141 research outputs found

    Inhomogeneous Neutrino Degeneracy and Big Bang Nucleosynthesis

    Get PDF
    We examine Big Bang nucleosynthesis (BBN) in the case of inhomogenous neutrino degeneracy, in the limit where the fluctuations are sufficiently small on large length scales that the present-day element abundances are homogeneous. We consider two representive cases: degeneracy of the electron neutrino alone, and equal chemical potentials for all three neutrinos. We use a linear programming method to constrain an arbitrary distribution of the chemical potentials. For the current set of (highly-restrictive) limits on the primordial element abundances, homogeneous neutrino degeneracy barely changes the allowed range of the baryon-to-photon ratio. Inhomogeneous degeneracy allows for little change in the lower bound on the baryon-to-photon ratio, but the upper bound in this case can be as large as 1.1 \times 10^{-8} (only electron neutrino degeneracy) or 1.0 \times 10^{-9} (equal degeneracies for all three neutrinos). For the case of inhomogeneous neutrino degeneracy, we show that there is no BBN upper bound on the neutrino energy density, which is bounded in this case only by limits from structure formation and the cosmic microwave background.Comment: 6 pages, no figure

    Comorbid conditions explain the association between posttraumatic stress disorder and incident cardiovascular disease

    Get PDF
    Background Posttraumatic stress disorder ( PTSD ) is associated with risk of cardiovascular disease ( CVD ). Biopsychosocial factors associated with PTSD likely account for some or all of this association. We determined whether 1, or a combination of comorbid conditions explained the association between PTSD and incident CVD . Methods and Results Eligible patients used 1 of 5 Veterans Health Affairs medical centers distributed across the United States. Data were obtained from electronic health records. At index date, 2519 Veterans Health Affairs ( VA ) patients, 30 to 70 years of age, had PTSD diagnoses and 1659 did not. Patients had no CVD diagnoses for 12 months before index date. Patients could enter the cohort between 2008 and 2012 with follow-up until 2015. Age-adjusted Cox proportional hazard models were computed before and after adjusting for comorbidities. Patients were middle aged (mean=50.1 years, SD ±11.0), mostly male (87.0%), and 60% were white. The age-adjusted association between PTSD and incident CVD was significant (hazard ratio=1.41; 95% CI : 1.21-1.63). After adjustment for metabolic conditions, the association between PTSD and incident CVD was attenuated but remained significant (hazard ratio=1.23; 95% CI : 1.06-1.44). After additional adjustment for smoking, sleep disorder, substance use disorder, anxiety disorders, and depression, PTSD was not associated with incident CVD (hazard ratio=0.96; 95% CI : 0.81-1.15). Conclusions PTSD is not an independent risk factor for CVD . Physical and psychiatric conditions and smoking that co-occur with PTSD explain why this patient population has an increased risk of CVD . Careful monitoring may limit exposure to CVD risk factors and subsequent incident CVD

    Long range neutrino forces in the cosmic relic neutrino background

    Get PDF
    Neutrinos mediate long range forces among macroscopic bodies in vacuum. When the bodies are placed in the neutrino cosmic background, these forces are modified. Indeed, at distances long compared to the scale T1T^{-1}, the relic neutrinos completely screen off the 2-neutrino exchange force, whereas for small distances the interaction remains unaffected.Comment: 8 pages, 2 figure

    Rpl13a small nucleolar RNAs regulate systemic glucose metabolism

    Get PDF
    Small nucleolar RNAs (snoRNAs) are non-coding RNAs that form ribonucleoproteins to guide covalent modifications of ribosomal and small nuclear RNAs in the nucleus. Recent studies have also uncovered additional non-canonical roles for snoRNAs. However, the physiological contributions of these small RNAs are largely unknown. Here, we selectively deleted four snoRNAs encoded within the introns of the ribosomal protein L13a (Rpl13a) locus in a mouse model. Loss of Rpl13a snoRNAs altered mitochondrial metabolism and lowered reactive oxygen species tone, leading to increased glucose-stimulated insulin secretion from pancreatic islets and enhanced systemic glucose tolerance. Islets from mice lacking Rpl13a snoRNAs demonstrated blunted oxidative stress responses. Furthermore, these mice were protected against diabetogenic stimuli that cause oxidative stress damage to islets. Our study illuminates a previously unrecognized role for snoRNAs in metabolic regulation

    Large Scale Pressure Fluctuations and Sunyaev-Zel'dovich Effect

    Get PDF
    The Sunyaev-Zel'dovich (SZ) effect associated with pressure fluctuations of the large scale structure gas distribution will be probed with current and upcoming wide-field small angular scale cosmic microwave background experiments. We study the generation of pressure fluctuations by baryons which are present in virialized dark matter halos and by baryons present in small overdensities. For collapsed halos, assuming the gas distribution is in hydrostatic equilibrium with matter density distribution, we predict the pressure power spectrum and bispectrum associated with the large scale structure gas distribution by extending the dark matter halo approach which describes the density field in terms of correlations between and within halos. The projected pressure power spectrum allows a determination of the resulting SZ power spectrum due to virialized structures. The unshocked photoionized baryons present in smaller overdensities trace the Jeans-scale smoothed dark matter distribution. They provide a lower limit to the SZ effect due to large scale structure in the absence of massive collapsed halos. We extend our calculations to discuss higher order statistics, such as bispectrum and skewness in SZ data. The SZ-weak lensing cross-correlation is suggested as a probe of correlations between dark matter and baryon density fields, while the probability distribution functions of peak statistics of SZ halos in wide field CMB data can be used as a probe of cosmology and non-Gaussian evolution of large scale structure pressure fluctuations.Comment: 16 pages, 9 figures; Revised with expanded discussions. Phys. Rev. D. (in press

