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A B S T R A C T

Following detections of highly pathogenic (HP) influenza A viruses (IAVs) in wild birds inhabiting East Asia after
the turn of the millennium, the intensity of sampling of wild birds for IAVs increased throughout much of North
America. The objectives for many research and surveillance efforts were directed towards detecting Eurasian
origin HP IAVs and understanding the potential of such viruses to be maintained and dispersed by wild birds. In
this review, we highlight five important lessons learned from research and surveillance directed at HP IAVs in
wild birds inhabiting North America: (1) Wild birds may disperse IAVs between North America and adjacent
regions via migration, (2) HP IAVs can be introduced to wild birds in North America, (3) HP IAVs may cross the
wild bird-poultry interface in North America, (4) The probability of encountering and detecting a specific virus
may be low, and (5) Population immunity of wild birds may influence HP IAV outbreaks in North America. We
review empirical support derived from research and surveillance efforts for each lesson learned and, further-
more, identify implications for future surveillance efforts, biosecurity, and population health. We conclude our
review by identifying five additional areas in which we think future mechanistic research relative to IAVs in wild
birds in North America are likely to lead to other important lessons learned in the years ahead.

1. Introduction

The importance of wild birds as a reservoir for influenza A viruses
(IAVs) has been recognized since the 1960s (Easterday et al., 1968), in
part, through research and surveillance efforts targeting wild birds in
North America (defined in this review as Canada and the United States
of America; USA). However, the nature of research and surveillance
efforts directed towards IAVs in wild birds in North America has
evolved considerably over the past 50 years, and particularly, since the
repeated detection of highly pathogenic (HP) IAVs of Goose/Guang-
dong (Gs/GD) lineage in wild birds inhabiting Asia, Europe, and Africa
beginning shortly after the start of the new millennium. In 2002, an
outbreak of H5N1 Gs/GD lineage HP IAV in a zoological collection and
sympatric free-ranging birds in Hong Kong marked the first mortality of
wild aquatic birds attributed to a HP IAV since 1961 (Ellis et al., 2004;
Sturm-Ramirez et al., 2004). A subsequent outbreak of H5N1 HP IAV in

wild birds at Qinghai Lake, China in 2005 (Chen et al., 2005) raised
concerns about the role of migratory birds in the dispersal of Gs/GD
lineage HP IAVs, including the potential for the introduction of such
viruses into North America via intercontinental migratory bird move-
ments. Thus, following detections of HP IAVs in wild birds inhabiting
East Asia after the turn of the millennium, the intensity of sampling of
wild birds for IAVs increased throughout much of North America and
the objectives for many research and surveillance efforts were directed
towards detecting foreign origin HP IAVs and understanding the po-
tential of such viruses to be maintained and dispersed by wild birds. In
this review, we highlight five important lessons we feel have been
learned from research and surveillance directed at HP IAVs in wild
birds inhabiting North America.
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1.1. Wild birds may disperse IAVs between North America and adjacent
regions via migration

Following the 2005 outbreak of H5N1 HP IAV at Qinghai Lake,
China, considerable research was conducted in North America to assess
the evidence for dispersal of IAVs by wild birds between East Asia and
North America via Alaska, a pathway by which large numbers of wa-
terbirds make interhemispheric migratory movements (Winker and
Gibson, 2010). Although previous research efforts had not identified an
entirely foreign-origin IAV genomic constellation in North America
(including Alaska; Winker et al., 2007), and Eurasian lineage gene
segments had been found to be relatively rare in IAV isolates derived
from samples collected in Alberta, Canada and Delaware Bay, USA
(Krauss et al., 2007), the infrequent detection of Eurasian lineage gene
segments in IAVs isolated from wild birds sampled in North America
suggested at least low levels of intercontinental viral dispersal via
Alaska or another unidentified pathway. Thus, a series of targeted in-
vestigations were conducted to assess the dispersal of IAVs between
East Asia and North America via Alaska where the East Asian-Austral
Asian, Central Pacific, and Pacific Americas flyways overlap.

Through the genetic characterization of IAVs derived from northern
pintails (Anas acuta) sampled in Alaska during a single year, Koehler
et al. (2008) found evidence for a higher proportion of isolates with
Eurasian lineage gene segments as compared to previous reports for
waterfowl sampled at Alberta, Canada (Krauss et al., 2007). Follow-up
studies confirmed this observation (Ramey et al., 2010a) and, further-
more, provided support for the dilution by distance of Eurasian lineage
gene segments within North America (Pearce et al., 2009; Ramey et al.,
2010a, 2010b). That is, sampling of waterbirds in western Alaska, near
the Asian-North American interface, has consistently provided a high
probability of encounter of Eurasian lineage gene segments as com-
pared to elsewhere in North America, which supports this region as a
probable location for viral introductions via migratory birds (Ramey
et al., 2010a, 2010b, 2011; Reeves et al., 2013). Indeed, through ad-
ditional sampling of wild birds in western Alaska in 2011, H9N2 IAVs
were isolated from swabs collected from a northern pintail duck and an
emperor goose (Chen canagica), two waterfowl species with inter-
continental migratory tendencies (Miller et al., 2005; Hupp et al., 2007,
2011), that shared> 99% genomic identity to viruses previously
identified in wild birds inhabiting China and South Korea (Ramey et al.,
2015). Furthermore, IAVs sharing similarly high genetic identity to
these H9N2 viruses detected in wild birds sampled in Alaska, China,
and South Korea have not been identified in domestic poultry and the
South Korean H9N2 strain, A/bean goose/Korea/220/2011, did not
replicate in experimentally inoculated three week-old chickens (Lee
et al., 2016a), providing further evidence that this genomic constella-
tion was most likely dispersed intercontinentally by wild birds.

