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Metabolic rate throughout the annual cycle reveals the demands
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Abstract. Aquatic endotherms living in polar regions are faced with a multitude of
challenges, including low air and water temperatures and low illumination, especially in
winter. Like other endotherms from cold environments, Great Cormorants (Phalacrocorax
carbo) living in Arctic waters were hypothesized to respond to these challenges through a
combination of high daily rate of energy expenditure (DEE) and high food requirements,
which are met by a high rate of catch per unit effort (CPUE). CPUE has previously been
shown in Great Cormorants to be the highest of any diving bird. In the present study, we
tested this hypothesis by making the first measurements of DEE and foraging activity of
Arctic-dwelling Great Cormorants throughout the annual cycle. We demonstrate that, in fact,
Great Cormorants have surprisingly low rates of DEE. This low DEE is attributed primarily
to very low levels of foraging activity, particularly during winter, when the cormorants spent
only 2% of their day submerged. Such a low level of foraging activity can only be sustained
through consistently high foraging performance. We demonstrate that Great Cormorants have
one of the highest recorded CPUEs for a diving predator; 18.6 g per minute submerged (95%
prediction interval 13.0–24.2 g/min) during winter. Temporal variation in CPUE was
investigated, and highest CPUE was associated with long days and shallow diving depths. The
effect of day length is attributed to seasonal variation in prey abundance. Shallow diving leads
to high CPUE because less time is spent swimming between the surface and the benthic zone
where foraging occurs. Our study demonstrates the importance of obtaining accurate
measurements of physiology and behavior from free-living animals when attempting to
understand their ecology.

Key words: Arctic; basal metabolic rate; catch per unit effort, CPUE; daily energy expenditure; day
length; diving depths; field metabolic rate; foraging efficiency; Great Cormorant; Greenland; Phalacrocorax
carbo; seasonal variation.

INTRODUCTION

Endotherms living in cold environments have higher

maintenance and daily rates of energy expenditure

(DEE) than those living in warm environments (Ander-

son and Jetz 2005, White et al. 2007a). Therefore,

because of the general global temperature gradient,

animals living at high latitudes tend to have higher

energy demands than those living at low latitudes.

Diving birds living in cold environments and diving in

cold water must additionally deal with the conflicting

requirements for insulation and buoyancy, because

thermoregulation is facilitated by retaining air in the

plumage and this increases buoyancy (Wilson et al.

1992). Cormorants (Phalacrocoracidae) have a partially

wettable plumage that reduces buoyancy at the cost of

increased rates of heat loss to the water, particularly

during deep dives when the plumage air layer is further

compressed by hydrostatic pressure (Grémillet et al.

2005a, Enstipp et al. 2006b). This strategy is intuitively

sensible in warm, tropical waters, where cormorants are

thought to have evolved (van Tets 1976). However,

cormorants now have a global distribution, and the

range of Great Cormorants Phalacrocorax carbo extends

from New Zealand to above the Arctic Circle in

Greenland, where during winter they dive in water at

subzero temperatures and are exposed to air tempera-

tures below �208C (Grémillet et al. 2005c, White et al.

2008a).

It has been suggested that Great Cormorants in the

Arctic ‘‘live life in the fast lane’’ (Grémillet and Wilson

1999), combining high DEE with high rates of food

consumption. Estimates of food consumption in Great

Cormorants have been obtained using a variety of

indirect approaches. These include laboratory measure-

ments of energy expenditure (e.g., Schmid et al. 1995,
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Grémillet et al. 2001), field measurements of behavior

(e.g., Grémillet et al. 2004, 2005c), estimation of mass of

stomach contents (e.g., Grémillet 1997), and bioener-

getics modeling (e.g., Grémillet et al. 2003). Modeling

approaches using such data suggest that Great Cormo-

rants wintering in Greenland will require about 1170 g

of fish per day (Grémillet et al. 2005c), which is 75%
more than that required by conspecifics of similar mass

wintering in Scotland (Grémillet et al. 2003).

To support these estimates of high food requirements,

it has been suggested that Great Cormorants are

extremely efficient foragers and have a remarkably high

catch per unit effort (CPUE, the rate at which prey are

captured during foraging dives). A number of studies

have suggested that CPUE during foraging of Great

Cormorants and other Phalacrocoracidae is an order of

magnitude greater than that of other diving seabirds

(Enstipp et al. 2007b). However, although CPUE has

been evaluated and compared within and between

seabird species, it remains a rather elusive quantity,

rarely calculated in studies of foraging endotherms, and

usually relying on modeled estimates of food require-

ments (e.g., Enstipp et al. 2006a). If calculated

accurately and applied appropriately, CPUE is poten-

tially a very valuable tool in comparative studies of

foraging, both within and between species. Great

Cormorants are an excellent model for the study of

what influences and determines variability in CPUE, as

they do not buffer temporal variations in food

consumption by the laying down and consumption of

body reserves (Grémillet 1997, Grémillet et al. 2003,

2005c). As a result, the DEE of cormorants should be

matched by daily prey consumption.

