the incident photons can break Cooper pairs
and produce a sizable number, ηd~ω/∆S, of quasiparticles, with ηd < 1 being the energy
downconversion efficiency [149]. These quasiparticles can then transduce into a readout
signal of resistance, temperature, kinetic inductance, or excess current in SPDs such as
superconducting nanowire SPD [150, 151], transition edge sensor [152], microbolometer
[148, 153], Josephson junction SPD [154], kinetic inductance detector [149], and super-
conducting tunneling junction detector [155]. SPDs based on this mechanism have been
highly successful especially in the near infrared domain when the relatively high photon
energy can produce a considerable amount of quasiparticles. Single-photon detection
in THz regime is a lot more challenging. Microbolometers based on the superconduct-
ing nanowire have demonstrated experimentally energy-resolved, single-photon detection
down to 38 THz [153] and projection give energy resolutions as low as 0.12 THz [148].
Recently, quantum capacitance detector [156] has demonstrated the detection of 1.5 THz
by sensitively sensing the change of quantum capacitance from the quasiparticle through
a resonator.

Since the photon detection mechanism depending on Cooper pair breaking will in-
evitably become more and more challenging at lower millimeter wave frequencies, we
can also exploit the giant thermal response in graphene [140, 157–159] to absorb the
incident photon first before measuring the temperature rise. The concept of calorimetric
SPDs has been developed for x-ray detection and superconducting SPDs [139, 160]. In
contrast to bolometers, single photon detection not strictly limited by thermal fluctua-
tions if a large enough detection bandwidth and high sensitivity temperature transducer
is available. Intuitively, this is because when the photon impinges into the detector,
SPDs produce a sharp rising signal that can be observed with a wide-bandwidth detec-
tor. Quantitatively, this is due to the improvement of signal-to-noise ratio through a
matched filter that is tailored to the shape of the expected signal from a single photon.
Nevertheless, the energy resolution, ∆ε =

√
CthkBT 2

0 with Cth being the thermal heat
capacity of the calorimeter, is still a good benchmark for calorimeter SPDs. When the
NEP is white-noise limited, we can use [160]

∆ε = NEP
√
Cth
Gth

(5.5)

to compare the sensitivity with bolometers. For DA searches in wide frequency band-
width, graphene-based single photon detection also has an advantage in wide bandwidth
photon coupling by impedance matching the input to the photon absorber with an an-
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tenna. Spiral, log-periodic, and bow-tie antennas have been implemented for graphene
detectors [161, 162]. As graphene-based bolometers have been demonstrated recently in
the microwave regime [138, 163] with energy resolution projections to a few 10 GHz, it
can potentially complement SPDs by operating at millimeter wave frequencies.

In addition to superconductor-based and calorimeter SPD, superconducting qubits
and quantum dots can also detect single photons [164, 165]. These nano fabricated
devices have discrete energy states and can serve effectively as artificial atoms. When
incident photons promote the qubit or quantum dot to an excited state, they can be
detected by measuring the state of the artificial atoms. Detection of single photons
has been demonstrated using superconducting qubits at microwave frequencies [166,
167] and using quantum dots as low as 1.5 THz [165] with photon coupling through
superconducting resonators and dipole antenna, respectively.

Table 7 compares the fundamental limit of detectors that will be useful for dark
matter detectors; since the quantum noise rises linearly with frequency, SPDs will have
an advantage over amplifiers for the search of higher axion mass [168]. A dark count
rate λd ∼ 1 mHz has been demostrated experimentally [165, 169] for a quantum dot
detector. Note, however, that the realised experimental efficiency for that detector
was only η = 0.01 [165, 169]. Overall, it is desirable to obtain a detector with the
optimal combination of low dark count rate and high efficiency, as this will ultimately
determine the sensitivity of TOORAD. Detectors that feature a better efficiency typically
have a worse dark count rate than the detector from Ref. [165] considered above. We
will therefore define a pessimistic (optimistic) scenario by setting λd ∼ 1 mHz with a
detection efficiency of η = 0.01 (η = 1).

Last but not least, we shall consider how to put the photon detector together
with the material that hosts the AQs. The efficiency of the dark matter search relies
on this system integration. The goal is to maximize the photon coupling as the axion
quasiparticle material scales up. Therefore we will need to design an antenna that can
collect the photons emitted from the AQs to the detector with the least inert loss.
This will be an important factor to select a potential detector technology to develop.
Ultimately, to detect a small signal from DA, the detector metric should be the total
experimental averaging time for an experiment to reach a statistical significance and
will depend on both efficiency and sensitivity. To improve our chance of detecting dark
matter, we need more research on detector technologies, which are also be useful in
other applications including radio astronomy, spectroscopy, and medical imaging [156,
170, 171].

5.3 Experimental Sensitivity and Forecasts

As discussed above, the signal from the DA-polariton-photon conversion may be detected
using an SPD, which is superior compared to heterodyne power detection in THz. In this
section we quantify the sensitivity and discovery reach for a photon-counting experiment.

The detection of individual photon events is governed by Poisson statistics i.e. the
likelihood of detecting N photons given model parameters x (the set of DA and material
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properties) is given by

p(N|x) = (η ns + nd)N

N! e−η ns−nd , (5.6)

where ns = λsτ and nd = λdτ are the number of expected signal and dark count events,
respectively, as calculated from their respective rates, λs and λd, and total observation
time τ . The parameter η describes the total detector efficiency i.e. takes into account the
intrinsic efficiency of the detector as well as any other imperfections in the experimental
setup. Note that Eq. (5.6) assumes that there are no external backgrounds present.
While we do not use a likelihood approach based on Eq. (5.6) directly for our esti-
mates, it should be noted that the form above is a better approach than the asymptotic,
approximate equations used in what follows. For the case of a single-bin Poisson distri-
bution without any nuisance parameters – i.e. assuming that the material and detector
properties are perfectly known – we performed a Monte Carlo simulation to check the
validity of the asymptotic formulae that we employ. We found them to be conservative
and, hence, suitable for the purpose of estimating TOORAD’s sensitivity. For an actual
analysis of experimental data, however, a likelihood-based approach should be used.

5.3.1 Sensitivity

In order to compute the sensitivity, we assume that no significant signal over background
is found. The significance is S = 2(

√
ns + nd −

√
nd), where ns is the number of signal

events and nd the number of dark count events [172–174]. Then the exclusion limit at
95% C.L. for photon counting based on Poisson statistics (Eq. (5.6)) is obtained from
S < 2, i.e. λs <

1
τ + 2

√
λd
τ , where λd is the dark count rate, λs the signal rate and τ

the measurement time. For a discovery one would require S > 5. In Section 5.2 we
argued that λd = 1 mHz is reasonable. In the following we estimate the sensitivity in
two scenarios. The case 1

τ < 2
√

λd
τ can be achieved for sufficiently long measurement

times and is called the background dominated scenario, i.e. τ > 1
4λd

= 250 s. If the
measurement time is short τ < 1

4λd
= 250 s then it is not background dominated.

First, we investigate the case that the measurement is not background dominated.
The number of signal photons per measurement time is λs = η |E0|2

2ω Aβ2 where A is
the surface area of the TMI, η the photon counting efficiency and ω = ωj ≈ ωLO is
the resonance frequency where the power boost factor peaks. The power boost factor
is the emitted electromagnetic field normalized to the axion induced field E0, which is
determined by the local axion dark matter density ρa, the axion photon coupling gaγ and
the strength of the external B-field: E0 = gaγBea

−
0 ' gaγ

√
2ρa
ma

Be . Putting everything
together we obtain the sensitivity estimate:

gaγ > 4.4× 10−11 GeV−1
(0.01

η

) 1
2
(2 T
Be

) (100
β

) ((0.2 m)2

A

) 1
2 (4 min

τ

) 1
2
×

×
(

0.3 GeV
cm3

ρa

) 1
2 ( ma

2.83 meV

) 3
2
, (negligible backgrounds, τ < λ−1

d ) (5.7)
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where an axion mass ma = 2.83 meV corresponds to the scanned axion mass with a 2 T
external B-field under the assumption of the benchmark material (n = 5, fΘ = 64 eV
and mΘ = 2 meV). The reference area in Eq. (5.7), A = (0.2 m). 0.2 m, is around
half of the square de Broglie wavelength for an axion with velocity v = 10−3c and
mass 2.83 meV. Single crystals of MnBi2Te4 grown in Ref. [118] are on the order of
cm2. Reaching large surface area will thus require tiling and machining many crystals
together. Tiling is known to introduce significant complications for dielectric haloscopes
like MADMAX [175, 176]. Further, as the axion gives an opening angle of v ∼ 10−3 the
collecting area of the THz detector must be large. We anticipate that this problem can
be overcome with the correct antenna.

