161 research outputs found

    Tracking through life stages: adult, immature and juvenile autumn migration in a long-lived seabird

    Get PDF
    Seasonal long-distance migration is likely to be experienced in a contrasted manner by juvenile, immature and adult birds, leading to variations in migratory routes, timing and behaviour. We provide the first analysis of late summer movements and autumn migration in these three life stages, which were tracked concurrently using satellite tags, geolocators or GPS recorders in a long-ranging migratory seabird, the Scopoli’s shearwater (formerly named Cory’s shearwater, Calonectris diomedea ) breeding on two French Mediterranean islands. During the late breeding season, immatures foraged around their colony like breeding adults, but they were the only group showing potential prospecting movements around non-natal colonies. Global migration routes were broadly comparable between the two populations and the three life stages, with all individuals heading towards the Atlantic Ocean through the strait of Gibraltar and travelling along the West African coast, up to 8000 km from their colony. However, detailed comparison of timing, trajectory and oceanographic conditions experienced by the birds revealed remarkable age-related differences. Compared to adults and immatures, juveniles made a longer stop-over in the Balearic Sea (10 days vs 4 days in average), showed lower synchrony in crossing the Gibraltar strait, had more sinuous pathways and covered longer daily distances (240 km.d -1 vs 170 km.d -1 ). Analysis of oceanographic habitats along migratory routes revealed funnelling selection of habitat towards coastal and more productive waters with increasing age. Younger birds may have reduced navigational ability and learn progressively fine-scale migration routes towards the more profitable travelling and wintering areas. Our study demonstrates the importance of tracking long-lived species through the stages, to better understand migratory behavior and assess differential exposure to at-sea threats. Shared distribution between life stages and populations make Scopoli’s shearwaters particularly vulnerable to extreme mortality events in autumn and winter. Such knowledge is key for the conservation of critical marine habitats

    Vultures of the Seas: Hyperacidic Stomachs in Wandering Albatrosses as an Adaptation to Dispersed Food Resources, including Fishery Wastes

    Get PDF
    Animals are primarily limited by their capacity to acquire food, yet digestive performance also conditions energy acquisition, and ultimately fitness. Optimal foraging theory predicts that organisms feeding on patchy resources should maximize their food loads within each patch, and should digest these loads quickly to minimize travelling costs between food patches. We tested the prediction of high digestive performance in wandering albatrosses, which can ingest prey of up to 3 kg, and feed on highly dispersed food resources across the southern ocean. GPS-tracking of 40 wandering albatrosses from the Crozet archipelago during the incubation phase confirmed foraging movements of between 475–4705 km, which give birds access to a variety of prey, including fishery wastes. Moreover, using miniaturized, autonomous data recorders placed in the stomach of three birds, we performed the first-ever measurements of gastric pH and temperature in procellariformes. These revealed surprisingly low pH levels (average 1.50±0.13), markedly lower than in other seabirds, and comparable to those of vultures feeding on carrion. Such low stomach pH gives wandering albatrosses a strategic advantage since it allows them a rapid chemical breakdown of ingested food and therefore a rapid digestion. This is useful for feeding on patchy, natural prey, but also on fishery wastes, which might be an important additional food resource for wandering albatrosses

    Patterns of at-sea behaviour at a hybrid zone between two threatened seabirds

    Get PDF
    Patterns of behavioural variation and migratory connectivity are important characteristics of populations, particularly at the edges of species distributions, where processes involved in influencing evolutionary trajectories, such as divergence, mutual persistence, and natural hybridization, can occur. Here, we focused on two closely related seabird species that breed in the Mediterranean: Balearic shearwaters (Puffinus mauretanicus) and Yelkouan shearwaters (Puffinus yelkouan). Genetic and phenotypic evidence of hybridization between the two species on Menorca (the eastern and westernmost island in the breeding ranges of the two shearwaters, respectively) has provided important insights into relationships between these recently diverged species. Nevertheless, levels of behavioural and ecological differentiation amongst these populations remain largely unknown. Using geolocation and stable isotopes, we compared the at-sea movement behaviour of birds from the Menorcan ‘hybrid’ population with the nearest neighbouring populations of Balearic and Yelkouan shearwaters. The Menorcan population displayed a suite of behavioural features intermediate to those seen in the two species (including migration strategies, breeding season movements and limited data on phenology). Our findings provide new evidence to support suggestions that the Menorcan population is admixed, and indicate a role of non-breeding behaviours in the evolutionary trajectories of Puffinus shearwaters in the Mediterranean

    Measuring Energy Expenditure in Sub-Adult and Hatchling Sea Turtles via Accelerometry

    Get PDF
    Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake (o2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25–44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean o2 over an hour in a green turtle from measures of ODBA and mean flipper length (R2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22–30°C) had only a small effect on o2. A o2-ODBA equation for the loggerhead hatchling data was also significant (R2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets

    Earlier colony arrival but no trend in hatching timing in two congeneric seabirds (Uria spp.) across the North Atlantic

    Get PDF
    A global analysis recently showed that seabird breeding phenology (as the timing of egg-laying and hatching) does not, on average, respond to temperature changes or advance with time (Keogan et al. 2018 Nat. Clim. Change8, 313–318). This group, the most threatened of all birds, is therefore prone to spatio-temporal mismatches with their food resources. Yet, other aspects of the breeding phenology may also have a marked influence on breeding success, such as the arrival date of adults at the breeding site following winter migration. Here, we used a large tracking dataset of two congeneric seabirds breeding in 14 colonies across 18° latitudes, to show that arrival date at the colony was highly variable between colonies and species (ranging 80 days) and advanced 1.4 days/year while timing of egg-laying remained unchanged, resulting in an increasing pre-laying duration between 2009 and 2018. Thus, we demonstrate that potentially not all components of seabird breeding phenology are insensitive to changing environmental conditions

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Meeting Paris agreement objectives will temper seabird winter distribution shifts in the North Atlantic Ocean

    Get PDF
    We explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a “no mitigation” scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine‐protected areas in a changing ocean
    corecore