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The peak-patch algorithm is used to identify the densest minicluster seeds in the initial axion density
field simulated from string decay. The fate of these dense seeds is found by tracking the subsequent
gravitational collapse in cosmological N-body simulations. We find that miniclusters at late times are well
described by Navarro-Frenk-White profiles, although for around 80% of simulated miniclusters a single
power-law density profile of r−2.9 is an equally good fit due to the unresolved scale radius. Under the
assumption that all miniclusters with an unresolved scale radius are described by a power-law plus axion
star density profile, we identify a significant number of miniclusters that might be dense enough to give rise
to gravitational microlensing if the axion mass is 0.2 meV ≲ma ≲ 3 meV. Higher resolution simulations
resolving the inner structure and axion star formation are necessary to explore this possibility further.
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I. INTRODUCTION

The axion is a theoretical elementary particle that can
resolve the charge-parity (CP) problem [1] of quantum
chromodynamics (QCD) [2–4], and provide a candidate to
explain the observed [5] cosmological dark matter (DM)
[6–8]. Axion DM is of increasing interest both theoretically
and experimentally [9,10], with a number of constraints on
its allowed properties [11–13].
The axion arises as the pseudo-Goldstone boson of a

spontaneously broken globalUð1Þ symmetry, known as the
Peccei-Quinn (PQ) symmetry. This symmetry is broken
when the temperature of the universe falls below the

vacuum expectation value, vPQ, of the PQ field, Φ ¼
Reiθ [14], with vPQ ∝ fa, fa the “axion decay constant,”
and θ the axion field. Once the symmetry is broken, the
axion field takes on a random “misalignment angle,” θiðxÞ,
between zero and 2π. The precise distribution of axion DM
today depends on when in cosmological history the PQ
symmetry is broken. There are two distinct scenarios.
In the present work, we focus on the case where PQ

symmetry breaking occurs during the radiation dominated
epoch (as opposed to the alternative, where it is broken
during inflation). In this case, the present-day observable
Universe is composed of many causally disconnected
patches at the time of symmetry breaking. The random
distribution of θiðxÞ leads to the formation of cosmic
string topological defects1 due to the mapping between
the vacuum Uð1Þ manifold, and space R3 [18]. When the
axion mass becomes significant,maðTÞ≳HðTÞ withH the
Hubble expansion rate, the Uð1Þ symmetry becomes
strongly broken, and the strings decay as θðxÞ relaxes to
zero and oscillates everywhere.
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1For simplicity, we consider only axion models with domain
wall number equal to unity, such as the Kim-Shifman-Vainshtein-
Zakharov model [15,16] and variations thereof [17].
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The production of axions from strings [19] must be
studied numerically, and the most recent simulations
still lead to significant disagreements (caused by the
numerical method, dynamic range, and extrapolations
required) on the final abundance of axions and resulting
axion mass required to explain the DM abundance [20–27].
Nonetheless, a prediction of this scenario is that string
decay leaves large overdensities, δ, in the axion field on the
scale of the cosmological horizon size at string decay. The
subsequent gravitational collapse of these overdensities
leads to the formation of a class of DM substructure called
“axion miniclusters” [28].
The overdensities are of isocurvature type [29], with a

white noise spectrum on large scales and small-scale cutoff
[30,31]. They have a strongly non-Gaussian distribution,
extending to large tails with δ ≫ 1 [23,32–34]. Large
overdensities allow axion miniclusters to collapse under
gravity in the radiation dominated epoch of cosmic history
[29], before hierarchical structure formation begins. Later,
in the matter-dominated epoch, the miniclusters merge and
form larger DM halos [30,34–36].
It is the purpose of the present work to determine the

properties (mass, density profile, characteristic density etc.)
of miniclusters and how they are related to the properties of
the initial density field. We take initial density fields
simulated using classical field theory [33] analyzed using
the semianalytic peak-patch algorithm [34,37–40], and
compare to N-body simulations [36]. We apply our results
to gravitational microlensing, but they can also be used to
determine the minicluster distribution for direct and indirect
detection [41–45].
The density profile and mass of a minicluster is key to

determining whether or not it is capable of producing an
observable gravitational microlensing signature. After
accounting for wave optics effects, only lenses with M ≳
10−11 M⊙ give rise to significant lensing magnification in
the Subaru Hypersuprime Cam (HSC) microlensing survey
[46]. For an extended lens such as a minicluster, with
density profile ρðrÞ, shallow central densities prevent the
formation of lensing caustics, and cutoff the magnification.
Multiple different minicluster density profiles have been
observed in simulation and proposed in theory. We dem-
onstrate in Fig. 1 possible minicluster density profiles for
two axion masses, indicating the important features to
allow for microlensing. The density profiles are shown at
z ¼ 99, the latest redshift available in simulation. The
characteristic density is not expected to evolve at late times,
though tidal stripping should be considered [41]. We
compare Navarro-Frenk-White (NFW) density profiles
[47–49] to single power law (PL) profiles ρðrÞ ∝ r−2.9

(see Sec. III B). PL profiles give rise to lensing amplifi-
cation A > 1.34 (observationally dictated threshold) when
they pass within a distance r < rPLlen along the line of sight
(which we compute for lenses half way between Earth
and M31).

The key to microlensing is whether the outer steep
power-law profile extends all the way to the central axion
star (as observed in all simulations resolving axion star
formation, e.g. [50–52]), or whether the steep profile turns
over with an inner scale radius before axion star formation
(as observed in large scale N-body simulations that do not
resolve axion star formation [36]). As we will show in the
rest of this paper, there is a range of minicluster mass and
axion mass where presently available simulations leave
room for the possibility (within resolution limitations) of
microlensing by miniclusters in the Subaru range. We
discuss the necessary requirements of simulations that
could settle this question.
This paper is organized as follows. In Sec. II we describe

our methods and previous results on the structure of
minicluster halos, the mass function, and a comparison
between N-body and semianalytic methods. In Sec. III we
present new results that use the peak-patch method to tag
and track dense “minicluster seeds” in N-body simulations,
and characterize their properties. Section IV describes the
conditions for a minicluster to be a microlens candidate
and tests a population of tagged minicluster seeds against
them. We conclude in Sec. V. The Appendices give details
of our numerical methods, theory of minicluster formation,

FIG. 1. Possible minicluster density profiles. NFW profiles
(dashed) are never dense enough to lens due to the large scale
radius for the measured concentration relation (see Fig. 4). For
power-law (PL) profiles there is a critical lensing radius, rPLlen,
which gives the minimum impact parameter of a minicluster
along the line of sight in order to create above-threshold lensing
amplification. This critical radius should be larger than the
estimated axion star radius (indicated by the gray region). For
ma ¼ 50 μeV (upper panel) the estimated axion star radius is too
large, while for ma ¼ 1 meV, the estimated axion star radius can
be significantly smaller. N-body simulations are rescaled to
higher axion masses, and axion star radii are estimated from
the measured velocity dispersion (see text for details).
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detailed results on the minicluster seed density profiles,
assumed properties of axion stars, equations for micro-
lensing, and the scaling relations used to translate our
results to different axion masses. Throughout, we assume a
ΛCDM standard cosmology with dark matter composed of
the QCD axion alone. The Friedmann-Robertson-Walker
scale factor is a, redshift is z, and we use units ℏ ¼ c ¼ 1
for particle physics quantities. We consider two axion
masses, ma ¼ 50 μeV (simulated directly, approximately
the minimum mass allowed in the relevant cosmology) and
ma ¼ 1 meV (rescaled, where we find the most candidate
microlenses).