The present study aimed to test the hypothesis

generated by indirect methods that Great Cormorants

living in Greenland have high DEE and food require-

ments, as is the case for other high-latitude-dwelling

endotherms. The goal was to determine rates of energy

expenditure throughout the complete annual cycle of

Greenland-dwelling birds at high temporal resolution (5

minutes), and to examine the factors that influence intra-

annual variation in energy expenditure. The heart rate

technique (Butler et al. 2004) was used to derive the

metabolic rate of free-living birds, by converting heart

rate measured with implantable heart-rate data loggers

into rates of oxygen consumption, with a calibration

relationship obtained from captive Great Cormorants

resting, walking, and diving in the laboratory. These

were converted to DEE, and in turn were used to

calculate food requirements throughout the annul cycle.

When combined with data for diving behavior of

Greenland-dwelling Great Cormorants and the energy

density of their food, CPUE during the winter could be

estimated. DEE was also decomposed into rate of

energy expenditure associated with activity and with

maintenance. Variation in these rates was related to a

range of environmental and behavioral parameters

(water temperature, ambient illumination, day length,

dive depth, and daily time submerged) to evaluate how

Great Cormorants are able to thrive in such an

apparently hostile environment.

MATERIALS AND METHODS

In June 2002, 10 breeding male Great Cormorants

raising young chicks on Disko (698300 N, 548050 W),

West Greenland, were equipped with heart-rate data

loggers (HRDL: 60 3 24 3 7 mm, mass 20 g, ;0.6% of

the body mass of the cormorants studied). These

HRDLs previously have been shown to have no

significant impact on the behavior and physiology of a

range of species, including Great Cormorants (Guille-

mette et al. 2002, Green et al. 2004, Grémillet et al.

2005c). The HRDLs were programmed to record data

every second day for a period of one year. On the days

during which HRDLs were recording, heart rate and

pressure (depth) were stored every 2 s and body

temperature was stored every 6 s. All devices were

calibrated before and after use (depth resolution 0.1 m,

temperature resolution 0.138C). Loggers were surgically

implanted under isoflurane anesthesia following Ste-

phenson et al. (1986); additional details and analyses of

this data set are provided elsewhere (Grémillet et al.

2005b, c, White et al. 2008a). Nine birds were recaptured

after one year of logger deployment and one bird after

two years of deployment, but only seven data loggers

recorded valid data.

Data analyses

Data from the free-living birds were classified into

three seasons, based on changes in behavioral strategies

(White et al. 2008a). These were: (1) late breeding, the

first eight weeks from 1 July during the breeding season

in which the data loggers were deployed; (2) winter, the

period from September to March during which the

cormorants move south along the west coast of Green-

land, winter at locations in southern Greenland, and

return to the breeding grounds (C. R. White, G. R.

Martin, P. J. Butler, D. Boertmann, J. A. Green, and D.

Grémillet, unpublished manuscript); and (3) early breed-

ing, the last eight weeks before 1 July of the subsequent

breeding season when the birds were recaptured.

Calculation of energy expenditure.—Mean heart rate

( fH) was calculated every five minutes for each bird and

was converted into mass-independent rate of oxygen

consumption (cV̇O2, mL O2�kg�1.1�min�1, where ‘‘c’’

denotes corrected for mass) using a calibration relation-

ship derived for laboratory birds (for a full description

of calibration procedures, see the Appendix). A daily

mean was calculated from these values and a grand

mean of cV̇O2 was computed for each day of the

deployment period and multiplied by the mean body

mass of the free-living Great Cormorants (3.5 kg; range

3.3–3.7 kg) to give mean daily rate of oxygen

consumption (V̇O2). Mean daily V̇O2 was converted to

daily rate of energy expenditure (DEE, kilojoules/day)

by multiplying by the energy equivalence of 18.4 J/mL
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O2, assuming a largely proteinaceous diet (Dunn 1975,

