97 research outputs found

    T lymphocytes in intraocular inflammation

    Get PDF

    Nitrification represents the bottle-neck of sheep urine patch N2O emissions from extensively grazed organic soils

    Get PDF
    Extensively grazed grasslands are understudied in terms of their contribution to greenhouse gas (GHG) emissions from livestock production. Mountains, moorlands and heath occupy 18% of the UK land area, however, in situ studies providing high frequency N2O emissions from sheep urine deposited to such areas are lacking. Organic soils typical of these regions may provide substrates for denitrification-related N2O emissions, however, acidic and anoxic conditions may inhibit nitrification (and associated emissions from nitrification and denitrification). We hypothesised urine N2O-N emission factors (EFs) would be lower than the UK country-specific and IPCC default value for urine, which is based on lowland measurements. Using automated GHG sampling chambers, N2O emissions were determined from real sheep urine (930 kg N ha−1) and artificial urine (920 kg N ha−1) applied in summer, and from an artificial urine treatment (1120 kg N ha−1) and a combined NO3− and glucose treatment (106 kg N ha−1; 213 kg C ha−1) in autumn. The latter treatment provided an assessment of the soils capacity for denitrification under non-substrate limiting conditions. The artificial urine-N2O EF was 0.01 ± 0.00% of the N applied in summer and 0.00 ± 0.00% of the N applied in autumn. The N2O EF for real sheep urine applied in summer was 0.01 ± 0.02%. A higher flux was observed in only one replicate of the real urine treatment, relating to one chamber where an increase in soil solution NO3− was observed. No lag phase in N2O emission was evident following application of the NO3− and glucose treatment, which emitted0.69 ± 0.15% of the N applied. This indicates nitrification rates are the bottle-neck for N2O emissions in upland organic soils.We calculated the potential impact of using hill-grazing specific urine N2O EFs on the UK inventory of N2O emissions from sheep excreta, and found a reduction of ca. 43% in comparison to the use of a country-specific excretal EF

    Optimising storage conditions and processing of sheep urine for nitrogen cycle and gaseous emission measurements from urine patches

    Get PDF
    Abstract In grazing systems, urine patches deposited by livestock are hotspots of nutrient cycling and the most important source of nitrous oxide (N2O) emissions. Studies of the effects of urine deposition, including, for example, the determination of country-specific N2O emission factors, require natural urine for use in experiments and face challenges obtaining urine of the same composition, but of differing concentrations. Yet, few studies have explored the importance of storage conditions and processing of ruminant urine for use in subsequent gaseous emission experiments. We conducted three experiments with sheep urine to determine optimal storage conditions and whether partial freeze-drying could be used to concentrate the urine, while maintaining the constituent profile and the subsequent urine-derived gaseous emission response once applied to soil. We concluded that filtering of urine prior to storage, and storage at − 20 °C best maintains the nitrogen-containing constituent profile of sheep urine samples. In addition, based on the 14 urine chemical components determined in this study, partial lyophilisation of sheep urine to a concentrate represents a suitable approach to maintain the constituent profile at a higher overall concentration and does not alter sheep urine-derived soil gaseous emissions

    The short-lived inhibitory effect of Brachiaria humidicola on nitrous oxide emissions following sheep urine application in a highly nitrifying soil

    Get PDF
    Background: Brachiaria humidicola (Bh) has the ability to produce biological nitrification inhibitors (NIs) and release NIs from the root to the soil. Aims: To compare the effects of growing Bh with Brachiaria ruziziensis (Br, which is not able to produceNIs) on soil nitrogen (N) dynamics,Ngases and carbon dioxide (CO2) emissions and nitrifiers and denitrifiers following sheep urine application, a laboratory incubation was conducted in a He/O2 continuous flow denitrification system (DENIS). This incubation was conducted in the absence of light. Hence themeasured effects of Bh and Br on N cycling were the residual effect of biological NIs released into the soil prior to the incubation and released via root death. Methods: The treatmentswere: (1) Bhwith water application (Bh+W); (2) Bh with sheep urine (Bh + U); (3) Br with water application (Br + W); (4) Br with sheep urine (Br + U). Results: Results showed that soil NO3– concentration increased significantly in the soil with sheep urine application after the incubation. Soil nitrous oxide (N2O) and nitric oxide (NO) emissions increased immediately after the sheep urine application and peaked twice during the incubation. Cumulative emissions for the first peak were significantly lower from the Bh + U treatment (0.054 kg N ha–1) compared with the Br + U treatment (0.111 kg N ha–1), but no significant differences were observed in the total cumulative N2O and NO emissions between the Bh + U and Br + U treatment at the end of the incubation. Sheep urine addition did not affect the AOA, nirS and nosZ gene copies, but significantly increased the AOB gene copies after the incubation. Conclusions: We conclude that the residual effect of Bh to mitigate N2O emissions in a highly nitrifying soil is short-lived

    Football: a counterpoint to the procession of pain on the Western Front, 1914-1918?