II. MINICLUSTER HALOS

In Ref. [34], we studied the formation of miniclusters
from the initial fields of Ref. [33] using the peak-patch (PP)
algorithm. In Ref. [36] we studied the formation of
miniclusters from the same density field using N-body
simulations. Here we compare the two studies in more
detail and consider the properties of DM halos formed from
hierarchical structure formation of miniclusters.
The PP algorithm is an extended Press-Schechter (PS)

model which solves the excursion set in real space [37–40].
This semianalytical method works on the linearly evolved
initial density field. The density field is smoothed on a
hierarchy of scales, a cell is then considered to be collapsed
if its overdensity is above some redshift dependent thresh-
old when smoothed on any of these scales. The masses of
halos are predicted by performing a radial integration
centered on local peaks in this overdensity until the total
average overdensity is equal to the threshold. The final
positions of each halo are calculated using first-order

Lagrangian displacements (see Appendix A 2 for more
details).
We modified PP in Ref. [34] to work on the minicluster

initial density field and account for the effects of a radiation
dominated background. A comparison between this modi-
fied PP and an N-body simulation is presented in Fig. 2.
The left and right panels show projection plots of the
N-body particle density in Lagrangian and Eulerian coor-
dinates (i.e. coordinates on the initial density field, and
the real-space final coordinates [53,54]), respectively, for
the 400 largest halos found in our simulations using the
SUBFIND halo finder [55,56]. The Eulerian locations of
these halos as found by SUBFIND are shown in blue in the
right panel. The most likely equivalent halos in the PP data
are shown in red in both sets of coordinates. We see that the
PP estimates are in close agreement with N-body, particu-
larly in Lagrangian coordinates. This makes sense since PP
works on the initial density field. In Eulerian space, the
sizes and masses of the halos are well estimated by PP,
while the locations are systematically offset. This can be
understood since we use only first-order Lagrangian
displacements to move from Lagrangian space to the
predicted Eulerian coordinates. These results confirm the
accuracy of our modifications to PP described in Ref. [34]
for producing accurate halo catalogues in minicluster
cosmologies with isocurvature initial conditions, large
non-Gaussianities, and collapse during the radiation epoch
(a similar comparison for standard ΛCDM cosmologies
was shown in Ref. [40]).
In Ref. [34], we used PP to calculate the minicluster halo

mass functions (HMFs) at a range of redshifts. These were
found to be in good agreement with N-body simulations
performed on the same initial density field in Ref. [36].

FIG. 2. Peak-patch comparison with N-body. Projection plot of the N-body particles (black) contained within the 400 largest halos
located using the SUBFIND halo finder at a redshift z ¼ 3976.5. Red circles indicate the most likely equivalent from the peak-patch data.
The left panel shows Lagrangian coordinates, i.e. particles traced back to the initial density field, without displacement. The right panel
shows the real-space (Eulerian) coordinates of the particles, which in peak-patch are found using first order Lagrangian displacements.
In the right panel blue circles indicate the size and extent of the halos as found using SUBFIND.
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As discussed in Ref. [34], PP and N-body HMFs disagree
for z≲ 600 due to box-scale nonlinearities. This affects the
exact minicluster number statistics at very small and very
large halo mass. Nonetheless, the inner structure of
individual halos is unaffected and we can study the density
profiles of (sub)halos with masses down to ∼10−13 M⊙ at
low redshifts.2 Figure 3 shows the N-body HMF at z ¼ 99
for the simulatedma ¼ 50 μeV, and also the rescaled HMF
to ma ¼ 1 meV.
In Ref. [34] we also used PP to study minicluster

concentrations. Our N-body simulations in Ref. [36] have
shown that minicluster halos have NFW profiles given by

ρðrÞ ¼ ρ0
r=rsð1þ r=rsÞ2

; ð1Þ

where ρ0 and rs are the scale density and radius, respec-
tively. The concentration is defined as the ratio of the virial
and scale radius [49]

c ¼ Rvir

rs
: ð2Þ

The NFW model sets the halo’s scale density proportional
to the density of the Universe when the halo collapsed [49].
The NFW model defines the collapse redshift, sometimes
also called the formation redshift, to be the redshift at which
for some halo half of its final mass Mfinal is contained
within progenitors of a mass larger than fMfinal where f is
some fraction. Using PP, we built merger trees for each halo

to calculate their collapse redshift zcol. Their scale density
at a later redshift z can then be predicted via

δsðz; κÞ ¼ κðfÞ ρ̄ðzcolÞ
ρ̄ðzÞ ; ð3Þ

where ρ̄ is the average density of the Universe and κðfÞ
is a constant of proportionality obtained from a fit to the
N-body simulations. The concentration parameter can then
be calculated by solving

δs ¼
200

3

c3

lnð1þ cÞ − c=ð1þ cÞ : ð4Þ

We calibrate the minicluster cðMÞ from PP and Press-
Schecter to the N-body results at z ¼ 99, which fixes κðfÞ.
For large concentrations, so long as the collapse redshift
does not change significantly, the concentration evolves
proportionally to the scale factor, a ¼ 1=ð1þ zÞ. We are
therefore able to project our results to z ¼ 0. The resulting
cðMÞ is shown in Fig. 4.

III. TRACKING MINICLUSTER SEEDS
IN N-BODY USING PP

In the last section, we characterized minicluster halos,
formed via hierarchical mergers and described by an NFW
density profile. However, these do not represent the densest
“minicluster seeds” which may survive from the early,
z > zeq, epoch of structure formation characterized by peak
collapse and infall [34,36]. We now demonstrate how to
identify collapsed peaks at zeq using PP, and then follow the
fate of these selected collections of particles at late times in
N-body simulation, in order to determine the survival rate
of dense seeds, and their density profiles.

FIG. 3. Minicluster mass function at z ¼ 99. Dashed lines
indicate the portion of the mass function with resolved
scale radius, i.e. known NFW halos. The vertical line indicates
the minimum mass that a pure power-law halo must have in
order to produce significant lensing amplification after account-
ing for wave optics effects and assuming a power-law profile
[see Eq. (15)].

FIG. 4. Minicluster concentrations. Press-Schechter predicted
minicluster concentrations at different redshifts, assuming Gaus-
sianity and NFW profiles. Points show N-Body results used for
normalization. All masses were rescaled to the axion mass
ma ¼ 1 meV. Note that only those miniclusters in the highest
mass bin have well resolved scale radius according to our criteria
(see Ref. [36] for details).

2This lower limit was chosen to guarantee that (sub)halos
consist of a sufficient number of particles to study their density
profiles.
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A. Initial overdensity, mass, and survival

In the theory of the spherical collapse of miniclusters,
their final density is determined by the “initial overdensity”
(see Appendix B). The initial overdensity depends on a
scheme for filtering the density field. We use physically
motivated filtering based on the redshift of collapse.
Using PP, we build merger trees as done in Ref. [34], and

using the collapse redshift we assign to each halo at z ¼
3976.5 an initial overdensity δcolðzÞ via Eq. (B5). Samples of
minicluster seeds are randomly drawn from the distribution
shown in Fig. 5 such that the samples have a uniform
distribution in δcol with δcol > 8 and a uniform distribution in
log10MwithM > 5 × 10−14 M⊙ (chosen as an arbitrary low
mass cut). PP defines these miniclusters within the
Lagrangian sphere on the initial (z ∼ 106) density field.
This procedure allows us to locate these particles again in
later snapshots, and to study the properties and evolution
of minicluster seeds. We then track the particle identification
number (IDs) in the N-body simulations of Ref. [36],
specifically a total number of 361 miniclusters to z ¼
3976.5 and 1029 miniclusters to z ¼ 99 (limited by compu-
tational time in postprocessing). We then note the IDs of
particles in the initialparticle distribution contained of these
objects.
We now want to determine what has happened to these

collections of particles in the N-body snapshots. We
begin by determining the point of maximum density in
each minicluster seed using a kernel density estimation
(KDE) algorithm. We then “collect” these particles by
working radially outwards from the center until the
predicted final mass is found. We estimate this mass
by assuming that from z ¼ 3976.5 the halos only accrete
matter from the background. As such, we predict that the
mass will evolve as [57]