Schmidt-Nielsen 1997, Grémillet et al. 2004). Estimates

of DEE were compared between seasons using Z tests,

with Bonferroni corrections applied for multiple com-

parisons. Resting rate of energy expenditure (REE,

kilojoules/day) was calculated by the same method,

using the grand mean of the lowest 15-minute average of

fH for each bird. Activity rate of energy expenditure

(AEE, kilojoules/day) was calculated as the difference

between DEE and REE. A model to explain daily

variation in AEE was then constructed by relating AEE

to a series of environmental parameters: water temper-

ature (8C); ambient illumination during diving (log lux),

maximum daily dive depth (meters); day length (hours),

and daily time submerged (hours). Water temperature

and ambient illumination during diving were estimated

from published data for the same population of

cormorants obtained during winter 2004–2005 (White

et al. 2008a). Day length was obtained for Nuuk, which

is near the center of the winter distribution of

cormorants in Greenland (Merkel et al. 2002) from

The World Clock (2009). Daily time submerged was

calculated as we will describe. The best-fit model was

estimated using stepwise backward elimination from a

full model that included all of the parameters. Param-

eters were assessed on the basis of Akaike’s Information

Criterion (AIC; Burnham and Anderson 2001, 2002),

and were eliminated from the model if their exclusion

increased the value of AIC by less than 2. The relative

importance of a parameter was assessed on the basis of

its Akaike weight (wi ), which was calculated as the

probability that a model without that parameter

provided a better fit to the data than a model including

that parameter.

Calculation of daily prey consumption (DPC).—

Unlike many seabirds (e.g., Green et al. 2009),

cormorants do not buffer variations in daily energy

expenditure and food consumption by laying down and

utilizing energy reserves of body fat (Grémillet et al.

2003). It was therefore possible to convert DEE into

daily prey consumption (grams/day) by simply dividing

DEE by the digestive efficiency of 0.77 (Brugger 1993)

and then dividing this value by the energy density of the

prey of 4.0 kJ/g (Grémillet et al. 2005c). This estimate of

energy density is based on the average prey consumed by

cormorants during summer. The energy density of the

various species taken by cormorants in summer ranges

from 3.9 kJ/g (capelin Mallotus villosus) to 6.8 kJ/g

(lesser sand-eel Ammodytes marinus), but the majority of

their diet consists of sculpin Myoxocephalus spp. (62–

82% by mass; energy density 4.1 kJ/g) and capelin (13–

29% by mass) (Grémillet et al. 2004). In winter,

cormorants also forage mainly on sculpin (Grémillet et

al. 2001), so an average energy density of 4.0 kJ/g is

appropriate for the entire year (Grémillet et al. 2005c).

Calculation of daily time submerged (DTS).—To

evaluate diving behavior, DTS (minutes/day) was

calculated for each day of the deployment period by

simply summing the amount of time the birds spent at

depths deeper than 1 m. Maximum dive depth attained
for each day of the deployment was also noted. Changes

in DTS were compared between seasons using mixed-
model ANOVA with season as a fixed effect and

individual ID as a random effect, followed by Tukey
post hoc multiple comparisons.

Calculation of catch per unit effort (CPUE).—CPUE
(grams/minute submerged) was calculated as DPC/DTS.
CPUE could only be calculated for the winter period,

because detailed information was not available on the
food requirements of nestlings during breeding periods;

nestlings can consume up to 35% of the food caught by
their male parents (Grémillet et al. 2000). Daily

variation in CPUE during winter was explored by
consideration of a variety of abiotic environmental

parameters: water temperature, maximum illumination
during daylight, day length, relative lunar brightness

(estimated from lunar phase angle according to Allen
[1973]), and maximum dive depth. Water temperature,

maximum illumination, and day length were estimated
as described previously. Models were compared on the

basis of AIC and wi.
Of the 120 possible combinations of parameters, 16

models for CPUE were specified a priori based on
previous studies of the foraging energetics and behavior

of Phalacrocoracidae. These explained CPUE in terms
of visual or energetic parameters, or a combination of

both. Visual models used combinations of ambient
illumination (both daylight and moonlight), which
influences visual acuity (White et al. 2007b) and foraging

behavior (Wanless et al. 1999), and day length, which
has previously been suggested as a correlate of CPUE

(Grémillet et al. 2005b). Energetic models used water
temperature and dive depth, which influence metabolic

rate both in the present study (see Results) and in studies
of other species of Phalacrocorax (Enstipp et al. 2005,

Enstipp et al. 2006b).

RESULTS

Free-living measurements

The distribution of fH recorded in free-living Great
Cormorants was bimodal, showing peaks at around 100

and 260 beats/min. These peaks coincided with the
average heart rates found while captive Great Cormo-

rants rested on a treadmill and while the same birds were
active on the treadmill and swim flume, respectively (see

Appendix). The distribution also had a long tail in the
region of 350–450 beats/min. Visual inspection of raw

heart-rate data identified some periods that were likely
to be flight (consistently high heart rates immediately

before diving bouts). Although it was impossible to
identify reliably and unambiguously all periods of flight,

these observations suggest that fH during flight was
around 400 beats/min (see Appendix).

Daily rate of energy expenditure (DEE) was relatively
invariant during the majority of the study period,

usually around 1500–1700 kJ/d (Fig. 1a). However,
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DEE was significantly lower during early breeding than

it was during both late breeding (Z test: Z ¼ 3.5, P ,

0.001; Table 1) and winter (Z¼ 3.3, P , 0.001; Table 1).