In November 2014, a clade 2.3.4.4 HP IAV of the H5N8 subtype
comprised of eight Eurasian lineage gene segments was detected in the
Pacific Americas Flyway of North America and it was widely speculated
that this HP IAV was dispersed between East Asia and North America by
wild birds (Lee et al., 2015; Verhagen et al., 2015; Lycett et al., 2016).
While the introduction of a clade 2.3.4.4 IAV from East Asia to North
America via Alaska is consistent with: (1) previous evidence for viral
dispersal via this pathway, (2) intercontinental migratory pathways of
wild birds, (3) the timing of arrival for migrants from Alaska to the
region where clade 2.3.4.4 IAVs were first detected in North America
(Hill et al., 2017), and (4) proposed evolutionary pathways of re-
assortant clade 2.3.4.4 HP IAVs in wild birds in the Pacific Northwest of
the USA and Canada (Lee et al., 2016b; Ramey et al., 2016a, 2017; Hill
et al., 2017), definitive support for the hypothesis that migratory birds
introduced H5N8 clade 2.3.4.4 HP IAV into North America from East
Asia remains elusive. None-the-less, it is reasonable to conclude that the
circulation of economically costly poultry pathogens or IAVs of concern
to public health in wild birds inhabiting East Asia poses some degree of
risk to the biosecurity of Canada and the USA.

In addition to targeted investigations in Alaska to assess evidence
for the intercontinental exchange of IAVs between North America and
East Asia, research efforts conducted since 2005 have also examined the
potential for wild birds to disperse viruses between North America and
adjacent regions via other migratory routes identified through or-
nithological investigations. For example, research conducted in
Newfoundland, Canada has provided evidence that seabirds, including
gulls (Larus spp.) and murres (Uria spp.), may facilitate the exchange of
viruses between Western Europe and North America via a trans-North
Atlantic pathway (Wille et al., 2011; Huang et al., 2014a, 2014b). This
includes the purported first detection of a wholly Eurasian lineage virus
in North America (Huang et al., 2014a). Additionally, research con-
ducted in Texas and Louisiana (USA), Barbados, Guatemala, and Co-
lumbia, collectively provide support for the hypothesis that Neotropical
migrants, such as blue-winged teal (Anas discors), may disperse IAVs
among locations in North America, Central America, the Caribbean
Islands, and northern South America (Douglas et al., 2007; González-
Reiche et al., 2012; Karlsson et al., 2013; Ramey et al., 2016b). Thus,
surveillance for the early detection of foreign-origin IAVs in wild birds
inhabiting North America may be optimized by targeted sampling at
geographical regions where genetic data for IAVs and ornithological
information collectively support an increased probability for viral in-
troductions into the USA and Canada from adjacent regions.

1.2. HP IAVs can be introduced to wild birds in North America

The first confirmed outbreak of HP influenza A in North American
birds per the current Office International des Epizooties (OIE) definition
(i.e., characterized by a polybasic hemagglutinin [HA] cleavage site),
affected domestic poultry in Ontario, Canada in 1966 (Swayne, 2008;
Ping et al., 2012). Subsequent outbreaks of HP IAVs in North America
during the period of 1983–2014 affected domestic gallinaceous birds in
Pennsylvania, Maryland, New Jersey, and Virginia, USA in 1983
(Buisch et al., 1984); Texas, USA in 2004 (Lee et al., 2005; Pelzel et al.,
2006); British Columbia, Canada in 2004 (Hirst et al., 2004); and Sas-
katchewan, Canada in 2007 (Berhane et al., 2009). In each of these
outbreaks, it also appears that a low pathogenic (LP) IAV precursor
circulated, at least briefly, among domestic gallinaceous birds before
developing high pathogenicity in poultry (Suarez and Senne, 2000; Lee
et al., 2005; Pasick et al., 2005; Berhane et al., 2009; Ping et al., 2012).
No poultry-adapted LP IAVs epidemiologically connected to HP out-
breaks or HP IAVs causing disease in domestic poultry were detected in
wild birds in North America prior to 2014. Thus, prior to autumn 2014,
there was no evidence for spill-over of HP IAVs into wild birds in-
habiting the USA or Canada, or even for the re-introduction of LP IAVs
into the wild bird reservoir following poultry adaptation.