When there are finite losses, we can use the peak value from Eq. (4.50) to eliminate
β and obtain:

gaγ > 4.95× 10−11 GeV−1
(0.01

η

) 1
2
(2 T
Be

) ((0.2 m)2

A

) 1
2 (4 min

τ

) 1
2
(

0.3 GeV
cm3

ρa

) 1
2

×

×
(2.83 meV

ma

) 1
2
(∆j

π

)2 (2 mm
d

)2
× Σ. (5.8)

where we have defined in the dimensionless quantity:

Σ ≡ 1 + 2
(

d

dopt

)3

. (5.9)

We did not plug in any specific value for Σ in the sensitivity estimate because when the
thickness is chosen to be close or equal to the optimal thickness Σ is of the order one.
The losses, AQ decay constant, fΘ, and refractive index, n, all appear implicitly via the
determination of dopt, the optimal material thickness.

Compare the the sensitivity Eq. (5.8) to that obtained with heterodyne detection.
In this case we use the Dicke radiometer equation with noise temperature T . The signal
over noise ratio is given by SNR = Ps

Tsys

√
τ

∆νa , where ∆νa = 10−6ma is the DA linewidth,
and Ps. If the physical system temperature is low enough, cf. Section 5.2, Tsys is limited
by the standard quantum limit (SQL) Tsys = ω = ma. The resulting sensitivity is:

gaγ > 1.1× 10−9 GeV−1
(SNR

2

) 1
2
(

ma

2.83 meV

) 7
4
(2 T
Be

) (0.3 GeV
cm3

ρa

) 1
2

×

×
(100
β

) ((0.2 m)2

A

) 1
2 (4 min

τ

) 1
4

(heterodyne SQL). (5.10)

The sensitivity is worse than the SPD, cf. Eq. (5.7), by approximately an order of
magnitude. This is as expected since for high frequencies the SQL pushes T to large
values. The SQL can, however, be overcome by “squeezing” [37].

Next we focus on the case that the measurement is background dominated (λs <

2
√

λd
τ ). For our benchmark dark count rate of λd this gives τ > 250 s. Long measurement
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times on a fixed frequency could be adopted in a “hint” scenario where the axion mass
is thought to be known by some other means (for example, an astrophysical hint, or
highly accurate relic density prediction), and a resonant DM search is required to verify
the hint. To consider this scenario, we take the measurement time on each frequency to
be τ = 3 yr, i.e. an entire experimental campaign. The sensitivity in this case is:

gaγ > 1.63× 10−12 GeV−1
(0.01

η

) 1
2
(2 T
Be

) (100
β

) ((0.2 m)2

A

) 1
2 ( λd

10−3 Hz

) 1
4
(3 yr
τ

) 1
4
×

×
(

0.3 GeV
cm3

ρa

) 1
2 ( ma

2.83 meV

) 3
2

(background dominated). (5.11)

Using now again the maximum peak value from Eq. (4.43) to eliminate β in the previous
equation we obtain the sensitivity estimate

gaγ > 1.94× 10−12 GeV−1
(0.01

η

) 1
2
(2 T
Be

) ((0.2 m)2

A

) 1
2 ( λd

10−3 Hz

) 1
4
(3 yr
τ

) 1
4
×

×
(

0.3 GeV
cm3

ρa

) 1
2 (2.83 meV

ma

) 1
2
(∆j

π

)2 (2 mm
d

)2
× Σ . (5.12)

To complete our discussion we also estimate the sensitivity for bolometric detectors
whose performance is specified by the NEP. The minimal detectable signal power which
such a detector can detect is Ps > NEP/

√
τ . Evaluating this leads to the sensitivity:

gaγ > 9.7× 10−13 GeV−1
(

NEP
10−21W/

√
Hz

) 1
2
(

(0.2 m)2

A

) 1
2 (3 yr

τ

) 1
4
×

×
(

ma

2.83 meV

) (0.3 GeV
cm3

ρa

) 1
2 (100

β

)
(5.13)

The sensitivity estimate in Eq. (5.13) has a similar order of magnitude as the SPD
sensitivity, cf. Eq. (5.11) but a slightly different scaling with the axion mass.

5.3.2 Scanning Strategies
We now compute forecasts for the baseline parameters of “Material 2” (best approx-
imation to Mn2Bi2Te5, with refractive index n = 5 and µ = 1), and consider three
possibilities for the losses, 8 Γm/ω = Γρ/ω = 10−5, 10−4, 10−3.

Assuming a fixed ratio Γ/ω is consistent with our model for the impurity based
losses, and assumes ε2 is approximately constant in the relevant range. For fixed ratio

8Note that we now take into account the frequency scaling of the losses which we have found in
section 2.5. In all previous results of this paper we did not take into account this scaling since it was
not necessary in order to understand the physical picture. However, here we want to estimate a realistic
sensitivity of a DA search and therefore we take the frequency scaling of the losses into account.
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Figure 20: Sensitivity for “Material 2” baseline parameters (see text for details) for
various loss values Γ. Top row: η = 0.01. Bottom row: η = 1. We fix the dark count
rate λd = 10−3 Hz. The yellow band shows QCD axion models, and the dashed blue line
the CAST exclusion on gaγ . The scanning scenarios are defined in the text.

Γ/ω, there are larger losses at higher frequencies. We first assumed SPD efficiency of
η = 0.01 and dark count rate λd = 10−3 Hz, which has been demonstrated. We also show
a more optimistic sensitivity estimate with η = 1 (dotted line) for Γρ/ω = Γm/ω = 10−4.
The surface area of the TMI layer is fixed to be A = (0.2 m)2, where 0.2 m is on the order
of half of the de Broglie wavelength. Furthermore we use the main resonance j = 0 for
the sensitivity estimate.

We consider two different scanning scenarios, with B-field values from 1 T to 10 T:

• Scanning I. We begin at the highest frequency with the largest B-field where the
base power is largest and the QCD band is at the largest gaγ . We scan to the top
of the QCD band. We then move by the width γ0 on to the next frequency at
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Figure 21: Linewidth of the boost parameter for “Material 2” baseline parameters (see
text for details) for various loss values Γ.

lower B, and repeat for a total scan time of 3 years. 9 Fig. (20,a). We compute
the optimal thickness with the largest axion mass within the scanned region.

• Scanning II. We scan for a fixed time set equal on all frequencies and repeat for
a total scan time of 3 years. In each step we move in frequency by the width γ0,
Fig. 21 (Eq. 4.49). We compute the optimal thickness with the axion mass that is
in the middle of the scanned interval.

In each case the limit is found for signal to noise equal to two, 95% C.L. exclusion.
In the Scanning II case we assume that each individual scan takes the same amount

of time τ . Then with the bandwidth from Eq. (4.49) (Fig. 21) we can calculate the total
number of scans. From this we then calculate the scan time for each individual scan such
that the total scanning time for each case is tscan = 3 years. Depending on the individual
scan time τ we calculate the sensitivity in the right limit, cf. Eq. (5.8) and (5.12).

In the Scanning I scenario for η = 0.01, we find that a wide range of the QCD
band can only be covered in the case with extremely small losses, Γ/ω = 10−5. With
this scanning strategy, η = 1 detection efficiency allows a wide range of the top of QCD
band to be scanned for all loss parameters. In the Scanning II scenario the QCD band
cannot be reached with η = 0.01. However, with η = 1 we find that a reasonable portion

9Note that we assume the peak power is achieved over the width γ0. While this is less conservative
than assuming the minimal value (i.e., half the maximum), note that power also exists outside of γ0,
which would still be integrated over during the scan. As this is an estimate, rather than a detailed
exclusion limit of an experiment, the final limit would likely fall somewhere between the two.

– 70 –



Table 8: Parameter reference values and ranges. Our benchmark material is “Material
2”, based on Mn2Bi2Te5.