DEE was significantly positively correlated with resting
rate of energy expenditure (REE, r¼ 0.84, t13¼ 5.58, P

, 0.001; Fig. 2a), but not with activity rate of energy

expenditure (AEE, r¼0.28, t13¼1.04, P¼0.31; Fig. 2b).

The best model for AEE included water temperature,

maximum dive depth, ambient illumination during

diving, day length, and daily time submerged, each of

which were significant (P � 0.003; Table 2).

Daily prey consumption (DPC) showed that the birds

consume ;40% less food per day during early breeding

than during winter (Table 1). This is presumably a result

of the birds spending more time ashore during courtship

FIG. 1. Changes throughout the annual cycle in free-living
Great Cormorants (Phalacrocorax carbo) breeding and over-
wintering in Greenland. (a) Daily rate of energy expenditure
(DEE, open circles) and resting rate of energy expenditure
(REE, solid circles); (b) daily time submerged (DTS); and (c)
catch per unit effort (CPUE). Data are presented as means 6
SEE (for DEE and REE) or SEM (for DTS and CPUE).

TABLE 1. Mean daily rate of energy expenditure (DEE), daily prey consumption (DPC), and daily
time spent submerged (DTS) for three periods during the annual cycle in Great Cormorants,
Phalacrocorax carbo.

Period n DEE (kJ/d) DPC (g/d) DTS (h/d) DEE/REE

Late breeding 7 1662a (141/154) 536a (45/49) 0.65a 6 0.04 2.2
Winter 7 1717a (144/158) 553a (47/51) 0.50b 6 0.06 1.9
Early breeding 3 1028b (115/129) 331b (37/42) 0.56ab 6 0.05 2.0

Notes: Data are presented with standard error of the estimate, SEE (for DEE and DPC) or
standard error of the mean, SEM (for DTS) given in parentheses. SEEs are uneven due to the
curvilinear nature of the relationship between heart rate and mass-independent rate of oxygen
consumption (see Appendix); two SEE values are presented because SEE is asymmetric when back-
transformed. For each variable, seasons connected by the same superscript letter were not
significantly different from each other (P � 0.05). Also shown is DEE/REE for each season, where
REE is the resting rate of energy expenditure (kJ/d).

FIG. 2. Correlations between resting rate of energy expen-
diture (REE) in Great Cormorants breeding and overwintering
in Greenland and (a) daily rate of energy expenditure (DEE);
and (b) activity rate of energy expenditure (AEE ¼ DEE �
REE). Each point represents a single day and is shown 6SEE.
The relationship between DEE and REE is significant (r¼ 0.84,
t13¼ 5.58, P , 0.001); the relationship between AEE and REE
is not (r¼ 0.28, t13 ¼ 1.04, P¼ 0.31).
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in early breeding. Daily time submerged (DTS) showed

day-to-day variability both within and between seasons.

DTS increased during late breeding, before declining

dramatically at the start of the winter migration (Fig.

1b). There was then a systematic increase and then

decrease in DTS, with DTS reaching a winter maximum

that coincided with the shortest days of mid-winter. At

the start of early breeding, DTS was high and variable

and then declined to the lowest levels of the annual

cycle, also presumably coincident with courtship behav-

ior on land (Fig. 1b). DTS was significantly greater in

late breeding than in winter (F2,8¼ 6.04, P¼ 0.025), but

there was no difference in mean DTS between early

breeding and winter or between early and late winter

(Table 1).

Because catch per unit effort (CPUE) was derived by

a combination of DEE and the inverse of DTS, and

DEE was relatively invariant, CPUE tended to show

trends that were the reverse of those noted for DTS,

reaching a minimum at mid-winter (Fig. 1c). The model

that best explained the daily variation in CPUE during

winter included both visual and energetic parameters

(Table 3). Models containing exclusively either visual or

energetic parameters were more than 700 times less

likely to explain daily variation in CPUE than the best

model, which incorporated significant effects of day

length and maximum dive depth. CPUE increased as

day length increased and maximum dive depth decreased

(Fig. 3). Mean CPUE for the entire winter was 18.6 g per

minute submerged, with a 95% prediction interval of

13.0–24.2 g per minute submerged.