In late November 2014, increased mortality was observed among
domestic turkeys and chickens in British Columbia, Canada leading to
the identification of a HP IAV of the H5N2 subtype (Pasick et al., 2015).
Through genetic sequencing, this HP H5N2 IAV was identified as an
intercontinental reassortant virus descended from the H5 Gs/GD
lineage clade 2.3.4.4 HP IAVs that were concurrently circulating in
Eurasia and one or more IAVs circulating among waterfowl inhabiting
North America (Pasick et al., 2015). In early December 2014, H5N2 and
H5N8 clade 2.3.4.4 HP IAVs were isolated from samples collected from
a wild northern pintail (Anas acuta) and a captive-reared gyrfalcon
(Falco rusticolus) that had recently fed upon a wild American wigeon
(Anas americana), respectively, in Washington, USA (Ip et al., 2015).
The H5N2 clade 2.3.4.4 HP isolates recovered from poultry in British
Columbia, Canada and a wild northern pintail in Washington, USA were
genomically highly similar (i.e., > 99% shared nucleotide identity),
closely related to HP IAVs circulating in East Asia at the HA gene, and
the apparent product of reassortment between a clade 2.3.4.4 HP IAV
and one or more IAVs circulating in North America (Ip et al., 2015). In
contrast, the H5N8 clade 2.3.4.4 HP IAV isolated from a captive-reared
gyrfalcon was genomically highly similar (i.e., > 99% shared
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nucleotide identify at all gene segments) to HP IAVs associated with
outbreaks in East Asia (Ip et al., 2015). Thus, initial genetic evidence
supported the introduction of H5 Gs/GD lineage HP IAVs from East Asia
into North America prior to late November 2014 and reassortment with
IAVs that were circulating among wild birds. As such, the genetic
lineage of the HA gene segment for these viruses was designated as
intercontinental group A (icA; Lee et al., 2015).

Following the initial detection of H5 clade 2.3.4.4 HP IAVs in British
Columbia, Canada and Washington, USA in November–December 2014,
additional detections of HP H5N2 and H5N8 IAVs with similar genome
constellations were identified in domestic poultry in these locations, as
well as numerous additional states throughout the USA including:
Oregon, California, Montana, North Dakota, South Dakota, Nebraska,
Kansas, Minnesota, Iowa, Missouri, Arkansas, and Wisconsin (Jhung
et al., 2015; Lee et al., 2016b; Hill et al., 2017; Ramey et al., 2017;
United States Department of Agriculture (USDA), 2017a). Concurrently,
similar genomic constellations of HP H5N2 and H5N8 IAVs were de-
tected in American wigeon, northern pintail, and numerous additional
species of wild waterfowl and raptors including American green-winged
teal (Anas crecca), Canada goose (Branta canadensis), mallard (Anas
playrhynchos), northern shoveler (Anas clypeata), wood duck (Aix
sponsa), bald eagle (Haliaeetus leucocephalus), Cooper's hawk (Accipiter
cooperii), peregrine falcon (Falco peregrinus), and snowy owl (Bubo
scandiacus) sampled through active and passive surveillance in British
Columbia, Washington, Oregon, Idaho, Nevada, Utah, Kansas, Minne-
sota, and Wisconsin (OIE, 2015; Lee et al., 2016b; Hill et al., 2017;
Ramey et al., 2017; USDA, 2017a). Furthermore, novel reassortant
clade 2.3.4.4 HP IAV genome constellations of the H5N1 and H5N8
subtypes were detected in wild waterfowl in Washington (Torchetti
et al., 2015), Oregon (Lee et al., 2016b), and California (Ramey et al.,
2017). In the case of reassortant H5N1 clade 2.3.4.4 HP IAV, a geno-
mically similar constellation was also identified in a backyard poultry
flock in British Columbia, Canada (Berhane et al., 2016), although the
isolate recovered had a 19 amino acid deletion in the neuraminidase
(NA) stalk indicating poultry adaptation of this particular virus. In all of
these instances, the best available evidence at the time of manuscript
preparation suggests that reassortant Gs/GD lineage clade 2.3.4.4 HP
IAVs detected in North America during 2014–2015 were formed
through evolutionary pathways that included IAVs maintained in wild
birds (Lee et al., 2016b; Ramey et al., 2016a, 2017; Hill et al., 2017).

The estimated prevalence of clade 2.3.4.4 HP IAVs in wild bird
samples collected in the Pacific Americas Flyway during December
2014–February 2015 was estimated to be 0.8–1.3% using real-time
reverse transcriptase PCR in two studies (Bevins et al., 2016; Ramey
et al., 2017) or 1.4% across the USA during December 2014–June 2015
outbreak period as calculated using unpublished surveillance data
collected by the USDA (99 HP clade 2.3.4.4 IAV positives/7085 total
samples; USDA, 2017b). Clade 2.3.4.4 HP IAVs were detected in wild
birds in the Pacific, Central, and Mississippi flyways of North America
during the outbreak period, but not the Atlantic Flyway. Prevalence
estimates during the December 2014–June 2015 outbreak period were
biased by targeted active surveillance in the western USA following
initial detection of clade 2.3.4.4 HP IAVs during the waterfowl hunting
season, a combination of active and passive surveillance efforts in some
data summaries, and reduced active surveillance in wild birds in-
habiting North America during February–June 2015 following the
closure of waterfowl hunting seasons in many areas.