M ¼ Mðz0 ¼ 3976.5Þ
�
1þ 3976.5

1þ z

�
: ð5Þ

Not all of the objects we tag at zeq will survive until
z ¼ 99. Many will be completely disrupted through
mergers with larger halos. We define a survival metric
as the “index matching fraction” fm. This is the fraction of
particles that were marked in the initial density field which
are in a sphere around the maximum density containing
the expected mass at a later redshift. If fm ≈ 1, then most
of the original mass remains close to the density peak at a
later redshift, while if fm ≪ 1, then the originally tagged
particles have dispersed far from one another.
The index matching fraction of our halo sample is shown

in Fig. 6 as a function of halo mass and initial overdensity.
We use this quantity to distinguish the density profiles of
our sample miniclusters. We observe a strong correlation
between fm and mass. This is as we would expect, since the
most massive objects have the deepest potential wells, and
have undergone fewer major mergers. We also observe
higher fm at higher δi for masses ≳3 × 10−13 M⊙, con-
sistent with the hypothesis that a larger δi leads to a
minicluster of higher average density after virialization, and
that higher densities are more resistant to tidal stripping
[29,42,44]. Added mass scale since overall correlation
between δi and fm does not seem to exist. Right panel
of Fig. 6 shows even a reduced fm at largest δi.
We plot density profiles centered on the maximum

density of tagged particles for all objects in our sample
in Fig. 7, color coded by the value of fm. We observe that
halos with a large fm tend to have a much more well-
defined density profile. This demonstrates that a large value
of fm corresponds to an object that remains gravitation-
ally bound.

FIG. 5. Minicluster distribution. We use peak-patch to identify
all miniclusters at z ¼ 3976.5 and measure their mass and
overdensity at collapse redshift, δcol [see Eq. (B5)]. Overlaid
points show the sample of miniclusters tracked in N-body
simulations, which survived until z ¼ 99 (index matching frac-
tion fm > 0.5). All masses were rescaled to the axion mass
ma ¼ 1 meV.

FIG. 6. Trends in minicluster survival. Two-dimensional histo-
gram for index matching fraction fm as a function of mass and
δiðzcolÞ for all sample halos at z ¼ 99. The top panel shows fm as
a function of sample mass M and fm as a function of δiðzcolÞ is
shown on the right. This figure uses the simulated value
ma ¼ 50 μeV.

STRUCTURE OF AXION MINICLUSTERS PHYS. REV. D 106, 103514 (2022)

103514-5



B. Density profiles
We now analyze the radial density profile of our selected

miniclusters, comparing them both to NFW and single
power-lawmodels. The analysis of the radial density profiles

is restricted to the spatial resolution of the N-body simu-
lations. The lower limit is expressed in terms of the numerical
softening lengthwhichwas set to 1 AU=h in comoving units
in the simulations from Ref. [36]. Following the resolution
studies in Refs. [58,59], we only consider scales larger than
4 AU=h when analyzing the radial density profiles of
miniclusters in order to be safely above the softening length.
Note that by evolving our minicluster sample from

z ¼ 3976.5 to z ¼ 99 assuming only accretion from the
background according to Eq. (5) we underpredict some of
their actual virialmasses at z ¼ 99 obtained from theN-body
simulations. This implies that these objects gain a significant
proportion of their mass from mergers as opposed to only
from accretion. Therefore, we extrapolate their density
profiles as a power law to larger r to match their actual virial
radii such that the enclosed halo overdensity is Δ ¼ 200.
We compare the density profiles to NFW and single

power-law models at z ¼ 99 and z ¼ zeq in Figs. 8 and 9.
For NFW profiles we plot ρðrÞ=ρ0 against r=rs, and for PL
profiles we plot ρðrÞ=ρ0 against r=Rvir. We can therefore
compare the profiles of our whole sample to a single
“predicted” curve. Since only around 20% of our sample at
z ¼ 99 have a predicted scale radius that is spatially
resolved, we study the density profiles of miniclusters

FIG. 8. Minicluster density profiles with resolved scale radius. In total, 76 samples with a matching fraction fm > 0.5 are shown at
z ¼ 3976.5 (top) and 48 samples with a matching fraction fm > 0.75 at z ¼ 99 (bottom). The line colors are given by δcol;iðz ¼ 3976.5Þ.
Left: NFW prediction calibrated from cðMÞ, where the shown density profiles are additionally multiplied with r=rs to highlight the
turnover of the NFW profile at rs. Right: power-law density profile with a slope parameter of α ¼ 3 and its deviation from the sample.
This figure uses the simulated value ma ¼ 50 μeV.

FIG. 7. Demonstration of survival metric. Random selection of
300 halos from the ðM; δiÞ plane followed to z ¼ 99 in N-body
simulations. We pot the radial density profile evaluated in spheres
from the point of maximum density of the tagged particles. Those
miniclusters with a high index matching fraction fm have much
more well-defined density profiles, indicating that fm is a good
metric for the minicluster surviving the merger process. The gray
shaded region indicates the softening cutoff. This figure uses the
simulated value ma ¼ 50 μeV.
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with resolved and unresolved scale radius separately from
each other in Figs. 8 and 9, respectively. In both cases, there
is no visible correlation between the initial overdensity of
the miniclusters and their density profiles.
We find that the density profiles in Fig. 8 are well

described by an NFW profile at z ¼ 99 with a visible
turnover at the scale radius. The turnover is less pro-
nounced in the density profiles at z ¼ 3976.5 and we thus
compare them also with a single power-law density profile
with a slope parameter of α ¼ 3. As expected from the
general agreement with the NFW profile, the power-law
profile well describes the density profiles for large r.
However, at smaller radii there are increasing deviations
confirming that the density profiles become shallower
favoring an NFW profile. Increasing deviations between
the single power-law profile and the density profiles at
small radii can also be observed at z ¼ 99, confirming that
they can be well described by NFW profiles.
Since the predicted scale radii of the remaining 80% of

our sample at z ¼ 99 are not spatially resolved, it is
possible that these halos instead have a single power-law
extending to smaller radii. For the halos with unresolved rs,
we performed a least-squares fit for a single power-law in
the range between the resolution cutoff and the virial radius,
4 AU=h < r < Rvir, and found that the average slope is
α ≈ 2.9. This power law is in good agreement with the
density profiles at z ¼ 99, as shown on the right-hand side
of Fig. 9. At matter-radiation equality, the density profiles
of the miniclusters with unresolved scale radius are in
agreement with an average slope of 9=4 which means that
they cannot be described by an NFW profile, even at large
radii. The slope of 9=4 is in agreement with the theory of
self-similar infall (see Appendix B).

C. Estimating axion star properties

Axion stars are expected to form at the centers of
miniclusters [50]. Our N-body simulations [36], on the
other hand, are not able to resolve wavelike dynamics and

axion star formation. However, we can estimate the axion
star masses and radii using known scaling relations (see
Appendix C for details). Reference [60] showed that the
star mass distribution estimated in this way from particle
data accurately reproduces the results of simulations
resolving the wavelike dynamics.
Using Eq. (C2), we can relate the virial velocity of a halo

to the mass of the axion star. For typical virial velocities of
vvir ∼ 0.1 m=s it can be expressed as

M⋆ ¼ 2.08 × 10−16
�
1 meV
ma

��
vvir

0.1 ms−1

�
M⊙: ð6Þ

Using the soliton density profile given in Eq. (C3) [51,52],
its half-mass radius is given by

r⋆ ¼ 4.95 × 10−12
�
1 meV
ma

�
2
�
10−16 M⊙

M⋆

�
pc: ð7Þ

FIG. 9. Minicluster density with unresolved scale radius. In total, 25 samples with a matching fraction fm > 0.5 are shown at
z ¼ 3976.5 (left) and 100 samples with a matching fraction fm > 0.75 at z ¼ 99. The density profiles are compared to single power law
fits with slope parameters of α ¼ 9=4 and α ¼ 2.9, respectively. This figure uses the simulated value ma ¼ 50 μeV.

