9 research outputs found

    Glucocorticoids promote Von Hippel Lindau degradation and Hif-1α stabilization

    Get PDF
    Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner. Importantly, GCs activated HIF transcriptional responses in a zebrafish mutant line harboring a point mutation in the GR DNA-binding domain, suggesting a nontranscriptional route for GR to activate HIF signaling. We noted that GCs increase the transcription of several key regulators of glucose metabolism that contain HREs, suggesting a role for GC/HIF cross-talk in regulating glucose homeostasis. Importantly, we show that GCs stabilize HIF protein in intact human liver tissue and isolated hepatocytes. We find that GCs limit the expression of Von Hippel Lindau protein (pVHL), a negative regulator of HIF, and that treatment with the c-src inhibitor PP2 rescued this effect, suggesting a role for GCs in promoting c-src–mediated proteosomal degradation of pVHL. Our data support a model for GCs to stabilize HIF through activation of c-src and subsequent destabilization of pVHL

    Identification of a window of androgen sensitivity for somatic cell function in human fetal testis cultured ex vivo

    Get PDF
    BACKGROUND: Reduced androgen action during early fetal development has been suggested as the origin of reproductive disorders comprised within the testicular dysgenesis syndrome (TDS). This hypothesis has been supported by studies in rats demonstrating that normal male development and adult reproductive function depend on sufficient androgen exposure during a sensitive fetal period, called the masculinization programming window (MPW). The main aim of this study was therefore to examine the effects of manipulating androgen production during different timepoints during early human fetal testis development to identify the existence and timing of a possible window of androgen sensitivity resembling the MPW in rats. METHODS: The effects of experimentally reduced androgen exposure during different periods of human fetal testis development and function were examined using an established and validated human ex vivo tissue culture model. The androgen production was reduced by treatment with ketoconazole and validated by treatment with flutamide which blocks the androgen receptor. Testicular hormone production ex vivo was measured by liquid chromatography-tandem mass spectrometry or ELISA assays, and selected protein markers were assessed by immunohistochemistry. RESULTS: Ketoconazole reduced androgen production in testes from gestational weeks (GW) 7–21, which were subsequently divided into four age groups: GW 7–10, 10–12, 12–16 and 16–21. Additionally, reduced secretion of testicular hormones INSL3, AMH and Inhibin B was observed, but only in the age groups GW 7–10 and 10–12, while a decrease in the total density of germ cells and OCT4(+) gonocytes was found in the GW 7–10 age group. Flutamide treatment in specimens aged GW 7–12 did not alter androgen production, but the secretion of INSL3, AMH and Inhibin B was reduced, and a reduced number of pre-spermatogonia was observed. CONCLUSIONS: This study showed that reduced androgen action during early development affects the function and density of several cell types in the human fetal testis, with similar effects observed after ketoconazole and flutamide treatment. The effects were only observed within the GW 7–14 period—thereby indicating the presence of a window of androgen sensitivity in the human fetal testis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-022-02602-y

    L'Écho : grand quotidien d'information du Centre Ouest

    No full text
    20 dĂ©cembre 19171917/12/20 (A46).Appartient Ă  l’ensemble documentaire : PoitouCh

    Selective Small Molecule Probes for the Hypoxia Inducible Factor (HIF) Prolyl Hydroxylases

    No full text
    The hypoxia inducible factor (HIF) system is central to the signaling of low oxygen (hypoxia) in animals. The levels of HIF-α isoforms are regulated in an oxygen-dependent manner by the activity of the HIF prolyl-hydroxylases (PHD or EGLN enzymes), which are Fe­(II) and 2-oxoglutarate (2OG) dependent oxygenases. Here, we describe biochemical, crystallographic, cellular profiling, and animal studies on PHD inhibitors including selectivity studies using a representative set of human 2OG oxygenases. We identify suitable probe compounds for use in studies on the functional effects of PHD inhibition in cells and in animals
    corecore