It is estimated that clade 2.3.4.4 icA HP IAVs affected approximately
50.4 million domestic birds in 21 states in the USA during December
2014–June 2015 (Swayne et al., 2017; USDA, 2017a). Subsequent to
the last detections of clade 2.3.4.4 HP IAVs in domestic poultry in North
America in June 2015, there were four additional purported detections
of clade 2.3.4.4 HP IAVs in wild birds using molecular techniques as of
the time of manuscript preparation (USDA, 2017b). However, only a
single detection of H5N2 clade 2.3.4.4 HP IAV derived from a sample
collected from a mallard in Alaska during August 2016 has been

genomically characterized and published (Lee et al., 2017a). Thus, as
no genomically highly similar reassortant H5 clade 2.3.4.4 icA HP IAVs
have been detected outside of North America, it appears that such
viruses persisted in either an unidentified biotic or abiotic reservoir in
North America for at least an additional year following the well-de-
scribed outbreak in Canada and the USA. The current status of H5 clade
2.3.4.4 HP IAVs in North America is unknown. It is plausible that such
viruses have been extirpated in Canada and the USA through man-
agement practices applied to domestic poultry and via population im-
munity of wild birds, and that any further outbreaks of clade 2.3.4.4 HP
IAVs in North America would require another introduction event. No-
tably, Gs/GD lineage clade 2.3.4.4 group B (H5N6 and H5N8) and
group C (H5N6) IAVs have spread throughout Asia during 2016–2017
causing outbreaks in poultry and infections with mortality in wild birds
(Lee et al., 2017c), and could therefore represent future biological
threats to North American poultry production systems via introduction
by intercontinental migrants.

During the December 2014–June 2015 outbreak period in North
America, clade 2.3.4.4 icA HP IAVs were detected from samples col-
lected from both apparently healthy and diseased wild birds. Samples
testing positive for clade 2.3.4.4 HP IAVs that were collected from
dabbling ducks were predominately derived from apparently healthy
birds (i.e., those not displaying overt clinical signs of disease) at the
time of harvest/sampling (Torchetti et al., 2015; Bevins et al., 2016;
Ramey et al., 2017; USDA, 2017a,b) or birds associated with disease
attributed to another cause (Ip et al., 2015). In contrast, a high pro-
portion of detections of H5 clade 2.3.4.4 HP IAVs in North American
raptors (including a captive individual) and geese were derived from
samples originating from sick or deceased animals (Ip et al., 2015;
Bevins et al., 2016; USDA, 2017a,b). Sampling biases may have im-
pacted these results, however, as dabbling ducks were disproportionally
sampled during active surveillance programs whereas raptors and geese
were largely sampled via passive surveillance.

The 2014–2015 outbreak of clade 2.3.4.4 HP IAVs in North America
represents the first detections of HP IAVs in wild birds in North America
and provides additional evidence that some viruses of the Gs/GD
lineage may be well-adapted to waterfowl as has been supported
through experimental challenge studies (DeJesus et al., 2016; Pantin-
Jackwood et al., 2016). It should be noted that there still is not any
evidence that the HP IAV phenotype is selected for or can evolve in wild
birds in North America or elsewhere. H5 clade 2.3.4.4 icA HP IAVs were
clearly introduced into wild and domestic birds in North America after
already having evolved a HP phenotype, presumably in domestic
poultry in East Asia (Hu et al., 2015). Furthermore, more recent out-
breaks of HP IAVs in North American poultry in 2016 and 2017 are
consistent with the premise that the HP IAV phenotype emerges in
domestic gallinaceous poultry (Killian et al., 2016; Xu et al., 2017;
USDA, 2017c) and that prompt containment efforts prevent spill-over
into wild birds and limit viral spread.

1.3. HP IAVs may cross the wild bird-poultry interface in North America

With a single exception, all documented outbreaks of HP IAVs in
North America appear to be the product of LP IAVs being introduced
into domestic poultry production systems where they developed high
pathogenicity and were subsequently eradicated through containment
and depopulation efforts (Suarez and Senne, 2000; Lee et al., 2005;
Pasick et al., 2005; Berhane et al., 2009; Xu et al., 2017). However,
during the 2014–2015 outbreak of HP clade 2.3.4.4 IAVs in North
America, it appears that there were numerous instances of spill-over of
HP viruses across the wild bird-poultry interface in the USA and Canada
through unidentified mechanisms. Support for the transmission of HP
IAVs between wild and domestic birds is provided through the detec-
tion of highly similar genomic constellations of HP IAVs in both wild
and domestic birds (Pasick et al., 2015; Ip et al., 2015; Berhane et al.,
2016), inferred phylogenetic relationships among viral genomes
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recovered from sampling of infected poultry farms and through wild
bird surveillance suggestive of spill-over events (Lee et al., 2016b; Grear
et al., 2017a; Hill et al., 2017; Ramey et al., 2017), and analysis of
epidemiological data suggestive of indirect contact between wild and
domestic birds (Xu et al., 2016). While transmission of HP IAVs across
the wild bird-poultry interface is not unprecedented from a global
perspective, particularly for Gs/GD lineage IAVs, the apparent spread of
HP IAVs between wild and domestic birds in the USA and Canada
during 2014–2015 (via either direct or indirect routes) suggests that
biosecurity practices in place in North America at that time were not
sufficient to prevent economically costly IAVs that were circulating in
wild birds from entering poultry production systems, even once such
pathogens had been identified through national and international wild
bird surveillance programs.

