53 research outputs found

    A Macroprudential Perspective on the Regulatory Boundaries of US Financial Assets

    Get PDF
    This paper uses data from the Financial Accounts of the United States to map out the regulatory boundaries of assets held by US financial institutions from a macroprudential perspective. We provide a quantitative measure of the macroprudential regulatory boundary—the perimeter between the part of the financial sector that is subject to some form of macroprudential regulatory oversight and that which is not—and show how it has evolved over the past 40 years. Additionally, we measure the boundaries between different regulatory agencies and financial institutions that operate within the regulatory perimeter and illustrate how these boundaries potentially become blurred in the face of regulatory overlap. Quantifying the macroprudential regulatory boundary and the boundaries for different regulators within the perimeter is informative for assessing financial stability risks over the credit cycle

    Xenomelia: a new right parietal lobe syndrome

    Get PDF
    ABSTRACT Background Damage to the right parietal lobe has long been associated with various disorders of body image. The authors have recently suggested that an unusual behavioural condition in which otherwise rational individuals desire the amputation of a healthy limb might also arise from right parietal dysfunction. Methods Four subjects who desired the amputation of healthy legs (two right, one left and one, at first, bilateral and then left only) were recruited and underwent magnetoencephalography (MEG) scans during tactile stimulation of sites above and below the desired amputation line. Regions of interest (ROIs) in each hemisphere (superior parietal lobule (SPL), inferior parietal lobule, S1, M1, insula, premotor cortex and precuneus) were defined using FreeSurfer software

    European Mixed Forests: definition and research perspectives

    Get PDF
    peer-reviewedAim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) briefly review the research perspectives in mixed forests. Area of study: The definition is developed in Europe but can be tested worldwide. Material and methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests. Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any developmental stage, sharing common resources (light, water, and/or soil nutrients). The presence of each of the component species is normally quantified as a proportion of the number of stems or of basal area, although volume, biomass or canopy cover as well as proportions by occupied stand area may be used for specific objectives. A variety of structures and patterns of mixtures can occur, and the interactions between the component species and their relative proportions may change over time. The research perspectives identified are (i) species interactions and responses to hazards, (ii) the concept of maximum density in mixed forests, (iii) conversion of monocultures to mixed-species forest and (iv) economic valuation of ecosystem services provided by mixed forests. Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields of research indicate that gradient studies, experimental design approaches, and model simulations are key topics providing new research opportunities.The networking in this study has been supported by COST Action FP1206 EuMIXFOR

    Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: review and perspectives

    Get PDF
    In this review, the unique features and facts of long-term experiments are presented. Long-term experimental plots provide information of forest stand dynamics which cannot be derived from forest inventories or small temporary plots. Most comprise unthinned plots which represent the site specific maximum stand density as an unambiguous reference. By measuring the remaining as well as the removed stand, the survey of long-term experiments provides the total production at a given site, which is most relevant for examining the relationship between site conditions and stand productivity on the one hand and between stand density and productivity on the other. Thus, long-term experiments can reveal the site-specific effect of thinning and species mixing on stand structure, production and carbon sequestration. If they cover an entire rotation or even the previous and following generation on a given site, they reveal a species' long-term behaviour and any growth trends caused by environmental changes. Second, we exploit the unique data of European long-term experiments, some of which have been surveyed since 1848. We show the long-term effect of different density regimes on stand dynamics and an essential trade-off between total stand volume production and mean tree size. Long-term experiments reveal that tree species mixing can significantly increase stand density and productivity compared with monospecific stands. Thanks to surveys spanning decades or even a century, we can show the changing long-term-performance of different provenances and acceleration of stand production caused by environmental change, as well as better understand the growth dynamics of natural forests. Without long-term experiments forest science and practice would be not in a position to obtain such findings which are of the utmost relevance for science and practice. Third, we draw conclusions and show perspectives regarding the maintenance and further development of long-term experiments. It would require another 150years to build up a comparable wealth of scientific information, practical knowledge, and teaching and training model examples. Although tempting, long-term experiments should not be sacrificed for cost-cutting measures. Given the global environmental change and the resulting challenges for sustainable management, the network of long-term experiments should rather be extended regarding experimental factors, recorded variables and inter- and transdisciplinary use for science and practice

    Visual speech differentially modulates beta, theta, and high gamma bands in auditory cortex