FIG. 10. Axion star mass and radius. Estimated by calculating
vvir for N-body halo samples with fm > 0.5 and substituting into
Eqs. (6) and (7), respectively. The N-body data were rescaled to
the axion mass ma ¼ 1 meV.
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Calculating this for our particle samples for minicluster
seeds gives the distributions shown in Fig. 10.
We observe significant scatter in the distribution. The

scatter in the distribution allows some halos to have
heavier, and thus more compact, axion stars, than a simple
power-law relation between halo mass and axion star mass
would predict. This is of key importance for microlensing,
as we now show. We discuss the possible relevance of this
scatter for the “core-halo mass relation” [52,61] in Sec. V.

IV. MICROLENSING BY MINICLUSTERS

A. Conditions for minicluster microlensing

Gravitational microlensing is briefly reviewed in
Appendix D. Microlensing occurs when a lens passes
within a “tube” between the source star and the observer,
defined by the minimum impact parameter required to
produce an observed amplification of A ¼ 1.34 [62]. For a
point mass, the tube radius is the Einstein radius, RE, while
for an extended lens the tube radius is rescaled by a factor
ofR (see e.g. Ref. [35]), so that the lensing tube has radius
ξc ¼ RRE. For a lens with density profile ρðrÞ, in order for
A > 1.34, one requires the slope of the density profile to
increase with a power-law steeper than r−1 within the
lensing tube [see Eqs. (D6), (D7)]. For NFW profiles, this
implies that lensing can only occur if rs ≲ RE [35].
Axion stars have shallow density profile slopes within

the half-mass radius r⋆. The axion sar acts as a small-scale
cutoff even to a PL profile. Thus, for the same reason that
NFW profiles lens only if rs ≲ RE, a PL profile can only
lens if r⋆ < ξc, where ξc is the rescaled lensing tube radius
for the PL profile.
Furthermore, for an optical microlensing survey with a

typical filter wavelength of λ ¼ 6210 Å, the mass con-
tained within the lensing tube, Meff , must exceed a critical
mass, Mmin ≈ 3 × 10−12 M⊙ such that wave optics effects
do not suppress the magnification (see e.g. Ref. [46]).
We show in Appendix D that miniclusters described by

an NFW profile for allM cannot lead to microlensing, since
the scale radius rs is always larger than the lensing tube
radius. This conclusion, however, relies on extrapolating
the assumed NFW profile and the fitted cðMÞ relationship
to small minicluster masses. At z ¼ 99 NFW profiles are
only resolved for minicluster masses [36]:

M > MNFW ≔ 2.59 × 10−11
�
1 meV
ma

�
0.5

M⊙; ð8Þ

corresponding to the 30% of miniclusters with well
resolved scale radius at z ¼ 99 mentioned earlier. This
marks the lower edge of the highest mass bin in Fig. 4. Note
that in Fig. 5, which shows the distribution at equality, the
mass cut between resolved and unresolved scale radius is
not so distinct.

Miniclusters with M < MNFW may have steeper PL
profiles in their inner regions. This value is redshift
dependent and for z ≪ zeq we expect that MNFW ∼ a as
in Eq. (5). The small radius cutoff for a PL profile is given
by the axion star radius, which should be smaller than ξc.
The above arguments give us three conditions that

simulated miniclusters must satisfy in order to be micro-
lensing candidates:
(1) The effective lensing mass must be greater than the

minimum mass for lensing imposed by wave optics
effects,

Meff > Mmin: ð9Þ

(2) The minicluster must allow for the possibility of a
steep inner profile, i.e. unresolved NFW scale radius,

M < MNFW: ð10Þ

(3) The critical lensing radius must be larger than the
estimated axion star radius,

ξc > r⋆: ð11Þ

As in Ref. [35], we find the critical lensing radius by
solving Eqs. (D6) and (D15) and finding the largest radius
which gives the same magnification as the outer image for a
point mass μout ¼ 1.17. For a PL minicluster, we find that
located halfway between the source and the observer, the
minimum impact parameter that produces microlensing
above the critical value is given by

ξc ¼ 1.4 × 10−16
�

M200

10−12 M⊙

�
0.509

Mpc: ð12Þ

Assuming the core-halo mass relation from Ref. [52] we
can set Eq. (12) equal to the radius of the axion star, and
demanding r⋆ < ξc we obtain that microlensing only
occurs for miniclusters with masses above

M200 > Mmin� ¼ 1.75 × 10−11
�
1 meV
ma

�
1.19

M⊙: ð13Þ

Calculating the mass bounded within the critical lensing
radius, we then find the minicluster’s effective lensing
mass. For a PL profile, this effective mass is given by

Meff

M200

¼ 0.202

�
M200

10−12 M⊙

�
0.0175

: ð14Þ

Taking into account wave optics effects, the effective mass
must be greater than 3 × 10−12 M⊙ to produce a micro-
lensing signal (see Appendix D 3). According to Eq. (14),
the virial mass of a PL minicluster must therefore satisfy
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M200 > MPL
wave ¼ 1.4 × 10−11 M⊙ ð15Þ

to be able to lens. These conditions are illustrated in
Fig. 11, where we observe that there is a small region of
parameter space with ma ≈ 1 meV where miniclusters
might produce microlensing.

B. Identifying microlensing candidates

Due to the extrapolations required, we will not attempt a
statistical microlensing study, but rather we attempt to
identify possible microlensing candidates out of the most
promising minicluster seeds. We search for lensing
candidates from those miniclusters particle tagged using
PP as described above and take a uniform sampling in
the plane of minicluster mass and initial overdensity as
defined at matter-radiation equality. We look to our
N-body simulations and search for those miniclusters at
z ¼ 99, and compare them to the conditions for micro-
lensing candidates.3

The fraction of objects in the sample found to comply
with these conditions is shown as a function of axion mass
in Fig. 12. We see that for axion masses ma ≲ 0.2 meV the
predicted radius of the axion star is larger than the critical
lensing radius for a halo with a ρðrÞ ∼ r−2.9 power-law
profile making microlensing impossible. On the other side,
we see that axion masses ma ≳ 3 meV produce effective
lensing masses that are smaller than the minimum mass
required from wave optics effects. However, for axion
masses between these two limits, we find that a fraction of
our samples might be able to produce microlensing. This
fraction peaks at just under 10% at ma ∼ 1 meV. We

emphasize that this fraction is not representative of the
DM mass fraction.
We found the fraction in Fig. 12 using the measured

relationship betweenM and vvir in order to estimate R⋆ (see
Fig. 10), and not the core-halo mass relation. Had we
applied the core-halo mass relation, then we would have
found no microlensing candidates in our sample.

V. DISCUSSION AND CONCLUSIONS

Axion miniclusters can have important phenomenologi-
cal implications if they are exceptionally dense. Theoretical
arguments suggest that the densest miniclusters form prior
to matter-radiation equality, and are characterized by a
power-law profile and their initial overdensity. Simulations
of miniclusters, on the other hand, resolve a broad mass
function from hierarchical structure formation during the
matter-dominated era, and large miniclusters with NFW
profiles. Do dense minicluster seeds survive this process
but remain undetected in simulations e.g. due to selection
effects? We have used the peak-patch semianalytical model
for halo formation to tag the densest minicluster seeds
present at matter-radiation equality in density fields gen-
erated from lattice simulations of axion string networks. We
then followed the evolution of these seeds in N-body
simulations. We measured the corresponding minicluster
masses, analyzed their density profiles, and looked for
correlations with their initial overdensity.
A large number of miniclusters have a scale radius too

small to be resolved by the available simulations, leaving
the door open to the “dense power-law”model in part of the
mass function. We found no correlation between the
minicluster profile and the initial overdensity, although
we did find that denser miniclusters were more likely to
survive to late times. We furthermore measured the velocity
dispersion of the simulated miniclusters, and used this to
estimate the radius at which an axion star might form,

FIG. 12. Fraction of samples meeting criteria for lensing. The
fraction was calculated for lenses exactly halfway between the
observer and the light source. Lensing and nonlensing halos were
shown in Fig. 5 as yellow stars and orange circles, respectively.