The apparent first instances of spill-over of HP IAVs between wild
and domestic birds in North America may be, at least partially, a
function of increased infectivity of HP clade 2.3.4.4 IAVs for waterfowl
and gallinaceous poultry at medium to high exposure doses as com-
pared to other HP viruses. Laboratory challenge studies lend support to
this hypothesis and may be attributed to the evolution of Gs/GD lineage
HP IAVs through serial infections in both gallinaceous poultry and
domestic waterfowl over more than two decades (Perkins et al., 2003;
Hulse-Post et al., 2005; Pantin-Jackwood et al., 2016). However, a re-
cent laboratory study also found that numerous other HP IAVs asso-
ciated with previous gallinaceous poultry outbreaks were infectious in
mallards at 106 mean embryo infectious doses via intranasal challenge,
replicated in various tissues to relatively high titers, were shed via both
the oropharynx and the cloaca, and caused few clinical signs in this
species (Pantin-Jackwood et al., 2016). This research further supports
the premise that introduction of HP IAVs from poultry to wild water-
fowl is biologically possible, but that insufficient or non-sustained ex-
posure of wild birds may prevent infection. Thus, enhanced biosecurity
and containment of HP IAV outbreaks in poultry may be important in
preventing spill-over of HP IAVs to North American wild birds and
limiting virus spread.

1.4. The probability of encountering and detecting a specific virus may be
low

Following the 2005 outbreaks of Gs/GD lineage H5N1 HP IAV in
Qinghai Lake, China, national surveillance efforts were conducted in
the USA and Canada to detect the possible introduction of this virus into
North America via migratory birds. However, it was and remains un-
known at what prevalence H5N1 HP IAVs were circulating in wild birds
in East Asia that share migratory connectivity with North America, how
many individuals comprised the affected population, and how addi-
tional epidemiological considerations (e.g., length of prepatent period;
duration, route, and consistency of viral shedding; etc.) affected the
probability of detection. Thus, surveillance programs were developed
without rigorous estimates for probabilities of encounter (likelihood of
sampling an infected bird within a population) or detection (likelihood
of identifying an infected bird given sampling and diagnostic limita-
tions).

Despite extensive active surveillance efforts in both the USA and
Canada, the H5N1 Gs/GD lineage HP IAV that led to the 2005 Qinghai
Lake outbreak has not been detected in wild (or domestic) birds in
North America. However, the detection of other IAVs in wild birds,
including Gs/GD lineage clade 2.3.4.4 HP IAVs in 2014–2015, provides
important insight into effectiveness of active surveillance programs and
suggests that the probability of encountering and detecting a specific
virus may be extremely low, at least for viruses that circulate at rela-
tively low prevalence within a population. For example, in 2010, H14
subtype IAVs were detected in wild birds in North America for the first
time (Nolting et al., 2012). Viruses of the H14 subtype had not been
detected since 1982 when they were recovered from samples collected
from waterfowl and gulls in the former Soviet Union (Kawaoka et al.,

1990). The lack of detection of H14 IAVs in global surveillance efforts
during 1982–2010 suggests that such viruses may be relatively rare in
the wild bird reservoir. Since initial detection in waterfowl in North
America in 2010, a total of only eleven detections of H14 IAVs have
been reported in the USA through July 2017 (Boyce et al., 2013; Fries
et al., 2014; Ramey et al., 2014a, 2016c) with reports of viruses ori-
ginating from samples collected during 2010–2015. Furthermore,
during this period, it appears that H14 subtype IAVs were dispersed by
wild birds across North America and to the northern Neotropics where
they had been repeatedly detected in blue-winged teal during
2011–2013 (Ramey et al., 2014a; Gonzalez-Reiche et al., 2016). Thus,
the best available evidence suggests that H14 subtype IAVs may have
been introduced from Eurasia to North America (Fries et al., 2013),
subsequently dispersed across the continent to the Neotropics (Ramey
et al., 2014b), circulated among wild birds in North America for at least
six years (Ramey et al., 2016c), while having only been reported in the
USA eleven times despite ongoing research and surveillance efforts.
While there are numerous confounding variables relative to methodo-
logical differences among surveillance efforts which make calculations
of encounter and detection probabilities complicated for this particular
example, the implication of relatively few detections of H14 IAVs
among the many thousands of samples screened in the USA during this
same time period is clear. IAVs may be maintained in the wild bird
reservoir at relatively low levels that may require extensive sampling
effort to encounter and detect.