    Get PDF
    Speech perception is a central component of social communication. While principally an auditory process, accurate speech perception in everyday settings is supported by meaningful information extracted from visual cues (e.g., speech content, timing, and speaker identity). Previous research has shown that visual speech modulates activity in cortical areas subserving auditory speech perception, including the superior temporal gyrus (STG), potentially through feedback connections from the multisensory posterior superior temporal sulcus (pSTS). However, it is unknown whether visual modulation of auditory processing in the STG is a unitary phenomenon or, rather, consists of multiple temporally, spatially, or functionally distinct processes. To explore these questions, we examined neural responses to audiovisual speech measured from intracranially implanted electrodes within the temporal cortex of 21 patients undergoing clinical monitoring for epilepsy. We found that visual speech modulates auditory processes in the STG in multiple ways, eliciting temporally and spatially distinct patterns of activity that differ across theta, beta, and high-gamma frequency bands. Before speech onset, visual information increased high-gamma power in the posterior STG and suppressed beta power in mid-STG regions, suggesting crossmodal prediction of speech signals in these areas. After sound onset, visual speech decreased theta power in the middle and posterior STG, potentially reflecting a decrease in sustained feedforward auditory activity. These results are consistent with models that posit multiple distinct mechanisms supporting audiovisual speech perception and provide a crucial map for subsequent studies to identify the types of visual features that are encoded by these separate mechanisms.This study was supported by NIH Grant R00 DC013828 A. Beltz was supported by the Jacobs Foundation.http://deepblue.lib.umich.edu/bitstream/2027.42/167729/1/OriginalManuscript.pdfDescription of OriginalManuscript.pdf : Preprint of the article "Multiple auditory responses to visual speech"SEL

    Multisensory Stimuli Shift Perceptual Priors to Favor Rapid Detection

    No full text
    Multisensory stimuli speed behavioral responses, but the mechanisms subserving these effects remain disputed. Historically, the observation that multisensory reaction times (RTs) outpace models assuming independent sensory channels has been taken as evidence for multisensory integration (the “redundant target effect”; RTE). However, this interpretation has been challenged by alternative explanations based on stimulus sequence effects, RT variability, and/or negative correlations in unisensory processing. To clarify the mechanisms subserving the RTE, we collected RTs from 78 undergraduates in a multisensory simple RT task. Based on previous neurophysiological findings, we hypothesized that the RTE was unlikely to reflect these alternative mechanisms, and more likely reflected pre-potentiation of sensory responses through crossmodal phase-resetting. Contrary to accounts based on stimulus sequence effects, we found that preceding stimuli explained only 3-9% of the variance in apparent RTEs. Comparing three plausible evidence accumulator models, we found that multisensory RT distributions were best explained by increased sensory evidence at stimulus onset. Because crossmodal phase-resetting increases cortical excitability before sensory input arrives, these results are consistent with a mechanism based on pre-potentiation through phase-resetting. Mathematically, this model entails increasing the prior log-odds of stimulus presence, providing a potential link between neurophysiological, behavioral, and computational accounts of multisensory interactions

    When and how does 2 turn blue? : the neural timing and mechanisms underlying synesthesia

    No full text
    Synesthesia is a perceptual experience in which stimuli presented through one perceptual stream will spontaneously evoke unrelated sensory experiences. While synesthesia can occur in response to drugs, sensory deprivation, or brain damage, research has largely focused on heritable variant comprising roughly 4% of the general population. This condition is by definition involuntary, automatic, and stable over time, and evidence suggests that the condition occurs from increased connectivity between the senses. However, the precise mechanisms that give rise to these sensations remain a matter of active debate. Across five studies using electroencephalography, magnetoencephalography, and behavioral measures, we present evidence that early and quick communication between low-level perceptual centers mediates the initial processing stage in synesthesia. Furthermore, this research also suggests early synesthetic mechanisms partially overlap with those that support multisensory processes in the general population. This work clarifies the mechanisms that underlie this interesting condition, and provides a roadmap to using synesthesia as a tool to better understand perceptual and conceptual processes present in all individual

    Data for: Multisensory Stimuli Shift Perceptual Priors to Facilitate Rapid Behavior

    No full text

    Situate spectro-temporal facilitation effects within the functional - anatomical organization of the auditory system

    No full text
    fMRI project that's set out to investigate how spectral and temporal information in visual speech are restored in the auditory cortex
    corecore