FIG. 11. Conditions for microlensing. The potential lensing
region, shown by the unshaded region is produced by imposing a
minimum halo mass from wave effects (green), a minimum mass
from axion stars (red), and a maximum mass from NFW profiles
observed in N-body simulations (purple).

3The central mass of the halo is not affected by the assumed
halo mass growth (M ∼ a) from accretion for z < zeq. Thus, the
minicluster capacity for lensing remains unchanged at smaller z.
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finding significant scatter in the relation between predicted
axion star radius and halo mass.
The conditions for a minicluster to be a microlensing

candidate were enumerated in Sec. IVA. The first condition
is an absolute limit imposed by the physical observations of
the microlensing survey, in this case the HSC Subaru
survey. The second and third conditions allow for lensing
candidates within the uncertainties imposed by simulation
resolution and methodology for axion mass ma ≈ 1 meV.
We have only identified the possibility of microlensing
candidates, and further simulations are necessary to over-
come the resolution issues. Fortunately, our analysis has
identified exactly the simulation requirements.
The axion star radius provides one of the relevant cutoffs

for microlensing in our analysis, which we estimated by
measuring the virial velocity in candidate miniclusters
directly in our simulations. If the axion star radius was
derived strictly from the core-halo mass relation of
Ref. [52] applied to the minicluster mass function, then
the axion star radius would be too large to allow for
microlensing in a 10−11 M⊙ halo for ma ≈ 1 meV. It is the
scatter in the relationship between M and M⋆ ∝ vvir found
in our analysis (see Fig. 10) that causes us to predict that
some miniclusters host smaller axion stars than predicted
by the core-halo mass relation, and can thus give rise to
observable microlensing amplification.
In terms of microlensing, the above fact highlights the

need for an analysis such as ours to characterize the
distribution of miniclusters properties, rather than relying
on averages. This also emphasizes the observational rel-
evance of possible scatter in the core-halo mass relation
[61], with applications elsewhere in axion astrophysics.
Ascertaining whether or not scatter in the core-halo mass
relation is indeed related to scatter in the M − vvir relation,
or other factors, is beyond the scope of the present work.
Our current set of simulations does not resolve axion star

formation (since they are N-body simulations rather than
wave simulations), and only resolves the scale radius in a
limited part of the mass function. It is only these unknowns
that allow the theoretical wiggle room for the possibility
of miniclusters with large enough central densities to
microlens. Adaptive enlarged simulations mixing N-body
on large scales and wave simulations on small scales
[60,63,64] are required to verify whether such miniclusters
can in fact form. The simulations should be run at ma ≈
1 meV and resolve halos with a mass of 10−11 M⊙ at
z ≈ 100. The radial resolution in these halos should capture
any possible NFW scale radius [predicted at r ≈ 1 AU,
extrapolating cðMÞ via the Press-Schechter model] and
axion star formation (predicted at r ≈ 10−4 AU).
We have identified microlensing as a probe of mini-

clusters only for 0.2 meV≲ma ≲ 3 meV. If the relic
density is dominated by axions produced by string decay,
as suggested by recent simulations [24], then ma ¼ 0.48 to
0.52 meV. Thus, in future, microlensing may be able to

confirm or exclude this model for axion production,
with important implications for the design of axion
direct detection experiments at high-frequency [65–69].
Miniclusters might also give rise to microlensing in
other cosmologies and particle physics models that we
have not considered in this work. If there is an early matter-
dominated era, as favored by the solution of the cosmo-
logical moduli problem with low-scale supersymmetry
[70,71], then miniclusters collapse at even earlier times,
and are thus denser [72]. In axion models with domain wall
number larger than unity (e.g. Refs. [73,74]), domain wall
decay can happen as late as big bang nucleosynthesis [75],
leading to more massive miniclusters requiring much lower
average density to lens. Microlensing of miniclusters can
thus also act as a probe of these more exotic aspects of
axion cosmology.
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APPENDIX A: NUMERICAL METHODS

1. Initial conditions

The evolution of the axion field in the postinflationary
scenario comprises of the following: (1) the PQ phase
transition, when a global string network forms, (2) a scaling
regime during which the string network thins out in a quasi-
self-similar way, (3) the QCD phase where the QCD
potential becomes relevant for the axion zero-modes, builds
up domain walls that lead to the fast destruction of the
string network, allows axion self-interactions to rearrange
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the field, and finally renders the field nonrelativistic at the
relevant scales, (4) the free-streaming regime where the
axion density field is effective frozen at large scales and
small-scale fluctuations stream freely, and (5) the gravita-
tional evolution of the axion DM field under gravity
forming miniclusters, the object of our study.
In order to prepare initial conditions for the gravitational

collapse phase, we simulated the evolution of a complex
scalar field, whose phase is the axion, from the scaling
regime, through the QCD phase transition including the
free-streaming phase until a redshift of ∼106, shortly before
gravity starts being relevant for the smallest and densest
clumps.
With current computer limitations, it is not possible to

simulate from (1) to (4) and so we start in the scaling
regime (2) shortly before the QCD phase (3). We start our
simulation with the string density equal to the attractor
value found in [22] a box of comoving length L ¼ 24L1.
Here, L1 is the comoving horizon size when the axion zero
modes become nonrelativistic. This sets the correlation
scale of the axion DM density field and thus the typical
minicluster mass. Using the temperature dependence of the
topological susceptibility χTðTÞ ¼ m2

aðTÞf2a of Ref. [79],
L1 ≡ ðHðt1Þaðt1ÞÞ−1 ¼ 0.0362ð50 μeV=maÞ0.167 pc was
calculated in [33]. Expressed in terms of L1 and
conformal time η1, assuming a constant number of
degrees of freedom during radiation domination, and
fitting m2

a ∝ ðT1=TÞ−n ¼ ðη=η1Þn, the evolution of the
complex-scalar field becomes independent of fa (and
thus of the axion mass),

Φ00 − ΔΦþm2
Φ
2

ϕðjΦj2 − η2Þ þ ηnþ3 ¼ 0; ðA1Þ

at least to the extent that we can consider n independent of
fa. Here, Φ is the conformal complex scalar, time is
normalized to η1 ¼ L1, comoving length to L1 and scale
factor a to a1. We have used a=a1 ¼ η=η1. The best fit
around values of ma ∼ 100 μeV is n ¼ 7.6. Large values
behave very similarly so we actually used n ¼ 7. The
independence of fa means that we can use our results for
different values of the axion mass ma.
The extra parameter mΦ is the mass of the radial mode

necessary to make axion strings dynamical. We expect
mΦ ∼ fa but there is a free proportionality constant

ffiffiffiffiffi
2λ

p
,

which could be relatively small. Unfortunately, we cannot
simulate with values of λ compatible with observations [22]
but one can extrapolate the results to large mΦ. Current
simulations show that the final density field at large scales
is quite independent ofmΦ [23,33] even if the string density
grows logarithmically with it [22]. Therefore we do not
perform any extrapolation but simulate with the largest
possible values of mΦ allowed by our grid mΦ ¼ 1=ðδLηÞ
using the Press-Ryden-Spergel trick [80,81]. We use the
public code https://github.com/veintemillas/jaxions to

create the initial conditions, evolve the field through the
QCD phase and free stream until η=η1 ∼ 107, which
corresponds to z ≃ 106 forma ¼ 100 μeV. The simulations
were performed on an 81923 lattice. We evolve the complex
scalar field until the point when the string network is
destroyed by domain walls (η ∼ 2.5η1 in our simulation),
then calculate the axion field θ ¼ argðΦÞ and its time
derivative and continue the evolution only for the con-
formal axion field ψ ¼ θa, neglecting the radial mode,