Surveillance efforts conducted during and subsequent to the
2014–2015 outbreak of clade 2.3.4.4 HP IAVs in North America present
another example of how the encounter and detection probabilities for
specific IAVs may be low. For example, the best available data suggest
that H5 clade 2.3.4.4 HP IAVs were introduced into North America
from East Asia via migratory birds, yet such viruses were not detected
in Alaska during the late summer and autumn migration period of 2014
despite the collection of more than a thousand samples from wild birds
inhabiting western and southcentral regions of the state (Ramey et al.,
2016a; Hill et al., 2017). During December 2014–February 2015, which
may have been the epidemiological peak of infection of wild birds with
clade 2.3.4.4 HP IAVs in the Pacific Americas Flyway, such IAVs were
identified in only 0.8–1.3% of samples collected (Bevins et al., 2016;
Ramey et al., 2017) despite sampling efforts having been informed
through passive surveillance (i.e., mortality events) and periodic de-
tections in domestic birds. Detection of clade 2.3.4.4 HP IAVs was
markedly lower at other areas of North America during this period and
following the outbreak (Krauss et al., 2016; Ramey et al., 2016d, 2017).

Subsequent to the apparent eradication of Gs/GD HP IAV from
North American poultry in June 2015, there have been only four pur-
ported detections of clade 2.3.4.4 HP IAVs in wild birds using molecular
techniques during the period of July 2015–June 2017 despite the col-
lection and testing of more than 80,000 samples in the USA (USDA,
2017b). Thus, it is plausible that such viruses have circulated within a
very large population of North American waterfowl at extremely low
prevalence making the probability of encounter and detection exceed-
ingly small. It is possible that an unsampled or abiotic reservoir fa-
cilitated the maintenance and subsequent infrequent detection of clade
2.3.4.4 IAVs in wild birds during the July 2015–June 2017 post-out-
break period, or that putative icA positive samples (as identified
through rRT-PCR) for which sequence data were not recovered re-
present false-positive detections. However, evidence for substantial
genetic drift between the H5N2 clade 2.3.4.4 HP IAV recovered from a
mallard sampled in Alaska in August 2016 as compared to the most
closely related isolates recovered in North America during the
2014–2015 outbreak period (Lee et al., 2017a) suggests that these ex-
planations may be unlikely. Thus, low probability of encountering and
detecting clade 2.3.4.4 IAVs in a large population of waterfowl in North
America during July 2015–June 2017 appears to be a more plausible
explanation for infrequent detection during this period as compared to
other possible scenarios.
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1.5. Population immunity of wild birds may influence HP IAV outbreaks in
North America

The observation that juvenile wild birds are more likely to be in-
fected with IAVs as compared to adults was recognized in early in-
vestigations of IAV ecology in North America and is widely accepted as
being a function of the high concentration of immunologically naïve
birds at breeding/staging areas in late summer and early autumn prior
to migration (Hinshaw et al., 1980). Thus, immunologic responses of
wild birds to IAVs have long been recognized as fundamentally im-
portant to viral ecology. However, more recent studies provide insight
as to how population immunity could influence HP IAV outbreaks in
North America. For clarity, there is still no evidence that the HP IAV
phenotype is selected for or can evolve in wild birds in North America.
Thus potential influences of population immunity of wild birds relative
to HP IAV outbreak dynamics in North America are limited to the
maintenance of H5 and H7 subtype LP IAVs (i.e., those with the po-
tential to develop high pathogenicity in poultry after introduction into
production systems) and/or the maintenance and dispersal of HP IAVs
introduced into wild birds in North America as occurred during the
2014–2015 outbreak.

Surveillance for IAVs in wild birds suggests that the relative pre-
valence of viruses of particular HA subtypes may be seasonal in North
America (Ramey et al., 2014a; USDA, 2017b) and concurrent labora-
tory challenge studies provide insight into host factors that may drive
such trends. For example, recent laboratory challenge studies provide
evidence that homo- and heterosubtypic immunity to specific HA sub-
types, as acquired through prior IAV infection in waterfowl, may in-
fluence infection dynamics among IAVs of different HA subtypes. That
is, prior infection with IAVs may provide partial or complete immunity
(as measured through metrics of infectivity such as duration and
magnitude of viral shedding) to waterfowl for viruses of the same HA
subtype, and likewise, partial or complete protective immunity against
IAVs of different HA subtypes (Costa et al., 2010; Jourdain et al., 2010;
Pepin et al., 2012; Latorre-Margalef et al., 2017; Segovia et al., 2017).
While complete protective immunity precludes subsequent infection
altogether, partial protective immunity may influence the duration of
infection, viral shedding patterns, and total viral load of infected in-
dividuals that had been previously exposed to IAVs (Costa et al., 2010;
Jourdain et al., 2010; Pepin et al., 2012; Latorre-Margalef et al., 2017;
Segovia et al., 2017). The level of homo- and heterosubtypic HA im-
munity conferred to a bird previously exposed to IAV is likely influ-
enced by the genetic similarity of the antigenic determinants of IAV
strains to which a bird is exposed (Latorre-Margalef et al., 2017;
Segovia et al., 2017). Thus, the population immunity of wild birds in
North America may influence the space and time at which H5 and H7
subtype LP IAVs may be most prevalent in the population and therefore
the relative risk of introduction into poultry production systems where
there is spatiotemporal overlap.

