217 research outputs found

    Susceptibility of North American Ducks and Gulls to H5N1 Highly Pathogenic Avian Influenza Viruses

    Get PDF
    Species-related differences in clinical response and duration and extent of viral shedding exist between North American ducks and gulls infected with H5N1 HPAI viruses

    Lessons learned from research and surveillance directed at highly pathogenic influenza A viruses in wild birds inhabiting North America

    Get PDF
    Following detections of highly pathogenic (HP) influenza A viruses (IAVs) in wild birds inhabiting East Asia after the turn of the millennium, the intensity of sampling of wild birds for IAVs increased throughout much of North America. The objectives for many research and surveillance efforts were directed towards detecting Eurasian origin HP IAVs and understanding the potential of such viruses to be maintained and dispersed by wild birds. In this review, we highlight five important lessons learned from research and surveillance directed at HP IAVs in wild birds inhabiting North America: (1) Wild birds may disperse IAVs between North America and adjacent regions via migration, (2) HP IAVs can be introduced to wild birds in North America, (3) HP IAVs may cross the wild bird-poultry interface in North America, (4) The probability of encountering and detecting a specific virus may be low, and (5) Population immunity of wild birds may influence HP IAV outbreaks in North America. We review empirical support derived from research and surveillance efforts for each lesson learned and, furthermore, identify implications for future surveillance efforts, biosecurity, and population health. We conclude our review by identifying five additional areas in which we think future mechanistic research relative to IAVs in wild birds in North America are likely to lead to other important lessons learned in the years ahead

    Титульные страницы и содержание

    Get PDF
    Avian influenza viruses (AIVs) have been pivotal to the origination of human pandemic strains. Despite their scientific and public health significance, however, there remains much to be understood about the ecology and evolution of AIVs in wild birds, where major pools of genetic diversity are generated and maintained. Here, we present comparative phylodynamic analyses of human and AIVs in North America, demonstrating (i) significantly higher standing genetic diversity and (ii) phylogenetic trees with a weaker signature of immune escape in AIVs than in human viruses. To explain these differences, we performed statistical analyses to quantify the relative contribution of several potential explanations. We found that HA genetic diversity in avian viruses is determined by a combination of factors, predominantly subtype-specific differences in host immune selective pressure and the ecology of transmission (in particular, the durability of subtypes in aquatic environments). Extending this analysis using a computational model demonstrated that virus durability may lead to long-term, indirect chains of transmission that, when coupled with a short host lifespan, can generate and maintain the observed high levels of genetic diversity. Further evidence in support of this novel finding was found by demonstrating an association between subtype-specific environmental durability and predicted phylogenetic signatures: genetic diversity, variation in phylogenetic tree branch lengths, and tree height. The conclusion that environmental transmission plays an important role in the evolutionary biology of avian influenza viruses—a manifestation of the “storage effect”—highlights the potentially unpredictable impact of wildlife reservoirs for future human pandemics and the need for improved understanding of the natural ecology of these viruses

    Dissecting a wildlife disease hotspot: the impact of multiple host species, environmental transmission and seasonality in migration, breeding and mortality

    Get PDF
    Avian influenza viruses (AIVs) have been implicated in all human influenza pandemics in recent history. Despite this, surprisingly little is known about the mechanisms underlying the maintenance and spread of these viruses in their natural bird reservoirs. Surveillance has identified an AIV ‘hotspot’ in shorebirds at Delaware Bay, in which prevalence is estimated to exceed other monitored sites by an order of magnitude. To better understand the factors that create an AIV hotspot, we developed and parametrized a mechanistic transmission model to study the simultaneous epizootiological impacts of multi-species transmission, seasonal breeding, host migration and mixed transmission routes. We scrutinized our model to examine the potential for an AIV hotspot to serve as a ‘gateway’ for the spread of novel viruses into North America. Our findings identify the conditions under which a novel influenza virus, if introduced into the system, could successfully invade and proliferate

    West Nile Virus Viremia in Wild Rock Pigeons

    Get PDF
    Feral rock pigeons were screened for neutralizing antibodies to West Nile virus (WNV) during late winter/spring and summer of 2002 and 2003. Additionally, virus isolation from serum was attempted from 269 birds collected during peak transmission periods. The observed viremia levels and seroprevalence indicate that this species could be involved in amplifying WNV in urban settings

    Chlorine Inactivation of Highly Pathogenic Avian Influenza Virus (H5N1)

    Get PDF
    To determine resistance of highly pathogenic avian influenza (H5N1) virus to chlorination, we exposed allantoic fluid containing 2 virus strains to chlorinated buffer at pH 7 and 8, at 5°C. Free chlorine concentrations typically used in drinking water treatment are sufficient to inactivate the virus by >3 orders of magnitude

    Dissecting a wildlife disease hotspot: the impact of multiple host species, environmental transmission and seasonality in migration, breeding and mortality

    Get PDF
    Avian influenza viruses (AIVs) have been implicated in all human influenza pandemics in recent history. Despite this, surprisingly little is known about the mechanisms underlying the maintenance and spread of these viruses in their natural bird reservoirs. Surveillance has identified an AIV ‘hotspot’ in shorebirds at Delaware Bay, in which prevalence is estimated to exceed other monitored sites by an order of magnitude. To better understand the factors that create an AIV hotspot, we developed and parametrized a mechanistic transmission model to study the simultaneous epizootiological impacts of multi-species transmission, seasonal breeding, host migration and mixed transmission routes. We scrutinized our model to examine the potential for an AIV hotspot to serve as a ‘gateway’ for the spread of novel viruses into North America. Our findings identify the conditions under which a novel influenza virus, if introduced into the system, could successfully invade and proliferate

    Influenza A Virus H5–specific Antibodies in Mute Swans (\u3ci\u3eCygnus olor\u3c/i\u3e) in the USA

    Get PDF
    The use of serologic assays for influenza A virus (IAV) surveillance in wild birds has increased because of the availability of commercial enzyme-linked immunosorbent assays (ELISAs). Recently, an H5-specific blocking ELISA (bELISA) was shown to reliably detect H5-specific antibodies to low- and highpathogenic H5 viruses in experimentally infected waterfowl. Mute Swans (Cygnus olor) were frequently associated with highly pathogenic H5N1 outbreaks in Europe and may have a similar role if highly pathogenic H5N1 is introduced into North America. We measured the prevalence of antibodies to the nucleoprotein and H5 protein in Mute Swans using three serologic assays. We collected 340 serum samples from Mute Swans in Michigan, New Jersey, New York, and Rhode Island, US. We detected antibodies to the IAV nucleoprotein in 66.2% (225/340) of the samples. We detected H5-specific antibodies in 62.9% (214/340) and 18.8% (64/340) using a modified H5 bELISA protocol and hemagglutination inhibition (HI) assay, respectively. The modified H5 bELISA protocol detected significantly more positive samples than did the manufacturer’s protocol. We also tested 46 samples using virus neutralization. Neutralization results had high agreement with the modified H5 bELISA protocol and detected a higher prevalence than did the HI assay. These results indicate that North American Mute Swans have high nucleoprotein and H5 antibody prevalences

    Experimental Infection of Swans and Geese with Highly Pathogenic Avian Influenza Virus (H5N1) of Asian Lineage

    Get PDF
    Susceptibility to infection, duration of illness, and concentration of asymptomatic viral shedding vary between species of swans and geese
    corecore