ψ 00 − Δψ þ ηnþ3 sinðψ=aÞ ¼ 0: ðA2Þ

We stop the simulation when the axions cannot be possibly
resolved anymore (maδLa ¼ 1) at η ¼ 3.7 and free stream
from there on by solving analytically the linearized version
of Eq. (A2) in the Wentzel-Kramers-Brillouin approxima-
tion until η=η1 ¼ 107. We emphasize that z1 depends onma

very weakly (∝ m0.172
a ) and the evolution of the field is only

logarithmic at those times. Thus, we can use our results for
different axion masses with negligible errors.
We obtained the axion DM density at z ∼ 106 and

sampled it with 10243 particles to study the gravitational
evolution in Ref. [36] (see also Appendix A 3 for details).
A few words of caution are in order. Our simulations are

far from the desirable values of mΦ and produce the
observed amount of axion DM for ma ∼ 20 μeV. We
explicitly assume that more physical parameters will
change the axion mass required to obtain the correct
DM relic abundance, but will not alter significantly the
characteristics of the axion density field. As mΦ increases,
larger values of the string density are observed in the
scaling regime and, most importantly, a larger spectral
index of the axion spectrum radiated by the strings ∝ 1=kq.
Our simulation stayed below but close to q ∼ 1. The latest
simulations using adaptive-mesh-refinement [26] found
q ¼ 1 and a detailed study of the scaling regime found
that q increases linearly towards q ¼ 1without any signs of
levelling to q ¼ 1 [24]. The value of q at late times
determines the total axion yield and the shape of the
spectrum. It will determine many of the features of the
axion DM density. Our results are expected to be roughly
correct if q stays below or close to 1 even if the total density
changes. The axion DM density field might look signifi-
cantly [Oð1Þ] different if q ≪ 1.

2. Peak-patch

Our implementation of the peak-patch methods broadly
follows Ref. [40] and the original paper [37]. In contrast to
them, we only implement the spherical collapse of a density
fluctuation. We can split the detailed algorithm into
four parts:
(1) detection of peak candidates.
(2) determination of the radius of the collapsing sphere

around peak candidates.
(3) removal of overlap between halos.
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(4) calculation of final position and velocity of the
final set.

The initial density field is generated from simulations
similar to the ones presented in Ref. [33] (see also
Appendix A 1 for details). In fact, the same initial con-
ditions as in the N-body simulations of Ref. [36] are used.

a. Detection of peak candidates

This step has a purely computational sense. One could of
course scan the region around each grid cell for collapse at
various radii, however, this would be computational over-
kill. Instead, one can select “interesting” cells in the first
step, called peak candidates. This is done by filtering the
density field on various scales and storing all cells that
exceed a certain density in the filtered field as peak
candidates. We also store the largest filter radius at which
a peak candidate was detected. We use a spherical top-hat
filter in real-space which translates to a sinc filter in k space.
The filter sizes are logarithmically spaced, starting from
2Δx, where Δx is the grid scale. We use about 20 filters,
and our threshold density is typically δc ∼ 1.5.

b. Determination of the radius of the collapsing sphere
around peak candidates

For each peak candidate, we need to find the maximum
radius at which a spherical region around the candidate is
collapsed at the redshift in question. In order to do so, we
average the density inside a radius r around the peak and
check if it is larger than the critical overdensity for collapse.
If so, we continue to integrate at an even large r. If not, we
integrate down to a smaller r. If we find a transition
between collapse and uncollapsed between two radial bins,
we interpolate the radius linearly between the bins. The
mass can be obtained from this as the mass of a sphere with
said radius at average cosmic density. In contrast to
Ref. [37], we use a radial binning that allows fractional
contributions from cells that are partially inside the inte-
gration radius, which increases the precision at the lowest
radii/masses slightly.

c. Removal of overlap between halos

The first step in the overlap removal is to remove all
halos whose center falls within the radius of a larger halo.
This has to be done hierarchically, that is, we have to check
for overlapping halos in the most massive halo first and
proceed into the less massive (surviving) hosts. To see why,
consider three halos with decreasing mass, A, B, and C,
with A containing B’s center, B containing C’s center, and
A not containing C’s center. Depending on the order of
operation, C survives or not.
The second step is to approximately resize halos that still

overlap to account for the mass that counted twice in the
overlap region. We use half exclusion here, as described in

Ref. [40], and reduce both the mass of the lower and higher
mass halo.

d. Calculation of final position and
velocity of the final set

For the last step, one needs to calculate the displacement
field from the density field. The equations are given in
Ref. [40]. We support both the linear approximation and the
second-order correction. Note that the memory consump-
tion doubles when going from first to second-order, as the
second-order displacement contribution adds three new
floats per lattice site. At the present, we do not require the
halo positions from PP to be accurate, and so we use only
first-order displacements.

3. N-body simulations

The initial axion density distribution of the N-body
simulations from Ref. [36] was generated by large lattice
simulations [33] evolving the axion field from PQ sym-
metry breaking until it becomes nonrelativistic (see also
Appendix A 1 for details). A conversion of this axion
distribution at redshift z ≃ 106 into 10243 particles with a
mass of 2.454 × 10−17 M⊙ and initial velocities set to zero
serves as the initial conditions for the succeeding N-body
simulations.
They were performed with the OpenMP/MPI optimized

GADGET-3 code which is a predecessor of the recently
published GADGET-4 [82]. The limit of the spatial resolution
is determined by the numerical softening length which was
set to 1 AU=h in comoving units. Considering only
gravitational interactions among the particles, they were
evolved with a comoving box side length of L ¼
0.864 pc ¼ 24L1 (see Appendix A 1) for an axion mass
ofm ¼ 50 μeV until a final redshift of z ¼ 99. At this time,
the scales that correspond to the length of the simulation
box become nonlinear, so simulations for redshifts smaller
than z ¼ 99 can only be trusted when larger box sizes are
considered.
Standard ΛCDM parameters Ωm;0¼ 0.3, Ωr;0 ¼ 8.486 ×

10−5 (taking into account photons and three massless
neutrino species), ΩΛ;0¼0.7 and H0¼100hkms−1Mpc−1

with h ¼ 0.7 were used to evolve the Hubble parameter,

HðzÞ ¼ H0ðΩm;0ð1þ zÞ3 þΩr;0ð1þ zÞ4 þ ΩΛ;0Þ1=2:
ðA3Þ

Defining an axion minicluster as a collection of gravi-
tationally bound particles, the SUBFIND halo finder [55,56]
was used to identify halos and their subhalos with a
minimum number of 32 and 20 bound particles, respec-
tively. The center of a halo is determined by the position
of the minimum of its gravitational potential. Their
size is set by the virial radius rvir, at which the enclosed
average density of a halo equals the virial parameter Δvir
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times the critical density ρc ¼ 3H2=ð8πGÞ. The virial mass
of a minicluster is then Mvir ¼ 4π=3Δvirρcr3vir. The virial
parameter is given by

Δvir=ΩmðzÞ ¼ 18π2 þ 82ðΩmðzÞ − 1Þ − 39ðΩmðzÞ − 1Þ2;
ðA4Þ

where

ΩmðzÞ ¼
Ωm;0ð1þ zÞ3

Ωm;0ð1þ zÞ3 þ Ωr;0ð1þ zÞ4 þΩΛ;0
: ðA5Þ

In this convention, the redshift-dependent value of the virial
parameter depends on the cosmology. Instead, it is also
quite common to take Δvir ¼ 200 to define virial quantities
of halos.