Parameter name & symbol Range Benchmark
TMI parameters
Decay constant fΘ [50, 200] eV 70 eV
AQ mass mΘ ∼ O(meV) 1.8 meV
Permittivity ε [9,49] 25
Magnetic permeability µ ∼ O(1) 1
Magnon losses Γm [10−5, 10−3] meV
Specific conductance Γρ [10−5, 10−3] meV
Area of crystal face A (0.2 m)2

Thickness d dopt, cf. Eq. (4.51)
Experimental parameters
External B-field Be [1, 10] T 2 T
Detection effciency η [0.01, 1] 0.01
Dark count rate λd & 1 mHz 1 mHz

of the upper part of the QCD band can be scanned with Γ/ω = 10−4. With very low
losses Γ/ω = 10−5 and η = 1 the Scanning II scenario reaches almost KSVZ sensitivity
across a wide range of masses. We also considered the intermediate case η = 0.1, which
allows some sensitivity to the QCD axion band with Γ/ω = 10−4. We conclude that a
successful QCD-sensitive experiment requires high efficiency SPDs.

5.4 Parameter Study

We now wish to investigate how the sensitivity and scan range depend on the yet un-
known material parameters of the TMIs. In this section we consider only the scanning
II scenario. In Table 8 we list the unknown parameters, and reasonable ranges they
might take in different materials within our rough approximations to the theoretical
uncertainties. The ranges for the parameters have been motivated in Section 2.4.

In Fig. 22 we study the effect of varying the AQ decay constant fΘ and the refractive
index n on the scan range and sensitivity (we do not vary the AQ mass, since this has
the trivial effect of changing the lower limit of the scan range). The sensitivity and
other parameters are fixed as described in the previous subsection. Let us first discuss
the scanning range. The smaller n and fΘ the larger is the axion mass range that can
be probed. This is because the upper range of the scanned axion mass is determined by
Eq. (5.1).

To understand the effect of n and fΘ on the sensitivity, it is enlightening to study
the behaviour of the sensitivity estimates in the limit that the external B-field is very
large, i.e. ma ≈ ωLO ≈ b ∼ Be

nfΘ
. Both sensitivity estimates in the background dominated,

cf. Eq. (5.11), and in the non-background dominated limit, cf. Eq. (5.8), are proportional
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to gaγ ∼ 1
Be

1
d2

opt
, where we have assumed that Σ does not vary too much.10 Plugging in

the optimal thickness we obtain the scaling behaviour:

gaγ ∼
( 1
Be

) 1
6
( 1
fΘ

) 5
6 √

n. (5.14)

The strongest scaling is induced by the AQ decay constant fΘ. This view is also con-
firmed by the plots in Fig. 22. However increasing fΘ also leads to a smaller scanning
interval such that the reached Caγ in the QCD band is almost constant. The refractive
index n enters in the sensitivity only weakly with a square root dependence. However
for fixed fΘ it is visible from the plots in Fig. 22 that decreasing n gives a slightly better
limit on the DA-photon coupling. Furthermore, the scaling in eq. (5.14) only applies so
long as the approximation ma ≈ ωLO ≈ b ∼ Be

nfΘ
holds. At large fΘ this approximation

breaks down for suitable values of Be (either the experimental maximum, or spin flop
field, whichever is lower).

With these effects in mind, we revisit the candidate AQ material (Bi1−xFex)2Se3
(“Material 1”), considered in Paper I. We estimate that this material has slightly smaller
fΘ, and will thus have a slightly worse sensitivity to gaγ than the alternative Material
2, although it will have a narrower possible scan range. To be more optimistic with
Material 1, we adopt n = 3 for presentation (although this has a very small effect). Our
results are collected in fig. 23.11

10Remember that Σ would be exactly 3, if we would choose for each axion mass that is scanned the
exact optimal thickness. However, in a scanning scenario this will for practical reasons not be possible
and we choose d to be the optimal thickness that corresponds to the axion mass that is in the center of
all axion masses that are scanned. As a consequence Σ can also be slightly larger than 3 in the whole
axion mass that is being scanned.

11Appendix B gives more details about the QCD axion model assumptions indicated in this figure.
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Figure 22: Sensitivity estimate for the DA-photon coupling gaγ varying the external
B-field from 1 T to 10 T. The surface area is fixed to A = (0.2 m)2. The thickness d is
set to the optimal thickness, cf. Eq. (4.51). We assume each frequency is scanned for the
same amount of time, and the total scanning time is tscan = 3 years. For the detector
nb = 10−3 Hz and efficiency η = 1. The yellow band represents the QCD band with
Caγ = 12.75 · · · 0.25, cf. eq. (B.3) for the definition of Caγ . The dashed blue line shows
the CAST limit.

6 Discussion and Conclusions

6.1 Summary of Results

The present work has developed the theory of axion quasiparticles in topological mag-
netic insulators, and how such materials can be used to detect axion dark matter.
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Figure 23: The projected TOORAD sensitivity for Material 1 [(Bi1−xFex)2Se3-inspired]
and Material 2 (Mn2Bi2Te5-inspired) for different losses and detector sensitivities.
See Table 8 for all other benchmark parameter values. We show limits and fore-
casts [177] for CAST [178, 179], IAXO [180], and various haloscopes [31, 181–190] (for
ρloc = 0.3 GeV/cm3) as well as the bounds from hot dark matter constraints [191], en-
ergy loss arguments in SN1987A [13]. The preferred regions cold dark matter [192] in
the realignment scenario, and with the latest cosmic string decay calculations [193] are
also indicated as horizontal arrows. The QCD axion band encompasses all “preferred”
KSVZ-type axion models as defined in ref. [29], in addition to the original KSVZ and
DFSZ models.

Model of Axion Quasiparticles: We first presented in some detail the symmetry
criteria for the existence of axion quasiparticles, and the Dirac model for their realisation
in topological magnetic insulators. While already known in the literature (e.g. refs. [42,
43, 50, 51]), these have not been shown in detail in relation to axion DM, and provide
important background to the subsequent results. We laid out carefully the symmetry
criteria necessary for a material to posses an AQ. Our exploration of the model sheds
light on the nature of the AQ as a longitudinal magnon, i.e. a spatially and temporally
varying AF spin fluctuation. It is non-linearly related to the transverse magnons of
ordinary AFMR.

In order to estimate the parameters fΘ and mΘ of the model, we used the result
of the ab initio calculation given in ref. [42] for (Bi1−xFex)2Se3 on a cubic lattice. We
rescaled the results to use updated values of the material parameters of (Bi1−xFex)2Se3,
and Mn2Bi2Te5, for which there is not a result available in the literature. More accurate
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ab initio calculations of the parameters for both (Bi1−xFex)2Se3 and Mn2Bi2Te5 are
highly desirable. We considered multiple possible sources of loss in these materials, and
attempted to estimate the contributions to the polariton linewidth. This often involved
extrapolation of results obtained at different frequencies and only measured in related
materials. Direct spectroscopic measurement of all these parameters is thus necessary.

Axion Quasiparticle Detection: We computed explicitly the transmission func-
tion of AQ materials. This transmission function displays a magnetic field-dependent
gap, and a series of resonances, which depend on the size of the loss terms. By mea-
suring the frequency of the upper and lower ends of this gap, and the linewidths of the
resonances, one could determine the parameters of the model directly. Furthermore,
the gap in the polariton spectrum, and the scaling of the gap size with field strength,
demonstrate directly the existence of the AQ and its coupling to the electromagnetic
field via a Chern-Simons interaction. Thus, THz transmission spectroscopy can be used
to discover the AQ.

The considered material candidates that can host an AQ are all antiferromagnets.
Antiferromagnets exhibit an antiferromagnetic resonance (AFMR) with typical reso-
nance frequencies in the THz regime. This raises the question how one can distinguish
the AFMR from the axion-polariton resonance in the transmission spectrum. It is well
known how the AFMR frequency scales with a non-zero external B-field [132, 194, 195].
This scaling is distinct from that of the axion-polariton resonance, which consists of
a fixed resonance at mΘ, and a second one near ωLO =

√
m2

Θ + b20(B/B0)2 (where
b0 = b(B0) and B0 is a reference scale). We expect transmission spectra of the AF
axion insulator MnBi2Te4 to show the single AFMR, while the AQ material Mn2Bi2Te5
will show both the axion polariton resonances and AFMR. Comparing results for both
materials and the B-field dependence will help isolate the effect of the AQ.