    Get PDF
    In this article, three artworks of the First World War containing images of recreational football are analysed. These three images, In the Wings of the Theatre of War, Artillery Men at Football and Gassed, span the war from its beginning to its conclusion and are discussed in relationship to the development of recreational football in the front-line area, the evolving policies of censorship and propaganda and in consideration of the national mood in Britain. The paper shows how football went from being a spontaneous and improvised pastime in the early stages of the war to a well organized entertainment by war’s end. The images demonstrate how the war was portrayed as a temporary affair by a confident nation in 1914 to a more resigned acceptance of a semi-permanent event to be endured by 1918; however, all three artworks show that the sporting spirit, and hence the fighting spirit, of the British soldier was intact

    Global Research Alliance N2 O chamber methodology guidelines:Introduction, with health and safety considerations

    Get PDF
    Non-steady-state (NSS) chamber techniques have been used for decades to measure nitrous oxide (N₂O) fluxes from agricultural soils. These techniques are widely used because they are relatively inexpensive, easy to adopt, versatile, and adaptable to varying conditions. Much of our current understanding of the drivers of N₂O emissions is based on studies using NSS chambers. These chamber techniques require decisions regarding multiple methodological aspects (e.g., chamber materials and geometry, deployment, sample analysis, and data and statistical analysis), each of which may significantly affect the results. Variation in methodological details can lead to challenges in comparing results between studies and assessment of reliability and uncertainty. Therefore, the New Zealand Government, in support of the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA), funded two international projects to, first, develop standardized guidelines on the use of NSS chamber techniques and, second, refine them based on the most up to date knowledge and methods. This introductory paper summarizes a collection of papers that represent the revised guidelines. Each article summarizes existing knowledge and provides guidance and minimum requirements on chamber design, deployment, sample collection, storage and analysis, automated chambers, flux calculations, statistical analysis, emission factor estimation and data reporting, modeling, and “gap-filling” approaches. The minimum requirements are not meant to be highly prescriptive but instead provide researchers with clear direction on best practices and factors that need to be considered. Health and safety considerations of NSS chamber techniques are also provided with this introductory paper

    Transcriptomic Analysis of Human Retinal Detachment Reveals Both Inflammatory Response and Photoreceptor Death

    Get PDF
    Background Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. Methodology/Principal Findings Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. Conclusions/Significance This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery

    Rhegmatogenous retinal detachment in Scotland: research design and methodology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhegmatogenous retinal detachment (RRD) is a potentially blinding condition and a common cause of ocular morbidity. Establishing an accurate estimate of disease incidence and distribution is an important first step in assessing the healthcare burden related to this condition and in subsequent planning and provision of treatment strategies. The aim of this study is to obtain a first estimate incidence of RRD in Scotland, to estimate the incidence of familial RRD and to describe the known associations of RRD within the study population.</p> <p>Methods/Design</p> <p>We have established a national prospective observational study seeking to identify and recruit all incident cases of RRD in the Scottish population over a 2 year period. After fully informed consent, all participants will have a blood sample taken and a full medical history and clinical examination performed including visual acuity, refraction, slit-lamp examination, intra-ocular pressure measurement and detailed fundal examination. We describe the study design and protocol.</p> <p>Conclusion</p> <p>This study will provide the first estimate of the annual incidence of RRD in Scotland. The findings of this study will be important in estimating the burden of disease and in the planning of future health care policy related to this condition. This study will also establish a genetic resource for a genome wide association study to investigate if certain genetic variants predispose to RRD.</p

    Global Research Alliance N2O chamber methodology guidelines: considerations for automated flux measurement

    Get PDF
    Nitrous oxide (N2O) emissions are highly episodic in response to nitrogen additions and changes in soil moisture. Automated gas sampling provides the necessary high temporal frequency to capture these emission events in real time, ensuring the development of accurate N2O inventories and effective mitigation strategies to reduce global warming. This paper outlines the design and operational considerations of automated chamber systems including chamber design and deployment, frequency of gas sampling, and options in terms of the analysis of gas samples. The basic hardware and software requirements for automated chambers are described, including the major challenges and obstacles in their implementation and operation in a wide range of environments. Detailed descriptions are provided of automated systems that have been deployed to assess the impacts of agronomy on the emissions of N2O and other significant greenhouse gases. This information will assist researchers across the world in the successful deployment and operation of automated N2O chamber systems
    corecore