APPENDIX B: MINICLUSTERS FROM
SELF-SIMILAR INFALL

We summarize here the theory behind power-law mini-
clusters from spherical collapse and self-similar infall.
While larger miniclusters gravitationally collapse at later

times and exhibit smaller initial axion density fluctuations,
miniclusters originating from a large initial overdensity
already collapse deep in the radiation-dominated epoch. As
was shown in Ref. [36], the gravitational evolution of axion
miniclusters after matter-radiation equality is dominated by
mergers of smaller miniclusters into larger ones.
It is expected that less concentrated objects are

more likely to be tidally disrupted by these merger
events. However, an early distribution of miniclusters
with sufficiently large enough initial overdensity can end
up as substructures within larger miniclusters without
being significantly affected by tidal encounters. Thus,
their initial density profiles and concentrations can be
assumed to remain unchanged. They form primarily via
self-similar infall, and analytical studies typically predict
that this should result in power-law density profiles of the
form [83,84]

ρðrÞ ¼ ρ0

�
r
r0

�
−α
: ðB1Þ

It was first realized that the self-similar infall of an
initially static uniform spherical overdensity produces a
density profile with α ¼ 3. However, later studies showed
that when matter which is initially expanding instead
produces a density profile α ¼ 9=4 [83,84].
An axion field with a white-noise initial power spectrum

simulated with N-body until z ¼ 3000, produced halos
with this predicted density profile [30]. This has therefore
been commonly assumed to be the density profile for axion
miniclusters [35,43,85].

To fully predict the density profile, we also need a
relationship between the mass and radius of these mini-
clusters. One approach used in the past has been to take the
total average density of the minicluster to be [29,35,41]

hρi ¼ 140ρeqδ
3
i ð1þ δiÞ; ðB2Þ

where δi is the initial overdensity and ρeq is the density of
the universe at matter-radiation equality. This formula is
found by considering the spherical collapse of a top hat
overdensity including the internal mass contribution from
radiation [29]. We can use this to calculate the radius for a
halo of some mass and initial overdensity δi.
If we define r0 to be this radius, then we can integrate

Eq. (B1) with respect to the radius to find that

M ¼ 4πρ0
3 − α

r30; ðB3Þ

and hence

ρ0 ¼
3 − α

3
hρi: ðB4Þ

Now, given a mass and an initial overdensity δi, we can
predict a power-law profile. However, at each point in time,
there is a single threshold overdensity that defines which
objects have collapsed. Therefore, all virialized objects at a
single point in time can be considered to have the same
initial overdensity. By comparing the linear growth of an
adiabatic perturbation overdensity with the nonlinear
collapse of a spherical top hat, we find that the initial
overdensity which collapses at redshift z is given by

δi;colðzÞ ¼
1.686

1þDðzÞ ; ðB5Þ

where DðzÞ is the growth factor

DðzÞ ¼ 1þ 3

2

�
zeq þ 1

zþ 1

�
; ðB6Þ

and zeq is the redshift at matter-radiation equality. The
collapsing initial overdensity is therefore inversely propor-
tional to the scale factor and δi;colðzeqÞ ∼ 1 [34].

APPENDIX C: AXION STARS

The density profile of a minicluster has a natural “UV
cutoff” on small scales caused by the presence of a central
axion star. This scale was used in our microlensing analysis
and model of the minicluster density profile. Axion stars
are not resolved in our N-body simulations. However, we
can use known properties of halos with axion stars to “paint
on” the stars to our profiles. We describe these proper-
ties here.
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Since the axion likely has a very small mass, it will also
have a comparatively large de Broglie wavelength. This
suppresses structure formation on small scales due to the
uncertainty principle. Additionally, when the axions are
cold, they can form a Bose-Einstein condensate. This
condensation produces a solitonic core known as an axion
star. This gives a flat core at the center of dark matter halos
[50,51,86,87].
These solitons are most often considered for ultralight

axions (ma ∼ 10−22 eV) as a way of explaining problems
faced by classic cold dark matter (CDM) such as the
missing-satellite [81,88] and cusp-core problems [48,89].
However, it has been shown that they also form for masses
which are relevant for the QCD axion [50].
Axion stars make up a significant part of the structure of

miniclusters. This is particularly valid for the smaller halos
and subhalos since, somewhat counterintuitively, the radius
of an axion star is inversely proportional to the mass of its
host halo.
Using wave simulations, Schive et al. uncovered the

following relation between axion star core mass M� and
their host halos Mh [52],

M� ∝ a−1=2M1=3
h : ðC1Þ

The axion star mass can be conveniently expressed in terms
of the virial velocity of its parent halo. If the axion star is in
virial equilibrium with the halo, then simulations have
found this relation to be

M⋆ ¼ 4.69
ℏ
ma

vvir
G

; ðC2Þ

where vvir is the virial velocity of the parent halo [60]. The
radial density profile of an axion star is well approximated
by [51,52]

ρ⋆ðrÞ ≃ ρ0

�
1þ 0.091

�
r
r⋆

�
2
�
−8
; ðC3Þ

where r⋆ denotes the axion star half mass radius and ρ0 its
central (physical) density

ρ0 ≃ 7.8 × 10−14
�
50 μeV
ma

�
2
�
10−3 pc

r⋆

�
4M⊙

pc3
: ðC4Þ

APPENDIX D: GRAVITATIONAL
MICROLENSING

1. Basic microlensing

The magnification for a point source by a point mass,
such as a primordial black hole (PBH), under the geomet-
rical optics approximation is

μpnwðuÞ ¼ u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p ; ðD1Þ

where u ¼ β=θE is a dimensionless impact parameter. We
see, as shown in Fig. 13, that the magnification is greater
than 1.34 for u < 1. From this, we define a threshold
impact parameter uT as the maximum impact parameter
which produces a magnification of 1.34. We will assume
that only objects which cross the lensing tube with an
impact parameter less than this threshold can produce
measurable lensing events. For point masses under this
approximation, the threshold impact parameter is one by
definition. However, as we will see later, for more complex
lensing models this impact parameter is dependent on both
the lens structure and its distance from the observer.
The differential detection rate is given by

dΓPBH

dt̂
¼ 2

ΩPBH

ΩDM
DS

Z
1

0

dx
Z

uT

0

duminX; ðD2Þ

where

X ¼ v4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2T − u2min

p ρDMðxÞ
MPBHv2cðDLÞ

exp

�
−

v2

v2cðxÞ
�

ðD3Þ

and

v ¼ 2
RE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uT − u2min

p
t̂

; ðD4Þ

where DL is the distance to the lens, DS is the distance to
the source, x ¼ DL=DS < 1, and t̂ denotes the duration of
the lensing event. The number of observed events expected
is given by

Nexp ¼ E
Z

∞

0

dΓ
dt̂

ϵðt̂Þdt̂; ðD5Þ

where E is the exposure and ϵðt̂Þ is the probability of the
lensing event being observed, i.e. the “lensing efficiency.”

