43 research outputs found

    NFB and Survivin-Mediated Radio-Adaptive Response

    No full text

    Oral administration is as effective as intraperitoneal administration of amifostine in decreasing nitroxide EPR signal decay in vivo

    No full text
    AbstractA rapid method to determine the systemic incorporation of amifostine has been sought in order to determine the effectiveness of different administration routes without the delay inherent in awaiting therapeutic results. Consistent changes in animal measurements of nitroxide signal decay were monitored using in vivo EPR at frequencies low enough to ensure uniform sensitivity to organs deep in 20-g C3H mice. Conditions included both co-administration of the amifostine with the carbamoyl-proxyl spin probe (CP) via i.p. injection (n=6) and oral administration (n=8) of the amifostine. These decreased the first order rate of decay of the CP EPR signal after a dose of 13.5 Gy radiation, by 23% and 18%, respectively. These changes were significantly different from the rate of decay of the CP EPR signal without amifostine, but were statistically indistinguishable from each other. These data demonstrate: (1) condition-dependent exponential decay of CP EPR signal allowing its use to determine systemic availability of a drug, and (2) that oral administration and i.p. injection of amifostine are both effective in affecting the CP EPR signal decay rate in a mouse model. This is a strong indicator of similar bioavailability in mice from both routes of administration

    Very low doses of ionizing radiation and redox associated modifiers affect survivin-associated changes in radiation sensitivity

    No full text
    Exposure of cells to a dose of ionizing radiation as low as 5mGy can induce changes in radiation sensitivity expressed by cells exposed to subsequent higher doses at later times. This is referred to as an adaptive effect. We describe a unique survivin-associated adaptive response in which increased radiation resistance or sensitization of cells can be induced by exposure to 5mGy or to the reactive oxygen species (ROS) generating drug Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a naturally occurring anthraquinone. The purpose of this study was to determine the role of ROS generating processes in affecting both the intracellular localization of the inhibitor of apoptosis protein survivin and its subsequent effect on radiation response in the presence or absence of the anti-oxidant N-acetyl-L-cysteine (NAC). Experiments were performed using two well characterized murine sarcomas: SA-NH p53 wild-type (WT) and FSa p53 mutant (Mut), grown either in culture or as solid tumors in the right hind legs of C3H mice. Doses of 5mGy or 50μM Emodin were used to induce changes in the response of these tumor cells to higher radiation exposures using a multi-dosing paradigm. Effects on radiation sensitivity were determined for SA-NH and FSa cells as a function of survivin translocation either to the cytoplasm or nucleus in the presence or absence of 10mM NAC treatment. In vitro survival assays (2Gy per fraction, two once daily fractions) and tumor growth delay (TGD) (5Gy per fraction, five once daily fractions) studies were performed. Intracellular localization of survivin was determined by enzyme-linked immunosorbent assay (ELISA) and correlated to survival response and treatment conditions. 2Gy alone had no effect on intracellular translocation of survivin. When preceded 15min earlier by 5mGy or Emodin exposures, survivin became elevated in the cytoplasm of p53 WT SA-NH as compared to the nuclei of p53 Mut FSa cells. SA-NH cells transfected with p53 small interfering RNA (siRNA), in contrast, responded similarly to p53 Mut FSa cells by becoming more radiation sensitive if exposed to 5mGy prior to each 2Gy irradiation. In contrast to their respective responses to five once daily 5Gy fractions, SA-NH tumors were protected by 5mGy exposures administered 15min prior to each daily 5Gy dose as evidenced by a more rapid growth (1.9 day decrease in TGD, P=0.032), while FSa tumors were sensitized, growing at a much slower rate (4.5 day increase in TGD, P<0.001). Exposure of SA-NH and FSa tumor cells to 10mM NAC inhibited the ability of 5mGy and Emodin to induce intracellular translocation of survivin and the corresponding altered adaptive survival response. The survivin-associated adaptive response can be induced following a multi-dosing scheme in which very low radiation doses are followed shortly thereafter by higher doses consistent with a standard image guided radiotherapy protocol that is currently widely used in the treatment of cancer. While induced by exposure to ROS generating stresses, the ultimate expression of changes in radiation response is dependent upon the bi-functionality of the tumor associated protein survivin and its intracellular translocation

    The Increase in Animal Mortality Risk following Exposure to Sparsely Ionizing Radiation Is Not Linear Quadratic with Dose

    No full text
    <div><p>Introduction</p><p>The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREF<sub>LSS</sub>). It was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and a limited number of animal studies.</p><p>Methods and Results</p><p>We argue that the linear-quadratic model does not provide appropriate support to estimate the risk of contemporary exposures. In this work, we re-estimated DDREF<sub>LSS</sub> using 15 animal studies that were not included in BEIR VII’s original analysis. Acute exposure data led to a DDREF<sub>LSS</sub> estimate from 0.9 to 3.0. By contrast, data that included both acute and protracted exposures led to a DDREF<sub>LSS</sub> estimate from 4.8 to infinity. These two estimates are significantly different, violating the assumptions of the linear-quadratic model, which predicts that DDREF<sub>LSS</sub> values calculated in either way should be the same.</p><p>Conclusions</p><p>Therefore, we propose that future estimates of the risk of protracted exposures should be based on direct comparisons of data from acute and protracted exposures, rather than from extrapolations from a linear-quadratic model. The risk of low dose exposures may be extrapolated from these protracted estimates, though we encourage ongoing debate as to whether this is the most valid approach. We also encourage efforts to enlarge the datasets used to estimate the risk of protracted exposures by including both human and animal data, carcinogenesis outcomes, a wider range of exposures, and by making more radiobiology data publicly accessible. We believe that these steps will contribute to better estimates of the risks of contemporary radiation exposures.</p></div
    corecore