Additionally, population immunity may influence the introduction
and perpetuation of HP IAV infections in wild birds upon exposure from
foreign sources or via contact with infected domestic birds. For ex-
ample, laboratory challenge studies provide evidence that prior infec-
tion with LP IAVs may influence homo- and heterosubtypic immunity of
waterfowl to HP IAVs (Pasick et al., 2007; Fereidouni et al., 2009;
Berhane et al., 2010, 2014; Costa et al., 2011). Thus, it is plausible that
natural infections in wild birds may confer some level of protection to
HP IAVs. Similar to studies using previously-exposed waterfowl that
were subsequently inoculated with homologous or heterologous LP
IAVs, challenge studies assessing HP IAV infections also provide evi-
dence that partial protective immunity conferred from prior homo-
subtypic or heterosubtypic LP IAV infection may influence infection
duration with HP IAVs and associated viral shedding patterns
(Fereidouni et al., 2009; Berhane et al., 2010, 2014; Costa et al., 2011).
Additionally, prior exposure to LP IAVs may affect outcomes of HP
infection in waterfowl. Specifically, partial protective immunity may

promote the survival of birds infected with HP IAVs, at least for birds
infected with HP viruses that cause disease in immunologically naïve
waterfowl (Pasick et al., 2007; Fereidouni et al., 2009; Berhane et al.,
2010, 2014; Costa et al., 2011). This suggests that natural LP IAV in-
fections in wild waterfowl followed by infection with HP IAVs could
facilitate viral dispersal. Alternatively, prior infection of wild waterfowl
to LP IAVs may reduce the duration or magnitude of viral shedding, or
provide complete immunity to HP IAVs altogether, therefore reducing
the risk of transmission among wild birds in the natural environment
(Fereidouni et al., 2009; Berhane et al., 2010, 2014).

2. Summary and conclusions

Through more than a decade of research and surveillance directed
towards HP IAVs in wild birds inhabiting North America, we’ve col-
lectively learned numerous important lessons regarding the feasibility
of viruses to be introduced into North America from adjacent regions,
the ability of HP IAV infections to be introduced into wild birds and to
cross the wild bird-poultry interface, the probability of encounter and
detection that may be associated with specific IAV lineages, and how
population immunity of wild birds may influence HP IAV outbreak
dynamics. These lessons serve as a basis for improving future surveil-
lance activities in North America and help to inform biosecurity prac-
tices throughout North America through better understanding of risks
associated with IAVs circulating among wild birds in North America
and adjacent regions. While future surveillance for HP IAVs in wild
birds will undoubtedly lead to additional gains in our understanding of
IAV ecology in the natural reservoir and in regards to potential viral
threats to domestic poultry, we propose that an increased emphasis on
research to better understand mechanisms driving IAV ecology may
lead to rapid and meaningful advancements that minimize economic
losses associated with HP IAVs in North America. Below we highlight
five areas in which we think future mechanistic research relative to
IAVs in wild birds in North America are likely to lead to other important
lessons learned in the years ahead:

2.1. Role of North American wetlands in the maintenance of IAVs in wild
bird populations

Persistence of viruses in aquatic habitats is undoubtedly an im-
portant component to IAV ecology (Stallknecht et al., 2010). However,
despite extensive sampling of environmental sources in Canada and the
USA (Hinshaw et al., 1979; Sivanandan et al., 1991; Ito et al., 1995;
Lang et al., 2008; Lebarbenchon et al., 2011) and numerous laboratory
investigations to understand how biotic and abiotic factors influence
viral persistence (Stallknecht et al., 1990; Brown et al., 2007, 2009;
Keeler et al., 2013) it is still unclear how the maintenance of infectious
IAVs in North American wetlands influences transmission dynamics or
how the persistence of Gs/GD HP IAVs in the environment may have
facilitated viral spread during the 2014–2015 outbreak in North
America. Furthermore, it is unclear if IAVs can remain infectious in
North American wetlands for extended periods, seeding outbreaks in
wild birds across seasons or in free-ranging poultry after migratory
birds have departed from wintering areas. Future research to under-
stand the persistence of infectious IAVs in the environment at ecolo-
gically relevant doses would improve our collective understanding of
the role of environmental sources in IAV ecology and improve epide-
miological models of transmission (Rohani et al., 2009).