DISCUSSION

The daily rate of energy expenditure (DEE) of free-

living, Arctic-dwelling Great Cormorants was consider-

ably lower than previous estimates made using a

bioenergetic modeling approach (Grémillet et al. 2003,

2005c). As a result, catch per unit effort (CPUE) was

also substantially lower than previous estimates for this

population. The bioenergetic modeling approach uses

behavioral time budgets recorded from free-living birds,

but relies on metabolic data measured for captive birds

at rest and swimming in a 1 m deep static water tunnel

under cold conditions, as well as modeled estimates of

flight costs, the energy cost of warming ingested fish

food, and additional data taken from the literature

(Grémillet et al. 2003). In contrast, DEE in the present

study is measured continuously for free-living birds

using a calibrated relationship between heart rate and

metabolic rate. Therefore, the present study demon-

strates the importance of obtaining accurate measure-

ments of the behavior and physiology of free-living

animals. For example, our data from free-living

cormorants reveals a negative relationship between

maximum dive depth and activity energy expenditure,

AEE (Table 2), so the use of data for captive birds

diving to only 1 m for bioenergetic models will tend to

overestimate AEE and therefore also DEE. As such,

TABLE 2. Parameter estimates for a model explaining variation in activity rate of energy
expenditure (AEE; kJ/d) of Great Cormorants in terms of water temperature (T), ambient
illumination (IL), daily maximum dive depth (D), day length (DL), and daily time submerged
(DTS).

Term Units Estimate SE t P DAIC wi

Intercept 2377 550 4.32 ,0.0001
T 8C �67.1 10.5 �6.37 ,0.0001 16 0.00
log(IL) lux �585 194 �3.02 0.003 2.6 0.17
D m �12.9 4.2 �3.05 0.003 2.7 0.16
DL h 90.1 20.7 4.35 ,0.0001 7.2 0.02
DTS h 275 51 5.39 ,0.0001 12 0.00
Full model 0 0.64

Notes: DAIC is the increase in Akaike’s information criterion (AIC) associated with excluding
each parameter from the model, compared to the full model with all parameters included. The
Akaike weight (wi ) is the probability that a model with a given parameter excluded provides the
best fit to the data, compared to the full model. The full model with all parameters included has the
lowest value of AIC (DAIC ¼ 0) and therefore provides the best fit to the data (wi ¼ 0.64).

TABLE 3. Akaike’s information criterion (AIC) and Akaike
weights (wi ) for seven visual, three energetic, and six
combined statistical models to explain daily variation in
catch per unit effort by Great Cormorants during winter.

Category Model AIC wi

Visual LB �183.2 ,0.001
IL �212.0 ,0.001
DL �213.4 0.001
IL þ LB �210.4 ,0.001
DL þ LB �211.8 ,0.001
IL þ DL �211.8 ,0.001
LB þ IL þ DL �210.1 ,0.001

Energetic T �212.3 ,0.001
D �208.4 ,0.001
T þ D �210.7 ,0.001

Visual and energetic IL þ D �224.1 0.13
DL þ D �226.6 0.44
IL þ T �222.5 0.06
DL þ T �224.4 0.15
IL þ T þ D �222.4 0.05
DL þ T þ D �224.7 0.18

Notes: Model terms are: LB, log(relative lunar brightness);
IL, log(maximum ambient illumination, lux); DL, day length
(h); T, water temperature (8C); D, mean maximum dive depth
(m). The model with the lowest AIC provides the best fit to the
data, and the probability that a given model provides the best fit
to the data is represented by its Akaike weight.
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measurements of free-living animals can reveal novel

strategies for overcoming ubiquitous problems that may

not be apparent from laboratory studies. Contrary to

the hypothesis that, like other endotherms resident in

cold environments (Anderson and Jetz 2005, White et al.

2007a), Greenland-dwelling Great Cormorants would

have high rates of energy expenditure associated with

their partially wettable plumage (Grémillet et al. 2005a)

and diving in cold water (White et al. 2008a), the present

study demonstrates that the rate of energy expenditure

of these birds is remarkably low.

Daily rate of energy expenditure

of Arctic-dwelling cormorants

The DEE was low throughout the annual cycle. DEE

was only 2.2 3 REE during late breeding, 1.9 3 REE

during winter, and 2.0 3 REE during early breeding

(Table 1). Several previous studies have investigated the

energetics of Great Cormorants, and estimated DEE

and/or daily prey consumption (DPC) using different

methods, at different times of year in captive and wild

populations (Table 4). During breeding, the most

similar estimate of DEE was from a study that

reconstructed diet by analyzing regurgitated pellets, an

approach that is notoriously biased (e.g., Jobling and

Breiby 1986). A measurement of DEE made using the

doubly labeled water technique during winter in

Germany was similar to that of the present study, yet

if the smaller mass of the German Cormorants is

considered, DEE was considerably higher than that in

the present study (Keller and Visser 1999). Nevertheless,

a comparison between breeding and winter DPC

suggests that the present estimates are not unreasonable.

