11 research outputs found

    Application of Cryopreserved Human Hepatocytes in Trichloroethylene Risk Assessment: Relative Disposition of Chloral Hydrate to Trichloroacetate and Trichloroethanol

    Get PDF
    BACKGROUND: Trichloroethylene (TCE) is a suspected human carcinogen and a common ground-water contaminant. Chloral hydrate (CH) is the major metabolite of TCE formed in the liver by cytochrome P450 2E1. CH is metabolized to the hepatocarcinogen trichloroacetate (TCA) by aldehyde dehydrogenase (ALDH) and to the noncarcinogenic metabolite trichloroethanol (TCOH) by alcohol dehydrogenase (ADH). ALDH and ADH are polymorphic in humans, and these polymorphisms are known to affect the elimination of ethanol. It is therefore possible that polymorphisms in CH metabolism will yield subpopulations with greater than expected TCA formation with associated enhanced risk of liver tumors after TCE exposure. METHODS: The present studies were undertaken to determine the feasibility of using commercially available, cryogenically preserved human hepatocytes to determine simultaneously the kinetics of CH metabolism and ALDH/ADH genotype. Thirteen human hepatocyte samples were examined. Linear reciprocal plots were obtained for 11 ADH and 12 ALDH determinations. RESULTS: There was large interindividual variation in the V(max) values for both TCOH and TCA formation. Within this limited sample size, no correlation with ADH/ALDH genotype was apparent. Despite the large variation in V(max) values among individuals, disposition of CH into the two competing pathways was relatively constant. CONCLUSIONS: These data support the use of cryopreserved human hepatocytes as an experimental system to generate metabolic and genomic information for incorporation into TCE cancer risk assessment models. The data are discussed with regard to cellular factors, other than genotype, that may contribute to the observed variability in metabolism of CH in human liver

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Anaerobiosis revisited: growth of Saccharomyces cerevisiae under extremely low oxygen availability

    Get PDF
    The budding yeast Saccharomyces cerevisiae plays an important role in biotechnological applications, ranging from fuel ethanol to recombinant protein production. It is also a model organism for studies on cell physiology and genetic regulation. Its ability to grow under anaerobic conditions is of interest in many industrial applications. Unlike industrial bioreactors with their low surface area relative to volume, ensuring a complete anaerobic atmosphere during microbial cultivations in the laboratory is rather difficult. Tiny amounts of O2 that enter the system can vastly influence product yields and microbial physiology. A common procedure in the laboratory is to sparge the culture vessel with ultrapure N2 gas; together with the use of butyl rubber stoppers and norprene tubing, O2 diffusion into the system can be strongly minimized. With insights from some studies conducted in our laboratory, we explore the question ‘how anaerobic is anaerobiosis?’. We briefly discuss the role of O2 in non-respiratory pathways in S. cerevisiae and provide a systematic survey of the attempts made thus far to cultivate yeast under anaerobic conditions. We conclude that very few data exist on the physiology of S. cerevisiae under anaerobiosis in the absence of the anaerobic growth factors ergosterol and unsaturated fatty acids. Anaerobicity should be treated as a relative condition since complete anaerobiosis is hardly achievable in the laboratory. Ideally, researchers should provide all the details of their anaerobic set-up, to ensure reproducibility of results among different laboratories. A correction to this article is available online at http://eprints.whiterose.ac.uk/131930/ https://doi.org/10.1007/s00253-018-9036-

    Lipids of yeasts

    No full text
    corecore