Axion Dark Matter Detection: We developed the computation of the power
output of an AQ material in the presence of axion DM. The system bears many simi-
larities to dielectric and plasma haloscopes, and is characterised by a boost amplitude,
β(ω). The boost amplitude increases with thicker sample sizes, and the height and width
of the boost are affected by magnon and photon losses. The power is amplified by β2

compared to a magnetized mirror, and for realistic models of the loss 102 . β2 . 103

with a bandwidth of order 10−4 to 10−3.
Figure 23 shows our best estimates for the discovery potential of TOORAD com-

pared to other constraints on axion dark matter, and proposals for future experiments.
The present best estimate shows that TOORAD, using a material similar to Mn2Bi2Te5
could scan an O(1) range in the upper half of the QCD axion model band if the SPD
efficiency is very good, η ≈ 1. An extremely low loss material (Γ/ω ≤ 10−5) would be
needed to reach sensitivity to the KSVZ axion.

The primary difference between the two material candidates considered lies in the
estimated value of fΘ, with slightly higher values being favourable in the scan depth,
but having a slightly narrower total range. If the spin flop transition of the material
is lower than the maximum 10 T field assumed, then the scans would begin at lower
frequencies, and span a slightly smaller range of masses.
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6.2 Discussion
Comparison to other axion detection proposals: We have considered detecting
the dark matter axion via the axion-photon coupling, gaγ , combined with the mixing
between the photon and the AQ. It is interesting to note that if the dark matter axion also
possess a coupling to electrons, gae, then this can excite AFMR in the TMI via the “axion
wind” derivative interaction [196] (this interaction has been successfully constrained with
nuclear magnetic resonance [197] and ferromagnetic resonance [40, 198]). The AFMR
axion wind interaction opens the possibility that AQ materials could measure both
couplings, gaγ and gae, with the same material by tuning to different resonant modes.
This could be used to perform model discrimination between the KSVZ model, with
loop suppressed electron coupling, and the DFSZ model, with leading order electron
coupling. This would be an interesting line of future research.

Similarly to dielectric and plasma haloscopes, TOORAD aims to avoid the Comp-
ton wavelength limits imposed in traditional cylindrical cavities. Most experiments try
to avoid this limit through breaking translation invariance on roughly half Compton
wavelength scales. Examples include dielectric haloscopes [33] like MADMAX [199] and
LAMPOST [200], multicavity arrays [201, 202] such as RADES [35, 203] and hybrid ap-
proaches using dielectric loaded resonators [204, 205] such as Orpheus [206]. In contrast,
TOORAD aims to give the photon an effective mass (in the low spin wave momentum
limit). In this sense, the most similar analogue in axion experimental design is a plasma
haloscope [207], which directly gives the photon a mass in the form of a plasma frequency.

The THz regime represents a unique challenge for axion detection, as it represents
an intermediate regime between scales and technologies. Dielectric haloscopes have been
proposed at lower [199] and higher [200] frequencies. THz represents a middle ground
between the use of discrete, movable disks and and O(1000) layer deposited thin films
implying unique engineering challenges to cover the available parameter space.

Dish antennas [30] are the simplest structure to target THz, due to their broadband
nature, however they lack resonant enhancement that could allow a more targeted search
at higher signal to noise. Currently the only proposed dish antenna in this range is
BRASS [208].

A more recent idea in the meV range is to use the axion’s coupling to phonon
polaritons or magnons [209], however the resonance frequency in this proposal is not
easily tuned, which makes scanning axion masses difficult. To cover a range of axion
masses, different materials of high quality would need to be measured. Further, the
single quanta measurement of such particles remains challenging [209].

As the field of THz axion detection is still very young, and each approach has
different material or engineering challenges, it is important to have a wide range of ideas
in order have a chance to look in this well motivated, but very difficult, parameter space.

Materials Science: In terms of material research we have revealed there is a stark
contrast between conventional strong dynamical axion response in solids and dynamical
axion quasiparticle response suitable for DM detection discussed here.

• The axion quasiparticles for DM detection favour longitudinal spin waves with
linear coupling to photons. In contrast, the heterogeneous dynamical axion field
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present in the chiral magnetic effect or antiferromagnetic resonance of the stan-
dard transversal spin modes does not provide within minimal models for such a
coupling [72].

• While conventional large axion response can be achieved close to the magnetic
phase transition [72], a DM search favours lower temperatures, ensuring sharper
resonance linewidth free of thermal and scattering disorder.

• The static quantised axion insulators are protected by axion odd symmetries such
as spatial inversion (parity). Our dynamical axion quasiparticles favour PT sym-
metric systems: PT allows for Dirac quasiparticles enhancing the (dynamical)
nonquantized AQ response by allowing tunability close to the topological phase
transition.

Antiferromagnetism is favourable in many ways for axion DM detection. Reasons for
this include its compatibility with tunable axionic Dirac quasiparticles [68], availability
of semiconducting band-structure with potentially large band-gaps, high critical tem-
peratures, and large spin-flop fields. Furthermore, multi-sublattice systems can provide
for a combination of separated heavy atomic elements with strong spin-orbit interaction
and lighter magnetic elements.

Materials wishlist: We close with stating the desirable properties of an AQ
material for axion DM detection.

• Longitudinal spin wave mass, mΘ, in the meV range. The goal is to detect the
QCD axion in this mass range. With much smaller mΘ there are already existing
technologies, while for much larger values the QCD axion is already excluded.

• Decay constant, fΘ, in the 10 to 100 eV range.12 For fΘ much larger than 100 eV
the AQ is not strongly coupled enough to the Θ term for efficient mixing. Another
way to express this requirement is that the polariton gap for fields of order 1 T
should be of order mΘ.

• Low refractive index (n . 5) and high resistivity (ρ > 103 meV−1) in THz, prefer-
ably measured from the axion-polariton spectrum resonance.

• Low impurity density: impurity separation scale of microns or larger.

• High spin flop field. This should definitely exceed 1 T for sufficiently large power
output. Larger spin flop fields permit a wider scan range.

• High Néel temperature. The experiment can be operated in a dilution refrigerator
with T � 4 K. However, the further this is below the Néel temperature, the better,
since we expect magnon losses to decrease for T � TN .

• Ability to manufacture samples with thickness in excess of 1 mm. Ultimately one
must also machine multiple samples together into a large surface area disk.

12Recall that in the Dirac model f2
Θ = 2M2

0J where M0 is the bandgap and J is the spin wave stiffness.
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We have shown that, with plausible assumptions, Mn2Bi2Te5 and (Bi1−xFex)2Se3 both
satisfy many of these requirements, although we expect the AQ phase of Mn2Bi2Te5 to
be more stable, since it does not require magnetic doping. If it can be proven that any
material satisfies the above requirements, then, in combination with existing detector
and magnet technology, such a material can be used to make an effective search for axion
dark matter in the theoretically well-motivated mass range near 1 meV.
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Lentz, Chang Liu, Eduardo Neto, Naomi Nimubona, Alireza Qaiumzadeh, Andreas
Ringwald, and David Tong for useful discussions. DJEM, SH, and MA are supported
by the Alexander von Humboldt Foundation and the German Federal Ministry of Ed-
ucation and Research. JSE is supported through Germany’s ExcellenceStrategy - EXC
2121 “Quantum Universe” - 390833306. KCF was supported in part by Army Research
Office under Cooperative Agreement Number W911NF-17-1-0574. FC-D is supported
by STFC grant ST/P001246/1, Stephen Hawking Fellowship EP/T01668X/1. EH is
supported by STFC grant ST/T000988/1. AM is supported by the European Research
Council under Grant No. 742104 and by the Swedish Research Council (VR) under Dnr
2019-02337 “Detecting Axion Dark Matter In The Sky And In The Lab (AxionDM)”. AS
is supported by the Special Postdoctoral Researcher Program of RIKEN. LS acknowl-
edges the EU FET Open RIA Grant No. 766566, the Elasto-Q-Mat (DFG SFB TRR
288), Czech Science Foundation Grant No. 19-28375X, and Sino-German DFG project
DISTOMAT. This research was supported by the Munich Institute for Astro- and Par-
ticle Physics (MIAPP) which is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany´s Excellence Strategy – EXC-2094 –
390783311.