FIG. 13. Point mass magnification. Magnification due to
lensing by a point mass as a function of impact parameter under
the geometrical optics approximation.
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2. Extended lenses

The magnification of an extended lens is given by

μðξÞ ¼ 1

ð1 − BÞð1þ B − CÞ ; ðD6Þ

with parameters

CðξÞ ¼ 1

Σcπξ

dMðξÞ
dξ

; BðξÞ ¼ MðξÞ
Σcπξ

2
;

Σc ¼
c2DS

4πGDLDLS
; ðD7Þ

with DLS ¼ DS −DL the distance from the lens to the
source. We can then calculate the maximum lensing radius
ξmax defined to be the maximum radius to give μ ¼ 1.17.
From this, we can calculate the lensing ratio

R ¼ ξmax

RE
; ðD8Þ

which we average over the lens positions from observer to
source.

a. NFW profiles

Integrating the NFW profile as given by Eq. (1) along the
line of sight from −∞ to ∞, it can be shown that the NFW
profile has a surface mass density given by

ΣðxÞ ¼ ρsrs
x2 − 1

fðxÞ; ðD9Þ

in which

fðxÞ ¼

8>>><
>>>:

1 − 2ffiffiffiffiffiffiffiffi
x2−1

p arctan
ffiffiffiffiffiffi
x−1
xþ1

q
if x > 1

1 − 2ffiffiffiffiffiffiffiffi
1−x2

p arctan
ffiffiffiffiffiffi
1−x
1þx

q
if x < 1

0 if x ¼ 1

: ðD10Þ

Here, x ¼ ξ=rs and ξ is the radius in the lens plane [90].
The surface mass profile can then be calculated numerically
by integrating Eq. (D9) as

MðξÞ ¼ 2π

Z
ξ

0

Σ
�
ξ

rs

�
ξdξ: ðD11Þ

It should be noted that we have assumed that the halo
extends infinitely beyond its virial radius, which we know
to be untrue. However, the mass contributed by large radii
is very small. Additionally, we can make a partial fix to this
approximation by enforcing that Mðr > RvirÞ ¼ Mvir.
We can then substitute Eq. (D11) into (D6) to calculate

the magnification as a function of impact parameter. We can

do this as a function of concentration c and minicluster
mass MMC as shown in Fig. 14.
We computed R and the effective lens mass Meff for

NFW profiles. In order for NFW profiles to lens, they must
have exceptionally high values of c≳ 107 such that Meff
exceeds the minimum for wave optics, and R > 0.
Minicluster halos described by the cðMÞ relationship found
above do not lead to any microlensing signal, since R ¼ 0
along the extrapolated z ¼ 0 concentration curve as shown
in Fig. 14.
We can also estimate a maximum possible concentration

cmaxðMÞ that halos, or subhalos, could have in the NFW
model assuming the Press-Schechter method. This is done
by noting the earliest redshift at which any halos of each
mass can form. Therefore, we can estimate the maximum
concentration any surviving halo could have by taking this
earliest formation redshift to be the collapse redshift in
Eq. (3). Even using cmaxðMÞ, we find that NFW halos are
unable to lens. These results are illustrated in Fig. 14 for the
axion mass ma ¼ 50 μeV. It is possible to rescale these
results to a lower axion mass, thus moving the cðMÞ curve
to the right and closer to the R > 0 region. However, the
Meff region would be moved by exactly the same amount.
Therefore, we see that it is impossible to achieve micro-
lensing on an NFW minicluster by considering a different
axion mass.

b. Power-law profiles

Substituting the power-law profile given by Eq. (B1)
into the Abel integral, one obtains the surface mass
density

FIG. 14. Relative lensing tube size R for NFW profiles. White
regions indicate where R ¼ 0 identically, due to the shallow
inner slope r−1 preventing caustics. The effective mass within the
tube, Meff , should exceed Mmin to avoid wave optics effects
suppressing magnification. NFW miniclusters with cðMÞ cali-
brated to N-body simulations at z ¼ 99 and extrapolated to z ¼ 0
have R ¼ 0 and Meff ≪ Mmin and thus cannot lens. This is the
case for the “maximum” concentration, cmax, discussed in
the text.
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ΣPLðξÞ ¼ ρ0r−α0 B

�
α

2
−
1

2
;
1

2

�
ξ1−α: ðD12Þ

Here, Bðx; yÞ is the beta function which is defined in terms
of the gamma function ΓðxÞ by

Bðx; yÞ ¼ Bðy; xÞ ¼ ΓðxÞΓðyÞ
Γðxþ yÞ : ðD13Þ

Integrating the radial density from zero to the virial radius,
we find that

ρ0rα0 ¼
3 − α

4π

Mvir

R3−α
vir

; ðD14Þ

allowing us to define the surface mass density in terms of
the viral mass and radius as

ΣPLðξÞ ¼
3 − α

4π

Mvir

R3−α
vir

B

�
α

2
−
1

2
;
1

2

�
ξ1−α: ðD15Þ

We see that this can be straightforwardly integrated to give
the surface mass profile

MPLðξÞ ¼
1

2

Mvir

R3−α
vir

B
�
α

2
−
1

2
;
1

2

�
ξ3−α: ðD16Þ

The resulting lensing tube size as a function of the input
parameters is shown in Fig. 15.

3. Wave optics effects

The “geometrical optics approximation” outlined above
is only applicable when the Schwarzschild radius of the

gravitational lenses is much larger than the wavelength of
the lensed light. For pointlike lenses, this simply means that
the approximation is only valid for large masses. For
smaller masses, this approximation breaks down and we
have to consider wave optics effects. As we will see, these
wave effects suppress the magnification of light due to
small masses, therefore, reducing their detectability.
When wave optics are included, the magnification due to

a point mass is given by

Ap
wðw; uÞ ¼ πw

1 − e−πw

����1F1

�
i
2
w; 1;

i
2
wu2

�����
2

; ðD17Þ

where again we follow the notation used by Ref. [91] in
which “w” denoted “wave effect” and 1F1 is the confluent
hypergeometric function. In the limit of small wavelengths
(w ≫ 1) we recover the magnification under the geomet-
rical optics approximation

μpgeoðw; uÞ ¼ u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p sinUðuÞ; ðD18Þ

where

UðuÞ ¼ w

�
1

2
u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p
þ log

����
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p
þ uffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 4
p

− u

����
�
: ðD19Þ

We see that we recover the “no-wave” magnification of
Eq. (D1) plus an additional contribution that rapidly
oscillates with u. Using Eq. (D19), we find that the central
magnification μpgeoðu ¼ 0Þ decreases with lens mass. This
means that below some threshold lens mass Mmin,
the maximum magnification will be less than the
threshold value of 1.34. Hence, lenses smaller thanMmin ≈
3 × 10−12 M⊙ are unable to produce a microlensing signal
for a typical r-band filter wavelength of λ ≈ 6000 Å.

APPENDIX E: SCALING RELATIONS

In this work we used the results of Refs. [33,36] which
were computed at ma ¼ 50 μeV. For our peak-patch and
semianalytic models, we rescaled the initial data of
Ref. [33] to different axion masses using the following
scaling relations. The masses of miniclusters scale as

M ∝
�

1

ma

�
0.5
: ðE1Þ

As a result of this, length scales behave similarly as

L ∝
�

1

ma

�
0.167

: ðE2Þ

We can calculate similar scalings for our predicted axion
star masses and radii. We expect that the virial velocity
should scale as

FIG. 15. Relative lensing tube size R for power-law profiles.
The color map shows the lensing tube radius in units of the
Einstein radius for a power law ρ ∝ r−2.9. The dashed line sets
the enclosed mass within the lensing tube equal to be larger than
the minimum mass accounting for wave optics effects. In this
figure, the average overdensity is fixed from the initial over-
density, δi, assuming spherical collapse.
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vvir ∝ M1=3 ∼
�

1

ma

�
1=6

: ðE3Þ

Therefore, from (C2), we see that the axion star mass will
scale as

M⋆ ∝
vvir
ma

∼
�

1

ma

�
7=6

: ðE4Þ

Finally, we can also use this to find that the axion star radius
behaves as

r⋆ ∝
1

M⋆m2
a
∼
�

1

ma

�
5=6

: ðE5Þ

We see that as the axion mass increases, the halo masses
and radii decrease. The axion stars, however, have addi-
tional dependencies on the axion mass. We see that
increasing axion mass increases the axion star mass while
decreasing the axion star radius. Importantly, the axion star
radius shrinks quicker than the parent halo. Therefore, at
larger axion masses, the relative size of the axion star to the
halo is smaller.
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