Great Cormorants during late breeding in France

require ;1349 g of fish per day, 41% of which is used

by the chicks (Table 4). If the estimate of late-breeding

DPC from the present study (536 g/d) is compared to

values measured for Greenland cormorants using nest

balances that include food consumed by the chicks (878

g/d; Grémillet et al. 2004), it can be estimated that the

chicks use 39% of total DPC, which is similar to the

percentage of DPC attributable to chicks in France. The

present study suggests that energetics modeling overes-

timated the DPC of Great Cormorants wintering in

Greenland, and that both DPC and DEE were less for

Great Cormorants breeding in arctic Greenland than in

France (Table 4).

Independent of the method selected, it is clear that the

DEE of Great Cormorants is relatively low compared

with that of other species. Interspecific analyses of DEE

and basal metabolic rate (BMR) among seabirds usually

report a DEE/BMR ratio during breeding greater than 3

and often approaching 4 (Ellis and Gabrielsen 2002), the

optimal limit suggested by Drent and Daan (1980). A

broader interspecific comparison indicates that, at least

in part, the low ratio of DEE/REE in Great Cormorants

is a result of a relatively high REE and BMR (Fig. 4).

When compared to all other birds for which comparable

data exist, DEE and BMR are relatively low and high,

respectively, but very much within the range observed

for other species (Fig. 4). The relatively high BMR of

cormorants has been noted previously in other studies of

the Phalacrocoracidae and has been attributed to the

relatively poor insulation provided by their wettable

plumage, even when dry (Chappell et al. 1989).

However, V̇O2 of the captive birds remains independent

of ambient air temperature at temperatures at least as

low as 58C (the lowest temperature at which measure-

ments were made in the present study; see the

Appendix). Thus, the high BMR of cormorants, which

is a general characteristic of birds from cold environ-

ments (White et al. 2007a), is probably associated with

high maximum rates of thermogenesis (Rezende et al.

2002) and cold tolerance (Swanson and Liknes 2006).

Similarly, the seasonal variation observed in BMR of

captive birds (see the Appendix) and REE of wild birds

(Fig. 1a) is presumably also associated with seasonal

variation in temperature and thermogenic capacity

FIG. 3. Significant correlations between catch per unit
effort (CPUE) in Great Cormorants breeding and overwinter-
ing in Greenland and (a) maximum dive depth and (b) day
length. Both correlations were significant and are related to
CPUE according to the equation

CPUE¼ 29.7 3 10 0.026(day length) � 0.017 (maximum depth)

which was the best-fit model for describing log(CPUE) of those
presented in Table 3.
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(Swanson and Olmstead 1999, Swanson and Liknes

2006).

In the present study, the activity and resting

components of DEE are independent (Fig. 2b), which

indicates that AEE and REE (or BMR) can be

considered separate contributors to DEE (Ricklefs et

al. 1996). The main influence on DEE above BMR will

be the amount of time that the birds spend engaged in

energetically costly activities, usually those associated

with foraging. Flight, swimming, and diving are all

energetically expensive activities in comparison to

resting on land (Schmid et al. 1995, Bevan et al. 1997,

Ancel et al. 2000, Enstipp et al. 2005, Enstipp et al.

2006b). However, when compared to the majority of

seabirds, the Phalacrocoracidae are relatively inactive,

spending a very small proportion of their time engaged

in foraging activity; the Great Cormorants in the present

study were no exception. On an average day, Great

Cormorants in Greenland spend less than 3% of the day

submerged during diving (Table 1) and ;5.5% of their

time in flight (Grémillet et al. 2005c). Similarly, during

mid-winter in Norway (708 N), Great Cormorants spend

,5% of each day at sea (Johansen et al. 2001), whereas

individuals breeding in France (498 N) spend ;10% of

the day at sea in water (Grémillet et al. 2001). In

TABLE 4. Daily rate of energy expenditure (DEE) and daily prey consumption (DPC) during the
winter, and breeding seasons recorded in previous studies of Great Cormorants.

Season and location
Body

mass (kg) Sex�
DEE
(kJ/d) DEE/BMR

DPC
(g/d) Method� Source§

Winter (free-living)

Greenland 3.5 M 1717 1.9 553 HR A
Greenland 3.5 M 3632 2.5 1170 EM B
Germany 2.12 ns 2094 2.5 539 DLW C
Scotland 3.2 ns 2779 2.1 672 EM D

Winter (captive)

England 2.4 ns 1560 1.6 335 WFR E
Germany 2.08 ns 1325 1.6 341 DLW C

Breeding, early (free-living)

Greenland 3.5 M 1028 2.0 331} HR A
France 3.2 M 2131 1.8 692} EM F
France 3.2 M 1663 1.4 540} NB F

Breeding, late (free-living)

Greenland 3.5 M 1662 2.2 536} HR A
France 3.2 M 2435 2.1 791}/1349# EM F
France 3.2 M 1410# NB F

Breeding, ns (free-living)||

Greenland 3.5 M 878# NB G
France 3.2 M 828# NB H
The Netherlands 2.6 ns 1178 1.3 330} FP J

� Where available, data from males (M) were selected; sex was not specified (ns) in some studies.
� Key to abbreviations: HR, heart rate; DLW, doubly labeled water; EM, energetics modeling;

WFR, weigh food ration; NB, nest balances; FP, food pellet analysis.
§ Source codes: A, present study (data from Table 1); B, Grémillet et al. (2005c); C, Keller and

Visser (1999); D, Grémillet et al. (2003); E, White et al. (2008b); F, Grémillet et al. (2000); G,
Grémillet et al. (2004); H, Grémillet (1997); J, Platteeuw and Van Eerden (1995).