A Antiferromagnetic Resonance and Magnons for Particle Physicists

A.1 Effective Field Theory of AFMR

We follow Refs. [129, 210], and present the effective field theory of antiferromagnetic
resonance (EFT of AFMR), which we believe is illuminating, especially from a particle
physics perspective.

The EFT of AFMR considers the dynamics of the AF magnetization n considered
as a field in the continuum limit of the Heisenberg model of the magnetic lattice, which
is equivalent to the Hubbard model in the half-filling limit, as discussed in section 2.4.
The magnetic lattice consists of A sites and B sites, with spins SA and SB at each
site, and n = (SA − SB)/2. The symmetry group G = SO(3) is related to the internal
rotations of n (not spatial rotations). This symmetry is broken by the groundstate
AF order, 〈n〉 = (〈SA〉 − 〈SB〉)/2 (which can be normalised to unity) and is invariant
under the group H = SO(2) of rotations about the axis. Magnetic order implies that
the groundstate breaks time translation invariance, T , which flips the spin orientations.
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However, the groundstate preserves an effective time translation invariance T̃ = T S,
where S swaps the A lattice sites for the B lattice sites. This leads, as we shall see, to
a “relativistic” dispersion relation for AF spin waves. Spin-orbit effects (finite electron
mass corrections) lead to explicit breaking of SO(3), which can be considered as a
perturbation, and leads to a preferred “easy axis” related to a direction in the crystal
lattice.

The Lagrangian for fluctuations in n must be invariant under the coset space G/H,
which has the symmetry group of rotations on the surface of the two-sphere, S2, and
imposes the restriction n · n = 1. This restriction can be imposed as a constraint and
expanded for small perturbations in Cartesian coordinates for n, which is sufficient to
derive the normal modes and dispersion relation. More generally, the constraint can be
imposed by the correct choice of coordinates and metric, in this case the SO(3) invariant
metric on S2, and leads to the full non-linear model in polar coordinates. We begin with
the first case, since we can align the coordinates with the spacetime directions and arrive
at well known results quickly, while the second case is illuminating since it preserves the
symmetries manifestly, and leads to insights into the nature of the longitudinal mode.

A.1.1 AFMR in Cartesian Coordinates
The Lagrangian at leading order in derivatives is:

L = F 2
1

2 ṅ · ṅ− F 2
2

2 ∇n · ∇n , (A.1)

where F 2
1 is the spin wave stiffness, and F 2

2 = v2F 2
1 with v the spin wave speed. The

external fields are the applied field, H0, the probe photon with fields Eγ , Hγ and
wavevector kγ , and the anisotropy field, HA, which defines the easy-axis in the material.
In the simplest AFMR geometry we consider the applied field to be parallel to the z-
axis, which is also parallel to the anisotropy field. We further consider the probe photon
(RF-field) moving along the positive z-axis, polarised in the y-direction. The fields are
thus:

kγ = (0, 0, k) ,
Hγ = (Hγ , 0, 0) ,
Eγ = (0, Eγ , 0) ,
H0 = (0, 0, H0) ,
HA = (0, 0, HA) . (A.2)

For ordinary AFMR, the photon electric field is decoupled from the system.
The applied field H0 and the photon magnetic field are coupled into the Lagrangian

Eq. (A.1) by replacing the derivatives with SO(3) ∼= SU(2) covariant derivatives:

∂µna → Dµna = ∂µna + εabcfµbnc , (A.3)

where na are the directions in the SO(3) group space, µ = 0, 1, 2, 3 as subscript is the
spacetime index (which should not be confused with the Bohr magneton µB), εabc is the
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antisymmetric symbol in three dimensions with ε123 = 1 (i.e. the structure constants of
SU(2)), and fµb is the applied field. For an applied magnetic field we have µBHi = f0i
which allows us to relate the group space index a to the spacetime axis i = 1, 2, 3. At
lowest order in the applied fields, this result can be understood by appealing to the
interaction Lagrangian:

Lem = −µBs ·H , s = F 2
1 (ṅ× n) ,

⇒ Lem = µBF
2
1 εijkṅiHjnk , (A.4)

where the spin density s follows from the leading order term in the derivative expansion
of the Noether current due to the SO(3) invariance.

The anisotropy field is included in the Lagrangian via a perturbation of the form
∆L = Oana and for our field geometry is given by:

∆L = µBΣsHAn3 (A.5)

where Σs = S/Vu.c. is the “staggered magnetization”, (SA − SB)/2, in the unit cell.
In order to derive the dispersion relation (the propagator), we only require the

quadratic Lagrangian. Anticipating the well-known Keffer-Kittel result for the AFMR
polarisations [194] we use n1 and n2 as coordinates, and Taylor expand for small n3 using
the constraint, i.e. n3 = (1−n2

1−n2
2)1/2. Momentum conservation demands that k = kγ ,

and with the given geometry this simplifies the problem to effectively one-dimensional
along the z(3)-axis. After some basic algebra, the quadratic Lagrangian is found to be:

L = F 2
1

2
[
ṅ2

1 + ṅ2
2
]
− F 2

2
2
[
(∂zn1)2 + (∂zn2)2

]
(A.6)

−F 2
1 µBHγ [ṅ2 + µBH0n1] + F 2

1 µBH0[ṅ2n1 − ṅ1n2 + µBH0(n2
1 + n2

2)]− µBΣsHA

2 (n2
1 + n2

2) .

The first line is the kinetic term, and the second line includes the effects of the external
fields. The photon field has been considered a perturbation, and thus couples linearly
to the fields ni in the Lagrangian. The photon field thus acts as an oscillating source
term in the equations of motion. On the other hand H0 and HA couple to quadratic
combinations of ni, and affect the dispersion relation.

The equations of motion are:

n̈1 − 2µBH0ṅ2 +
(
v2k2 + µBΣsHA

F 2
1

− µ2
BH

2
0

)
n1 = µ2

BHγH0 , (A.7)

n̈2 − 2µBH0ṅ1 +
(
v2k2 + µBΣsHA

F 2
1

− µ2
BH

2
0

)
n2 = µBḢγ . (A.8)

To derive the dispersion relation, we consider the homogeneous equation with the right
hand side set equal to zero, and move to frequency space by Fourier transforming t→ ω.
The system is diagonalised by the complex fields n± = n1 ± in2 leading to the system:

ω2
± ∓ 2µBH0ω± −

(
v2k2 + µBΣsHA

F 2
1

− µ2
BH

2
0

)
= 0 , (A.9)
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Figure 24: AFMR spin wave, with |n|2 = 1, indicating the higher order change in n3
associated with the spin precession.

which is solved by

ω+ = µBH0 ±
√
v2k2 + µBΣsHA

F 2
1

,

ω− = −µBH0 ±
√
v2k2 + µBΣsHA

F 2
1

. (A.10)

The dispersion relation, Eq. (A.10) for the fields n± = n1±in2 displays all the well-
known properties of AFMR. The two modes n± = n1± in2 correspond to clockwise and
anticlockwise precession of the Néel vector [194]. The resulting spin wave is depicted
in Fig. 24. The constraint |n|2 = 1 leads to an oscillation of n3 accompanying the
precession. As shown in Appendix A.2, n3 in this case oscillates with a frequency twice
that of the AFMR. However, if |n|2 = 1, then n3 in not an independent polarisation and
its fluctuation does not change the length of the Néel vector.

In the absence of HA, the dispersion relation is linear in k. The application of HA

induces a “mass term”, i.e. a term inducing a gap and leading order quadratic piece in
the dispersion relation near k = 0:

m2
s = µBΣsHA

F 2
1

(A.11)

Rearranging, we find
m2
sF

2
1 = µBΣsHA , (A.12)

which has the form m2
sF

2
1 = (spontaneous) × (explicit) symmetry breaking, and is the

AF analogue of the Gell-Mann-Oakes-Renner relation [114] for pions [129] (and also the
QCD axion). Furthermore, since F 2

1 ∝ Σs this fits with the microscopic interpretation
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of F 2
1 as arising from the staggered magnetization angular momentum per unit cell

mentioned above.
The applied field H0, rather than leading to a mass term, instead induces a linear

shift in the frequency, the “Kittel shift”, which arises from an effective (anti-)damping
term and “negative mass squared” in the equations of motion for n±.