    Constraints on Cosmic Strings due to Black Holes Formed from Collapsed Cosmic String Loops

    Get PDF
    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict ff, the fraction of cosmic string loops which collapse to form black holes, and μ\mu, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters ff and μ\mu is due to the energy density in 100MeV100 MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of ff are reliable, our results severely restrict μ\mu, and therefore limit the viability of the cosmic string large-scale structure scenario.Comment: (Plain Tex, uses tables.tex -- wrapped lines corrected), 11 pages, FERMILAB-Pub-93/137-

    The Clustering of Luminous Red Galaxies in the Sloan Digital Sky Survey Imaging Data

    Get PDF
    We present the 3D real space clustering power spectrum of a sample of \~600,000 luminous red galaxies (LRGs) measured by the Sloan Digital Sky Survey (SDSS), using photometric redshifts. This sample of galaxies ranges from redshift z=0.2 to 0.6 over 3,528 deg^2 of the sky, probing a volume of 1.5 (Gpc/h)^3, making it the largest volume ever used for galaxy clustering measurements. We measure the angular clustering power spectrum in eight redshift slices and combine these into a high precision 3D real space power spectrum from k=0.005 (h/Mpc) to k=1 (h/Mpc). We detect power on gigaparsec scales, beyond the turnover in the matter power spectrum, on scales significantly larger than those accessible to current spectroscopic redshift surveys. We also find evidence for baryonic oscillations, both in the power spectrum, as well as in fits to the baryon density, at a 2.5 sigma confidence level. The statistical power of these data to constrain cosmology is ~1.7 times better than previous clustering analyses. Varying the matter density and baryon fraction, we find \Omega_M = 0.30 \pm 0.03, and \Omega_b/\Omega_M = 0.18 \pm 0.04, The detection of baryonic oscillations also allows us to measure the comoving distance to z=0.5; we find a best fit distance of 1.73 \pm 0.12 Gpc, corresponding to a 6.5% error on the distance. These results demonstrate the ability to make precise clustering measurements with photometric surveys (abridged).Comment: 23 pages, 27 figures, submitted to MNRA

    Defining genes: a computational framework

    Get PDF
    The precise elucidation of the gene concept has become the subject of intense discussion in light of results from several, large high-throughput surveys of transcriptomes and proteomes. In previous work, we proposed an approach for constructing gene concepts that combines genomic heritability with elements of function. Here, we introduce a definition of the gene within a computational framework of cellular interactions. The definition seeks to satisfy the practical requirements imposed by annotation, capture logical aspects of regulation, and encompass the evolutionary property of homology

    Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies

    Get PDF
    We present the power spectrum of the reconstructed halo density field derived from a sample of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey Seventh Data Release (DR7). The halo power spectrum has a direct connection to the underlying dark matter power for k <= 0.2 h/Mpc, well into the quasi-linear regime. This enables us to use a factor of ~8 more modes in the cosmological analysis than an analysis with kmax = 0.1 h/Mpc, as was adopted in the SDSS team analysis of the DR4 LRG sample (Tegmark et al. 2006). The observed halo power spectrum for 0.02 < k < 0.2 h/Mpc is well-fit by our model: chi^2 = 39.6 for 40 degrees of freedom for the best fit LCDM model. We find \Omega_m h^2 * (n_s/0.96)^0.13 = 0.141^{+0.009}_{-0.012} for a power law primordial power spectrum with spectral index n_s and \Omega_b h^2 = 0.02265 fixed, consistent with CMB measurements. The halo power spectrum also constrains the ratio of the comoving sound horizon at the baryon-drag epoch to an effective distance to z=0.35: r_s/D_V(0.35) = 0.1097^{+0.0039}_{-0.0042}. Combining the halo power spectrum measurement with the WMAP 5 year results, for the flat LCDM model we find \Omega_m = 0.289 +/- 0.019 and H_0 = 69.4 +/- 1.6 km/s/Mpc. Allowing for massive neutrinos in LCDM, we find \sum m_{\nu} < 0.62 eV at the 95% confidence level. If we instead consider the effective number of relativistic species Neff as a free parameter, we find Neff = 4.8^{+1.8}_{-1.7}. Combining also with the Kowalski et al. (2008) supernova sample, we find \Omega_{tot} = 1.011 +/- 0.009 and w = -0.99 +/- 0.11 for an open cosmology with constant dark energy equation of state w.Comment: 26 pages, 19 figures, submitted to MNRAS. The power spectrum and a module to calculate the likelihoods is publicly available at http://lambda.gsfc.nasa.gov/toolbox/lrgdr/ . v2 fixes abstract formatting issu

    Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis.

    Get PDF
    Hemodynamic forces play an essential epigenetic role in heart valve development, but how they do so is not known. Here, we show that the shear-responsive transcription factor KLF2 is required in endocardial cells to regulate the mesenchymal cell responses that remodel cardiac cushions to mature valves. Endocardial Klf2 deficiency results in defective valve formation associated with loss of Wnt9b expression and reduced canonical WNT signaling in neighboring mesenchymal cells, a phenotype reproduced by endocardial-specific loss of Wnt9b. Studies in zebrafish embryos reveal that wnt9b expression is similarly restricted to the endocardial cells overlying the developing heart valves and is dependent upon both hemodynamic shear forces and klf2a expression. These studies identify KLF2-WNT9B signaling as a conserved molecular mechanism by which fluid forces sensed by endothelial cells direct the complex cellular process of heart valve development and suggest that congenital valve defects may arise due to subtle defects in this mechanotransduction pathway.journal articleresearch support, non-u.s. gov'tresearch support, n.i.h., extramural2017 11 062017 10 19importe
    corecore