}Does not include food for nestlings.
# Includes food for nestlings.
jjMeasurements were made during breeding season, but size/age of nestlings and timing of

experiments were not specified.

FIG. 4. Basal metabolic rate (BMR) (solid diamonds,
measured during July 2005 for captive cormorants weighing
2.3 kg and estimated as resting energy expenditure for free-
living 3.5-kg cormorants during winter) and free-living daily
rate of energy expenditure (DEE) (solid circle, measured during
winter) of Great Cormorants in comparison to similar
measurements (DEE: open circles, BMR: open diamonds,
respectively) taken from published studies of other bird species
and presented as a function of their body mass. Data on BMR
are from McKechnie and Wolf (2004). Error bars are obscured
by data points for Great Cormorants and are not shown for the
other species. Data on DEE are from Nagy et al. (1999).
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contrast, Bank Cormorants Phalacrocorax neglectus

breeding in South Africa (338 S) spend ;17% of their

time actively foraging (Wilson and Grémillet 1996),

South Georgian Shags (Phalacrocorax georgianus)

breeding on Bird Island (548 S) spend ;22% of the

day foraging (Bevan et al. 1997), and chick-rearing

Crozet Shags Phalacrocorax melanogenis on Ile de la

Possession (468 S) spend ;25% of their time at sea

(Cook et al. 2007). Most seabirds spend 50% or more of

their time on foraging trips during which they fly, dive,

or rest on the water (e.g., Barlow and Croxall 2002,

Phillips et al. 2005); previous analyses have also shown

that when compared to other birds, Great Cormorants

spend relatively little of their day in flight (Pelletier et al.

2008). Because energetic costs increase in proportion

with the amount of time spent in flight and away from

the breeding colony (Ellis and Gabrielsen 2002), it is not

surprising that species that are more active than Great

Cormorants will tend to have higher rates of daily

energy expenditure.

On a day-to-day basis, DEE of the Great Cormorants

showed an interesting pattern of temporal variability.

There was no change in DEE between the end of the

breeding season and winter, but quite a substantial

decrease in DEE between these two seasons and early

breeding. During the nonbreeding season, AEE was

significantly positively related to day length and daily

time submerged, and significantly negatively related to

water temperature, ambient illumination, and dive

depth. These findings match laboratory measurements

that report a similar effect of water temperature

(Enstipp et al. 2006b). However, in captive Double-

crested Cormorant Phalacrocorax auritus diving to

depths of up to 10 m, metabolic rate is positively related

to dive depth (Enstipp et al. 2006b). A negative

relationship between depth and the net cost of diving

has also been identified for free-living Macaroni

Penguins Eudyptes chrysolophus (Green et al. 2005).

This suggests that the difference between captive and

free-living birds is related to the greater depth attained

by free-living animals, the negative relationship between

buoyancy and depth (Wilson et al. 1992), and a

reduction in the metabolic cost of working against

buoyancy at depth (Wilson et al. 2006, Shepard et al.

2009, Cook et al. 2010). The effect of DTS is not

surprising, because of the relatively high metabolic rate

observed during activity compared to that at rest (see

Appendix). The positive relationship between day length

and AEE possibly arises because relatively long days

provided more foraging opportunities (White et al.

2008a), but the reasons for the negative relationship

between AEE and ambient illumination are less clear.

Cormorants are able to maintain foraging performance

at moderate light levels (Enstipp et al. 2007a), but their

visual acuity declines precipitously at the low levels of

ambient illumination that they encounter during winter

in Greenland (White et al. 2007b, 2008a). Thus, because

the foraging behavior of cormorants is visually guided

(Martin et al. 2008), the negative relationship between

ambient illumination and AEE probably arises as a

consequence of a negative relationship between illumi-

nation and foraging efficiency. Indeed, any environmen-

tal condition that requires cormorants to increase their

time spent in the water will result in an increase in AEE.

High catch per unit effort of Arctic-dwelling cormorants

Results of the present study suggest that Great

Cormorants are able to maintain low rates of daily

energy expenditure due to extremely efficient foraging:

mean catch per unit effort (CPUE) of Great Cormorants

during winter was estimated to be 18.6 g/minute

submerged. This is less than half of the winter estimate

published previously for this population (Grémillet et al.