The exchange field, HE , is not incorporated directly in our treatment of EFT.
However, as noted in Ref. [129], we should fix the EFT parameters with reference to a
microscopic theory. The microscopic theory (e.g. Ref. [211]) gives the spin wave mass
from the energy gap:

m2
s = µ2

BHA(2HE +HA) , (A.13)
where HE is the exchange (or Weiss) field. The second term of Eq. (A.13) is not present
in the EFT, which is linear in HA. Indeed, EFT is valid in the limit HA/HE � 1, and
breaks down for large anisotropy fields [129]. Comparing Eq. (A.12) with the first term
of Eq. (A.13) we identify HE = Σs/2µBF 2

1 leading to:

F 2
1 = Σs

µBHE
= S

µBHEVu.c.
. (A.14)

The EFT of AFMR is based on the mean field Heisenberg model. The Heisenberg
model is the strong coupling limit of the Hubbard model (the fundamental model on
which our theory of the AQ is based), with different perturbative degrees of freedom. In
the Heisenberg model with nearest neighbour interactions the Hamiltonian is:

H = JH
∑
<ij>

σi · σj −D
∑
i

(σzi )2 (A.15)

where the first sum is over the spins σi and σj on adjacent lattice sites. The anisotropy
field is given by HA = 2SD

gµB
. The anisotropy field arises due to the spin orbit cou-

pling which explicitly breaks the SO(3) symmetry of the Heisenberg model due to finite
electron mass corrections. The Heisenberg EFT is valid for weak spin orbit coupling
HA � HE .

A.1.2 AFMR in Polar Coordinates
In the following we explicitly follow the treatment of Ref. [210], and use the field geom-
etry:

kγ = (k, 0, 0) ,
Hγ = (0, 0, Hγ) ,
Eγ = (0, Eγ , 0) ,
H0 = (H0, 0, 0) ,
HA = (HA, 0, 0) . (A.16)

In terms of polar coordinates, we have

n1 = sin θ cosφ , n2 = sin θ sinφ , n3 = cos θ , (A.17)
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AF order breaks the SO(3) internal symmetry of the spins down to the coset space
SO(3)/SO(2) which has the geometry of S2. The dynamics of the Goldstone modes
can be expressed using the polar coordinates. The easy axis has coordinates θ0, φ0, and
we normalise the order parameter to unity. The Goldstone mode Lagrangian at lowest
order in derivatives is:

L = F 2
1

2 γabϑ̇
aϑ̇b − F 2

2
2 γab∇ϑa · ∇ϑb , (A.18)

where a, b = θ, φ and the metric γab is the round metric on the sphere, γab = diag[1, sin2 θ].
The dynamics is easiest to express choosing n1 to be the easy axis, θ0 = π/2, φ0 = 0.
We then find trivially that, at leading order in fluctuations:

n1 = 1− δθ2

2 −
δφ2

2 , n2 = δφ , n3 = −δθ . (A.19)

The longitudinal fluctuation, i.e. the change in n projected along the direction of travel
of the spin wave, n1 in this case, is quadratic in the Goldstone modes, while the transverse
fluctuations are linear. Note, however, that in these coordinates we always have explicitly
two polarizations and no change in the length of the Néel vector. The anisotropy field
perturbs the Lagrangian as above, ∆LA = µBΣsHAn1, and induces a mass term for δθ
and δφ. The interaction with applied fields follows exactly as in the Cartesian case using
the relations in Eq. (A.17).

A.1.3 Longitudinal Spin Waves in the Heisenberg Model
The AQ is related to longitudinal fluctuations of the Néel vector (i.e. those in the
direction of the anisotropy field), but this is not equivalent to a third longitudinal po-
larisation that changes the length of the vector. Such a “true” longitudinal mode is the
mode that breaks SO(3) giving rise to AF order, i.e. the Higgs-like radial mode (see also
refs. [212, 213]). When writing down the model, we need to be careful that it respects all
the symmetries. The field ~φ = (〈SA〉 − 〈SB〉)/2 is the total (staggered) magnetization,
the Néel vector, and we can write it as:

~φ = ρ(x)(n1(x), n2(x), n3(x)) = ρ(x)n . (A.20)

The field ρ is the longitudinal polarization, while n is the AFMR field introduced above
with |n|2 = 1. There is a maximum magentization given by the spin density, and a
minimum value pointing in the opposite direction. In our conventions, φ is dimensionless
and normalized to a maximum of unity, thus |φ|2 ≤ 1 [101].

The constraint |φ|2 ≤ 1 can be enforced naturally by considering the EFT given by
the SO(3) invariant metric on S3 with unit radius. We use the field coordinates:

~ϕ = (α, θ, φ) , (A.21)

where θ, φ are the AFMR variables in polar coordinates introduced above, and α is a
third polar angle. The metric is

ds2 = gABdϕ
AdϕB = dα2 + sin2 αdΩ2 , (A.22)
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where A,B = α, θ, φ, and dΩ2 = γabdϑ
adϑb is the round metric on S2, and ~ϑ = (θ, φ) as

above. We see that the polar angle α gives the radius of the S2 submanifold of S3, as
desired and with the correct normalisation, ρ = sinα. We can interpret α as the angle
between the spins in a “bending mode”.

The Lagrangian in the absence of external fields is:

L = F 2
1

2 gABϕ̇
Aϕ̇B − F 2

2
2 gAB∇ϕA∇ϕB . (A.23)

Specifying the anisotropy field allows us to identify the polar axis as n1 as above. The
anisotropy field introduces explicit symmetry breaking and a potential for α, V (α) ∝
−n1 ∝ − sinα, which is minimized at α = π/2. To consider the fluctuations, we write
α = π/2− σ and σ is the angular field giving rise to the fluctuation in ρ, i.e. the third
magnon polarization. It has quadratic Lagrangian:

L = F 2
1

2 σ̇2 − F 2
2

2 ∇σ
2 − µBΣsHA

σ2

2 , . (A.24)

The field σ couples to the other AFMR fields via the metric gAB:

L = cos2 σ

[
F 2

1
2 γabϑ̇

aϑ̇b − F 2
2

2 gab∇ϑa∇ϑb
]
. (A.25)

Expanding cos2 σ = 1 − σ2 for the quadratic Lagrangian we see that at leading order
we obtain the angular AFMR theory from above, and σ is decoupled. Similarly, σ is
decoupled from the external fields in the quadratic Lagrangian, since the spin density,
s = F 2

1 φ̇× φ, only contains σ at cubic order. Thus, in this S3 EFT of of the Heisenberg
model, the σ degree of freedom corresponding to changes in the length of the Néel vector
is stabilised by the anisotropy field, and is neither excited by external fields nor mixes
with the transverse AFMR polarisations. Could this mode be the AQ? We take the
general expression for δΘ in eq. (2.26) and expand nA in the angular fields. Once again,
δΘ is quadratic in all the variables of this model, including σ. We have not been able
to obtain a quadratic kinetic term for δΘ from an SO(3) invariant EFT including only
the Néel order parameter.

The preceding discussion suggests a possible solution to the problem of the EFT of
the AQ. We notice that S3 is in fact the spin group Sp(1) = Spin(3) = SU(2). Further-
more SU(2) ∼= SO(3)/Z2, and for the AQ we are concerned with models that break the
discrete symmetries P and T . This suggests using a complex field φ in the fundamental
2-dimensional representation of a chiral SU(2) to represent the AF order parameter,
which now has four real degrees of freedom. Thus, after SSB this would give three
goldstone modes: two “charged” goldstones, giving the transverse magnons, and one
“neutral” goldstone, which we assume will be the longitudinal magnon. Each goldstone
corresponds to a U(1) subgroup of SU(2). The neutral goldstone is a pseudoscalar, and
thus this U(1) group is itself chiral, i.e. a Peccei-Quinn symmetry. The Dirac fermions
in the band structure should be charged under this symmetry, such that they acquire
chiral rotations (“m5” mass) governed by the longitudinal mode. Just like the axion
and the neutral pion, this new goldstone mode can now couple to E ·B via the chiral
anomaly. We have not, unfortunately, been able to work out this theory completely.
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A.2 The Landau-Lifshitz Equations

In this appendix, following Refs. [214, 215], we describe an antiferromagnetic resonance
(AFMR) state using the Landau-Lifshitz equation. We consider the action of the Néel
field described by the non-linear sigma model [101],

SAF = g2J
∫
dtd3r

[
(∂µn) · (∂µn)−∆2

0n2
]
. (A.26)

In order to implement a little more realistic condition in Eq. (A.26), we take into account
a small net magnetization m satisfying the constraint n ·m = 0 with |n| = 1 and
|m| � 1. Furthermore, we assume the case of AF insulators with easy-axis anisotropy.
Then a modification of Eq. (A.26) gives the free energy of such AF insulators as [216, 217]

FAF =
∫
d3r

a
2m2 + A

2
∑

i=x,y,z
(∂in)2 − K

2 n
2
z −H ·m

 , (A.27)

where a and A are the homogeneous and inhomogeneous exchange constants, respec-
tively, and K is the easy-axis anisotropy along the z direction. The fourth term is the
Zeeman coupling with H = gµBB being an external magnetic field.

