641 research outputs found

    Cross-layer optimization of unequal protected layered video over hierarchical modulation

    Get PDF
    Abstract-unequal protection mechanisms have been proposed at several layers in order to improve the reliability of multimedia contents, especially for video data. The paper aims at implementing a multi-layer unequal protection scheme, which is based on a Physical-Transport-Application cross-layer design. Hierarchical modulation, in the physical layer, has been demonstrated to increase the overall user capacity of a wireless communications. On the other hand, unequal erasure protection codes at the transport layer turned out to be an efficient method to protect video data generated by the application layer by exploiting their intrinsic properties. In this paper, the two techniques are jointly optimized in order to enable recovering lost data in case the protection is performed separately. We show that the cross-layer design proposed herein outperforms the performance of hierarchical modulation and unequal erasure codes taken independently

    Incipient ferroelectricity in 2.3% tensile-strained CaMnO3 films

    Full text link
    Epitaxial CaMnO3 films grown with 2.3% tensile strain on (001)-oriented LaAlO3 substrates are found to be incipiently ferroelectric below 25 K. Optical second harmonic generation (SHG) was used for the detection of the incipient polarization. The SHG analysis reveals that CaMnO3 crystallites with in-plane orientation of the orthorhombic b axis contribute to an electric polarization oriented along the orthorhombic a (resp.\ c) axis in agreement with the predictions from density functional calculations

    Spectroscopic ellipsometry of homoepitaxial diamond multilayers and delta-doped structures

    No full text
    5 pagesInternational audienceThe optimization of diamond-based unipolar electronic devices such as pseudo-vertical Schottky diodes or delta-doped field effect transistors relies in part on the sequential growth of nominally undoped (p-) and heavily boron doped (p þþ ) layers with well-controlled thicknesses and steep interfaces. Optical ellipsometry offers a swift and contactless method to characterize the thickness, roughness, and electronic properties of semiconducting and metallic diamond layers. We report ellipsometric studies carried out on delta-doped structures and other epitaxial multilayers with various boron concentrations and thicknesses (down to the nanometer range). The results are compared with Secondary Ion Mass Spectroscopy and transport measurements. Copyright 2014 AIP Publishing LLC

    A Cost-based Optimizer for Gradient Descent Optimization

    Full text link
    As the use of machine learning (ML) permeates into diverse application domains, there is an urgent need to support a declarative framework for ML. Ideally, a user will specify an ML task in a high-level and easy-to-use language and the framework will invoke the appropriate algorithms and system configurations to execute it. An important observation towards designing such a framework is that many ML tasks can be expressed as mathematical optimization problems, which take a specific form. Furthermore, these optimization problems can be efficiently solved using variations of the gradient descent (GD) algorithm. Thus, to decouple a user specification of an ML task from its execution, a key component is a GD optimizer. We propose a cost-based GD optimizer that selects the best GD plan for a given ML task. To build our optimizer, we introduce a set of abstract operators for expressing GD algorithms and propose a novel approach to estimate the number of iterations a GD algorithm requires to converge. Extensive experiments on real and synthetic datasets show that our optimizer not only chooses the best GD plan but also allows for optimizations that achieve orders of magnitude performance speed-up.Comment: Accepted at SIGMOD 201

    Geodesic Distance in Planar Graphs

    Full text link
    We derive the exact generating function for planar maps (genus zero fatgraphs) with vertices of arbitrary even valence and with two marked points at a fixed geodesic distance. This is done in a purely combinatorial way based on a bijection with decorated trees, leading to a recursion relation on the geodesic distance. The latter is solved exactly in terms of discrete soliton-like expressions, suggesting an underlying integrable structure. We extract from this solution the fractal dimensions at the various (multi)-critical points, as well as the precise scaling forms of the continuum two-point functions and the probability distributions for the geodesic distance in (multi)-critical random surfaces. The two-point functions are shown to obey differential equations involving the residues of the KdV hierarchy.Comment: 38 pages, 8 figures, tex, harvmac, eps

    Experimental evaluation into novel, low cost, modular PEMFC stack

    Get PDF
    Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)The Polymer Electrolyte Membrane Fuel Cell (PEMFC), despite being regarded as an ideal replacement to the internal combustion engine, is still not an economically attractive pri-mover due to a number of key challenges that have yet to be fully resolved; some of which include degradation to cell components resulting in inadequate lifetimes, specialised and costly manufacturing processes and poor gravimetric/volumetric energy densities. This paper presents a novel stack concept which removes the conventional bi polar plate (BPP), a component that is responsible for up to 80% of total stack weight and 90+% of stack volume in some designs. The removal of said component not only improves the volumetric and gravimetric energy density of the PEMFC stack but drastically reduces the cost of the stack by removing all costly manufacturing processes associated with PEMFC component machining while the functionality of the traditional BPP is still retained by the unique stack design. The stack architecture is first presented and then the characterisation of the PEMFC is shown over a wide range of operating scenarios. The experimental studies suggest that the performance of the new design is comparable to that of traditional stacks but at significantly less cost price.Final Published versio

    Boron-doped superlattices and Bragg mirrors in diamond

    Get PDF
    International audienceA periodic modulation of the boron doping level of single crystal diamond multilayers over more than three orders of magnitude during epitaxial growth by microwave plasma-enhanced chemical vapor deposition is shown to yield Bragg mirrors in the visible. The thicknesses and doping level of the individual layers were controlled by in situ spectroscopic ellipsometry, enabling to tune the reflec-tance peak to the wavelength range of diamond color centers, such as NV 0 or NV À . The crystalline quality, periodicity, and sharpness of the doping transitions in these doping superlattices over tens of periods were confirmed by high resolution X-ray diffraction
    corecore