2005c), but it is still the highest recorded in a free-

ranging seabird, with the exception of estimates from the

same population during the breeding season (Table 5).

However, CPUE has been recorded rather infrequently

in free-ranging seabirds. A broader comparative base

would clearly be useful, especially in the light of the

suggestion that evaluating behavior and performance of

marine predators in the prey space is critical to

understanding topics as diverse as energy flow between

systems and optimal foraging decisions (Wilson et al.

2002).

CPUE is likely to be influenced by a range of

parameters, including prey abundance, prey capture

abilities, and the energy cost of predation. For Great

Cormorants in Greenland, CPUE during winter is

driven primarily by variation in day length and dive

depth, with CPUE being lowest for days with deep dives

and during the shortest mid-winter days (Fig. 3).

Although the relationship between CPUE and day

length has been reported previously (Grémillet et al.

2005c), it is nevertheless surprising that ambient

illumination (both daylight and moonlight) does not

contribute to the best model describing variation in

CPUE (Table 3). A priori, it was predicted that CPUE

will be related to ambient illumination, because Great

Cormorants are visually guided foragers (Martin et al.

2008). Although it is possible that day length serves as a

better proxy for ambient illumination than the mea-

surements for 2004–2005 used in the present study (for

details, see White et al. 2008a), it is at least equally likely

that day length serves as a proxy for some other

parameter that varies throughout the winter, such as

seasonal variation in primary production (e.g., Heide-

Jørgensen et al. 2007) and prey availability.

In Greenland, Great Cormorants prey mainly on

sculpin, Myoxocephalus spp., throughout the year

(Grémillet et al. 2001, 2004). Sculpin are a group of

benthic fish that are diurnally active predators (Nickell

and Sayer 1998, Norderhaug et al. 2005). Surprisingly,

Great Cormorants make use of this prey source even

when other potential prey species are more abundant

(Andersen et al. 2007). For example, unlike other

seabirds (Carscadden et al. 2002), Great Cormorants
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make limited use of capelin Mallotus villosus, which are

abundant in West Greenland and migrate inshore to

spawn during the Great Cormorant breeding season

(Friis-Rødel and Kanneworff 2002). The preference of

the Great Cormorants for sculpin over the more

numerous capelin probably arises because sculpin

represent a stable food resource (Methven et al. 2001,

Grémillet et al. 2004), but is also likely to reflect the

relatively low costs of hunting sedentary prey (Halsey et

al. 2007), as well as the poor visual acuity of Great

Cormorants (White et al. 2007b). Nevertheless, although

sculpin are a relatively stable prey source, their

abundance does vary seasonally (Wesławski et al.

1988, Methven et al. 2001), and this variation could

drive the observed association between CPUE and day

length. Thus, although the reliability of sculpin as a prey

source probably contributes to the high CPUEs of Great

Cormorants in Greenland, the likely seasonal variation

in this food source probably also contributes to seasonal

variation in CPUE.

In addition to the changes associated with day length,

CPUE is negatively associated with dive depth (Fig. 3).

The influence of depth on CPUE probably acts through

the costs of swimming from the surface to the sea bed

where Great Cormorants forage for sculpin. Deeper

dives are less efficient in terms of the proportion of the

dive duration spent at the bottom of the dive where

foraging occurs (Grémillet et al. 1999). Thus a lesser

proportion of the DTS is available for prey consumption

on days where the Great Cormorants dive more deeply.

Presumably, the requirement to dive more deeply is

driven by the availability and/or behavior of the sculpin.

In Little Penguins, another inshore diving forager, the

fledging success of different colonies appears to be

related to the availability of shallow waters within their

foraging range (Chiaradia et al. 2007). In the successful

colonies, penguins dived more shallowly and less

frequently, and as a result we might expect them to

have a greater CPUE. The change in CPUE with depth

in Great Cormorants may therefore occur as a result of

utilization of inshore areas with a smaller proportion of

shallow depths for benthic foraging or movement to

deeper depths of the sculpin.

Conclusion

By measuring the energy use of free-living, Arctic-

dwelling Great Cormorants throughout their annual

cycle, the present study rejects the hypothesis that the

daily energy expenditure of this species is exceptionally

high. In fact, it is lower than that of most other birds.

This occurs despite the birds’ habit of diving in water

temperatures below �18C in winter and their partially

wettable plumage. Great Cormorants in Greenland

achieve the highest catch per unit effort of any diving

bird thus far measured. This ensures that they need to

forage for only very short periods, allowing them to

minimize their absolute levels of activity and their

exposure to cold water. Thus, a suite of physiological,

sensory, and behavioral adaptations result in cormo-

rants maintaining a low level of energy expenditure

throughout the year.
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