In the case in which a dc magnetic field H0 and an ac magnetic field (i.e., RF field)
h(t) are applied to the AF insulator, the total magnetic field in Eq. (A.27) is

H = H0 + h(t), (A.28)

where H0 = gµBBez with B being much weaker than both the AF exchange coupling
and easy-axial anisotropy and h(t) = hRFe

−iω0t. Here, ez is the unit vector parallel to
the easy axis of the AF order. Now we study the dynamics of m and n phenomenolog-
ically, i.e., based on the Landau-Lifshitz-Gilbert (LLG) equation [214, 215, 217]. From
the free energy of the system FAF, the effective fields for n and m are given by

fn = −δFAF
δn

= An× (∇2n× n) +Knzez − (n ·H)m,

fm = −δFAF
δm

= −am + n× (H × n), (A.29)

The LLG equation is given by

ṅ = (γfm −G1ṁ)× n,

ṁ = (γfn −G2ṅ)× n + (γfm −G1ṁ)×m, (A.30)

where γ = 1/~ and G1 and G2 are dimensionless Gilbert damping constants. For the
purpose of deriving the AFMR state, we may neglect the Gilbert damping constants.
Then, the LLG Eq. (A.30) is simplified as

ṅ = γ(−am + H)× n, (A.31a)
ṁ = γKnzez × n + γH ×m, (A.31b)
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where we have assumed that n is spatially uniform, and we have used |n|2 = 1 and an
identity for matrices A× (B ×C) = (A ·C)B − (A ·B)C. After some straightforward
matrix algebra, we arrive at the following equation for the Néel field:

n× n̈ + ωKωanzez × n− γ2(n ·H)H × n + 2γ(n ·H)ṅ + γ(n · Ḣ)n = γḢ. (A.32)

To obtain the AFMR state, where all the spins are fluctuating uniformly, we assume
the dynamics of the Néel vector and the total magnetization around the easy axis as

n(t) = ez + δn(t) and m(t) = δm(t), (A.33)

denoting that δn(t) and δm(t) are the small fluctuation components with |δn|, |δm| � 1.
Substituting this form into Eq. (A.32), and then linearizing and Fourier transforming
δn(t) =

∫
δñ(ω)e−iωtdω/(2π), Eq. (A.32) reduces to [214, 215]

2iωHωδñ/ωa +
[(
ω2 + ω2

H

)
/ωa − ωK

]
ez × δñ = Dδ(ω0 − ω), (A.34)

where ωH = γgµBB, ωa = γa, ωK = γK, and ω0 is the frequency of the RF field
[h(t) = hRFe

−iω0t]. In Eq. (A.34), D = −iγω0(hxRFex + hyRFey) is understood as the
“driving force” vector causing the AFMR. Equation (A.34) is rewritten in the matrix
form[

2iωωH −
(
ω2 − ωaωK + ω2

H

)
ω2 − ωaωK + ω2

H 2iωωH

] [
δñx(ω)
δñy(ω)

]
= ωaδ(ω0 − ω)

[
Dx
Dy

]
. (A.35)

Multiplying the inverse matrix from the left hand side, we obtain[
δñx(ω)
δñy(ω)

]
=
[
χ1(ω) χ2(ω)
−χ2(ω) χ1(ω)

] [
Dx
Dy

]
, (A.36)

where the susceptibility is defined as[
χ1(ω) χ2(ω)
−χ2(ω) χ1(ω)

]
= ωaδ(ω0 − ω)

(ω2 − ω2
+)(ω2 − ω2

−)

[
2iωωH ω2 − ωaωK + ω2

H

−
(
ω2 − ωaωK + ω2

H

)
2iωωH

]
.

(A.37)

Here,

ω± = ωH ±
√
ωaωK (A.38)

are the resonance frequencies. Note that these frequencies do not depend on the param-
eters of the driving force D.

Along with Eq. (A.34), the following equation is obtained from 2γ(n ·H)ṅ + γ(n ·
Ḣ)n in Eq. (A.32), which describes the “longitudinal” AFMR state:

2ωHδṅzez = iγω0e
−iω0t(hxRFδnx + hyRFδny)ez. (A.39)
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Fourier transforming this equation and substituting the solution for δnx and δny [Eq. (A.36)]
into it, we have

δñz(ω) ∝ hxRFδñx(ω − ω0) + hyRFδñy(ω − ω0) ∝ δ(2ω0 − ω)
[(ω − ω0)2 − ω2

+][(ω − ω0)2 − ω2
−] ,

(A.40)

which indicates that the resonance frequencies of the longitudinal AFMR are ω = 2ω0 =
2ω±. Eq. (A.40) reveals that the longitudinal mode is quadratic in the RF field, i.e., a
second-order response to the RF field, while the transverse mode [Eq. (A.36)] is a linear
response to the RF field.

B Axion Dark Matter and the Millielectronvolt Range

Since their initial proposal as a solution for the Strong CP problem more than 40 years
ago [1–3, 218], (QCD) axions have seen phases of growing interest due to a number
of breakthroughs. The first was the realisation that axions are excellent dark matter
candidates [7–9, 219], and that there are several ways to search for them experimen-
tally [32, 220–222]. Recently, there has been a huge growth of new ideas for axion
searches (see Ref. [18] for a review), which includes the present proposal (“Paper I”)
using topological insulators [41].

The QCD axion was originally proposed as the pseudo-Goldstone boson of a spon-
taneously broken global U(1) symmetry, which couples to chiral fermions charged under
the strong nuclear force, SU(3)c gauge symmetry (i.e. quarks). Such a global symmetry
is known as a Peccei-Quinn (PQ) symmetry, U(1)PQ. More generally, QCD axions can be
regarded as pseudo-Goldstone bosons coupled to the QCD anomaly term, schematically
GG̃, where G is the gluon field strength tensor, and G̃ its dual.

The PQ symmetry breaking scale, vPQ, is not predicted by the theory, although it
is expected to be below the reduced Planck scale, MPl = 2.4× 1018 GeV [223]. The
symmetry breaking scale sets the axion mass, which arises due to the axion’s cou-
pling to the QCD topological charge via SU(3)c instantons, and which reaches its zero-
temperature value at temperatures lower than the QCD crossover temperature of around
157 MeV [224, 225]. The axion mass at such temperatures is given by [226]

ma =
√
χ0
fa

= 5.69(5) meV
(

109 GeV
fa

)
, (B.1)

where χ0 is the zero-temperature QCD topological susceptibility, fa = vPQ/N , and
N is the SU(3)c anomaly of U(1)PQ. The value of χ0 can be calculated from chiral
perturbation theory [2, 226, 227] while, at higher temperatures, it can be calculated using
lattice quantum field theory (see e.g. Ref. [228]), or using instanton methods [229, 230].

The QCD axion couples to the EM Chern-Simons term via two means. Firstly,
by its model-independent mixing with pions, and secondly via the (model-dependent)
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electromagnetic anomaly (E) of fermions charged under U(1)PQ. The coupling is [e.g.
227]

∆L = gaγ aE ·B , (B.2)

where a ≡ fa θ is the canonically normalised axion field and gaγ is the axion-photon
coupling, which is given by

gaγ = α

2πfa
Caγ = α

πfa

[ E
N
− 1.92(4)

]
, (B.3)

where N is the SU(3)c anomaly of the PQ symmetry, and is equal to unity in the
KSVZ model, while for the DFSZ model N = 6. The value of E/N depends on the PQ
charges and gauge group representations of fermions. We define the QCD model band
according to the “preferred” models of ref. [29], which corresponds to 5/3 < E/N <
44/3. Experiments constrain |gaγ |, and so this band and encompasses the original KSVZ
(E/N = 0) and DFSZ (E/N = 8/3) models. For a generic “axion-like particle”, the
coupling gaγ is taken as a free parameter independent of ma.