2.2. Transmission of IAVs across the wild bird-poultry interface in North
America

Previous studies provide evidence that IAVs circulating among wild
birds in North America may lead to introductions of IAVs in poultry
production systems for game birds (Ramey et al., 2016e), minor galli-
naceous poultry (Bertran et al., 2017), and commercially-reared
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chickens and turkeys (Pasick et al., 2012; Guo et al., 2015;
Lebarbenchon et al., 2015; Xu et al., 2017). However, few studies have
elucidated the mechanisms by which IAVs are able to circumvent bio-
security and infect domestic birds. While numerous investigations have
assessed the feasibility of peridomestic birds (Nemeth et al., 2010;
Jones et al., 2015; Hall et al., 2016) or mammals (Hall et al., 2008; Root
et al., 2014, 2015, 2016, 2017) to serve as bridge species through ex-
perimental challenge studies or via surveys assessing prior exposure of
free-ranging animals to IAVs, there has been comparatively less effort
focused on assessing contact, exposure, and viral transmission between
wild and domestic species on poultry farms (Madsen et al., 2013;
Shriner et al., 2016; Grear et al., 2017b) or through model systems si-
mulating a wild-domestic animal interface (Achenbach and Bowen,
2011). Furthermore, potential IAV transmission pathways among
poultry farms that include spread via worker practices or abiotic me-
chanisms such as fomites, soil disruption, and viral transport via wind
(Garber et al., 2016; Wells et al., 2017) have also been a foci of recent
research efforts, but additional data from the field and derived through
the development of model systems could improve inference regarding
the relative risk of such mechanisms to biosecurity. Although studies
assessing transmission of IAVs across the wild bird-poultry interface
may be complex in nature and challenging to implement, ultimately,
research efforts in this field are likely to result in meaningful inference
with regards to identifying ways in which biosecurity may be improved
to protect North American poultry holdings.

2.3. Genetic determinants conferring adaptations of IAVs to both waterfowl
and poultry

Genetic determinants conferring adaptation of wild bird origin IAVs
to gallinaceous poultry and affecting virulence in chickens is well de-
scribed for the HA gene (Senne et al., 1996). However, more recent
evidence suggests that genetic determinants for IAV replication and
virulence in domestic poultry are multigenic (Hossain et al., 2008;
Wasilenko et al., 2008; Sorrell et al., 2010; Munier et al., 2010). Less
well-defined are specific adaptations that facilitate efficient replication
of IAVs in both waterfowl and domestic gallinaceous birds. Such IAVs,
containing genetic determinants suggestive of efficient replication in
both wild and domestic avian hosts, may be useful for identifying po-
tential biosecurity threats through surveillance efforts and for in-
forming vaccine development. While limitations on gain of function
studies may impede progress in this research area, comparative genetic
approaches utilizing data from wild bird and domestic poultry sur-
veillance may facilitate continued progress towards understanding the
adaptation of IAVs to multiple avian hosts.

2.4. Infectivity of H5 Gs/GD lineage HP IAVs in North American waterfowl
species

Although it is unclear if H5 Gs/GD lineage HP IAVs remain in North
America, such viruses have circulated in East Asia for more than 20
years and continue to cause periodic outbreaks among wild and do-
mestic birds throughout this region and elsewhere (Fusaro et al., 2017;
Kwon et al., 2017; Lee et al., 2017b; Li et al., 2017; Okamatsu et al.,
2017; Pohlmann et al., 2017; Selim et al., 2017). Thus, it is plausible
that these viruses may be again introduced into wild birds in Canada
and the USA. As such, additional information regarding the infectivity,
adaptation, and pathogenicity of Gs/GD lineage HP H5 IAVs in North
American wild birds would be useful for better understanding the po-
tential for dispersal via migratory movements and possible impacts to
avian populations in Canada and the USA. It should be noted that, while
Gs/GD lineage HP H5 IAVs may share common ancestry with regard to
the HA gene, experimental challenge studies suggest differences in in-
fectivity, adaptation, and pathogenicity among strains of this viral
lineage in North American birds (Pantin-Jackwood et al., 2016). Fur-
thermore, North American wild bird species appear to vary in their

susceptibility to infection and disease when infected with the same Gs/
GD viral strain (Brown et al., 2006). As such, future studies should be
designed and adapted in such a manner to provide relevant information
for North American wild bird species in response to continued viral
evolution and perceived risk of introduction to specific populations
(e.g., particular species or avian communities inhabiting geographic
areas of interest).

2.5. Immune response of wild birds to emergent HP IAVs detected in poultry

Information on how the 2014–2015 outbreak of H5 Gs/GD lineage
clade 2.3.4.4 HP IAV in North America affected population immunity of
wild waterfowl and other free-ranging avian taxa in Canada and the
USA is currently lacking. Furthermore, it is unknown how population
immunity may have affected outbreak dynamics. Given the evidence for
the role of population immunity as a driver of IAV ecology in wild
waterfowl (Latorre-Margalef et al., 2013) and the potential for future
introductions of HP IAVs into wild birds inhabiting North America,
particularly from East Asia, research efforts to understand the immune
response of wild birds to emergent HP IAVs detected in poultry could
prove useful towards evaluating the relative risk of viral dispersal via
wild birds, assessing the likelihood of HP IAV establishment among
free-ranging avian taxa, and forecasting outbreak dynamics. Research
conducted in this area may be a natural extension of efforts to better
understand infectivity of HP IAVs in North American waterfowl species.
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