The QCD axion mass is bounded from above and below by astrophysical con-
straints. The existence of BHs with with masses of order ten solar masses with high
spins, stable over astrophysical timescales, would be impossible if the QCD axion ex-
isted and ma . 10−12 eV [14, 15, 231]. In such a case, the axion Compton wavelength
is resonant with the size of the BH ergoregion, causing axions to be abundantly created
from vacuum fluctuations, and rapidly draining the spin of the BH. On the other end of
the mass scale, the QCD axion with ma & 0.02 eV is excluded by observations of neutri-
nos coinciding with the galactic supernova SN1987A [11, 12]. The QCD axion couples to
nuclei in the supernova, and axions are emitted by nuclear bremsstrahlung, cooling the
supernova more rapidly and shortening the neutrino burst if the axion-nucleon coupling
(proportional to ma) is too large. Since there is no statistically rigorous bound associ-
ated with SN1987A, we also mention that a looser upper limit on ma can be derived
from constraints on the relativistic energy density in the early Universe (parameterised
as a hot DM component). Hot QCD axions are produced by their interaction with
pions. The amount of hot axions produced is in conflict with the cosmic microwave
background anisotropies as measured by the Planck satellite [10, 192] if ma & 0.3 eV
(see e.g. refs. [19, 191]).

In the mass range of interest for TOORAD, the axion-photon coupling is mostly
constrained by axion helioscopes [179] and cooling of Horizontal Branch (HB) stars
through the ratio of HB and Red Giant Branch stars [232, 233], which both lead to
limits of the order gaγ . 10−10 GeV−1. This is far above the coupling for typical QCD
axion models.

Assuming that the QCD axion indeed composes the observed DM with cosmic
density parameter Ωdh

2 = 0.12 [192], it is possible to analyse the value of ma further
(for a review, see Ref. [16]). If the maximum temperature of the Universe exceeds the
PQ phase transition temperature, TPQ ∼ vPQ, or if the Hubble scale during inflation
HI > 2πvPQ, then the PQ symmetry is unbroken at the end of inflation. When it
subsequently breaks, the Kibble mechanism leads to a network of topological strings
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that persists as the Universe expands and, when the axion mass becomes cosmologically
relevant ma ∼ H (where H is the Hubble parameter) domain walls form [234–236]. Such
defects emit DM axions, and eventually decay when H � ma. In this case, if N = 1
(which imnolies the domain wall network is unstable, then the DM abundance is in
principle calculable and depends only on ma. However the dynamics of the strings and
domain walls are complex and the axion abundance can only accurately be determined
by numerical simulations. This computation cannot be performed at the physical scale
separation (between the string thickness and the Hubble length, which in turn sets the
string tension), and so the results must be extrapolated. In the case N > 1, the DM
abundance depends on an additonal biasing parameter required such that the domain
wall network decays [237].

When N = 1, recent simulations [193] have placed a lower bound on the QCD ax-
ion mass ma & 0.5 meV by considering axions emitted by the string network prior to
the axion mass becoming relevant, a well controlled extrapolation to the physical scale
separation, and a computation of non-linear effects after the network decays.13 This
work also estimates the bound ma & 3.5 meV when N > 1, in agreement with the gen-
eral expectation that the axion mass should be larger in this scenario [237, 240, 241].
One issue for axion direct detection in the post inflation scenario is the existence of ax-
ion “miniclusters” [242–244]. Recent simulations of structure formation in this scenario
suggest that a large fraction of the DM (50% or more at the solar radius in the Milky
Way) is bound in dense, low mass objects [245–248]. These objects have a low collision
cross section with the Earth, and reduce the effective value of the local DM density for
a direct detection experiment.

In the alternative scenario for axion production, the PQ symmetry is broken in the
very early Universe during the hypothetical period of inflation [249–251], and axions are
subsequently produced when the initial vacuum state of the axion decays, in a process
called “realignment”. This scenario has more free parameters than just ma, and it is
not possible to predict the axion mass based on the observed DM abundance. This
scenario is incompatible with a large energy scale of inflation, and would be ruled out
if primordial gravitational waves were observed [252]. If the initial vacuum value of θ
is assumed to be of order 1 the axion mass in the pre-inflationary scenario is bounded
to ma & 0.7 µeV [253]. However, anthropic pressure due to the need for DM to form
galaxies can allow for much lower or higher values of the mass in this scenario [254, 255].
Limits on the mass in this case are only imposed with additional assumptions on the
energy scale of inflation, which limit the allowed level of tuning on the free parameter.

C Comparison to earlier results

The forecasts shown in fig. 23 differ in many respects from those in Paper I, and we
explain briefly why, see fig. 25, which shows the same projection alongside those of
Paper I. For the detector, Paper I assumed a coupling factor equivalent to efficiency
η = 0.01, and the same dark count rate as in the present work. The difference in the

13Other extrapolations to the physical scale separation lead to lower bounds on the mass [238, 239].
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Figure 25: Comparison between the forecasts made in Paper I (gray) and those in the
present work (coloured lines).

scan depth arises because the power output in Paper I was computed in analogy to a
resonant cavity, and this formula is incorrect for a medium with a polariton resonance.
Allowing for a few translations, however, the results can be compared. All in all, however,
we stress that the power formula in Paper I was far too simplistic, and so should not be
used.

Our present corrected calculations have shown that the power does not scale with
the material volume as assumed in Paper I: rather it depends separately on the surface
area and the material thickness. Losses lead to a maximum useful thickness, an effect
which was not accounted for in Paper I. For the models presently considered, this leads
to a total useful material volume around 40 cm 3. Thus for comparison, we show the
Paper I estimates for “Stage I”, which used a total volume of material 1 cm3, and ‘Stage
II”, which used a total volume of material 100 cm3, equivalent to d ≈ 1 mm in the present
case. The “Stage III” volume considered in Paper I is inaccessible due to the finite skin
depth induced by realistic O(µeV) losses.

Paper I included losses only by a rough estimate for the bulk quality factor, which
was taken as Q = 105, roughly Γ = 10−5 meV (this assumed power law decreases in Γm
at low T as discussed in the present work, but neglected the impurity and conductance
contributions). On the other hand, Paper I assumed that the power was reduced by a
polariton mode mixing factor, f+, which is absent in the present treatment (mode mixing
mostly affects the width of the resonance). Together, these amount to an assumed β2 ≈
104 for some baseline parameters. Comparing to fig. 19, using the correct computations
from the present paper, such a large β could only be achieved with losses Γ = 10−5 meV.
These many considerations explain the different depth of the constraints in terms of gaγ
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in the present work compared to Paper I.
The difference in the scanned mass range in the present work compared to Paper I

is more useful and necessary to explain. It arises from the adopted values of mΘ and
fΘ. In the present work we take our preferred material as Mn2Bi2Te5, while Paper I
uses (Bi1−xFex)2Se3. Even so, there are differences to the (Bi1−xFex)2Se3 parameter
estimates in Paper I compared to the present work. In Paper I we erroneously assumed
that mΘ was equal to the AFMR frequency of the transverse magnon polarisations (with
a reduction due to the doping required in (Bi1−xFex)2Se3 ) leading to mΘ = 0.6 meV,
and thus a lower minimum value of ma in the Paper I treatment. Paper I also incorrectly
included the Kittel shift to mΘ. As discussed, the longitudinal magnon is not simply
related to the transverse modes and Paper I should have used the value of mΘ computed
by Ref. [42], as we do in the present work. However, as we have noted, Ref. [42] used
a square lattice approximation to compute mΘ. We do not know the error induced by
this assumption on the lower limit of the scannable mass range also in the present work.

Furthermore, Paper I assumed fΘ for (Bi1−xFex)2Se3 directly from Ref. [42]. In the
present work we corrected this value using more up to date estimates of the bulk band
gap of (Bi1−xFex)2Se3 including the effects of magnetic doping, leading to the “Material
1” parameter estimates with lower fΘ. The lower value of fΘ in the present work allows
for a wider range of masses to be scanned for the same range of B-field strengths.
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