661 research outputs found

    Improving schools facing challenging circumstances: perspectives from leading thinkers

    Get PDF

    Still seeking the missing patients with familial hypercholesterolemia

    Get PDF

    A statistical analysis of murine incisional and excisional acute wound models

    Get PDF
    YesMice represent the most commonly used species for preclinical in vivo research. While incisional and excisional acute murine wound models are both frequently employed, there is little agreement on which model is optimum. Moreover, current lack of standardization of wounding procedure, analysis time point(s), method of assessment, and the use of individual wounds vs. individual animals as replicates makes it difficult to compare across studies. Here we have profiled secondary intention healing of incisional and excisional wounds within the same animal, assessing multiple parameters to determine the optimal methodology for future studies. We report that histology provides the least variable assessment of healing. Furthermore, histology alone (not planimetry) is able to detect accelerated healing in a castrated mouse model. Perhaps most importantly, we find virtually no correlation between wounds within the same animal, suggesting that use of wound (not animal) biological replicates is perfectly acceptable. Overall, these findings should guide and refine future studies, increasing the likelihood of detecting novel phenotypes while reducing the numbers of animals required for experimentation

    A multiphase seismic investigation of the shallow subduction zone, southern North Island, New Zealand

    Get PDF
    The shallow structure of the Hikurangi margin, in particular the interface between the Australian Plate and the subducting Pacific Plate, is investigated using the traveltimes of direct and converted seismic phases from local earthquakes. Mode conversions take place as upgoing energy from earthquakes in the subducted slab crosses the plate interface. These PS and SP converted arrivals are observed as intermediate phases between the direct P and S waves. They place an additional constraint on the depth of the interface and enable the topography of the subducted plate to be mapped across the region. 301 suitable earthquakes were recorded by the Leeds (Tararua) broad-band seismic array, a temporary line of three-component short-period stations, and the permanent stations of the New Zealand national network. This provided coverage across the land area of southern North Island, New Zealand, at a total of 17 stations. Rays are traced through a structure parametrized using layered B-splines and the traveltime residuals inverted, simultaneously, for hypocentre relocation, interface depth and seismic velocity. The results are consistent with sediment in the northeast of the study region and gentle topography on the subducting plate. This study and recent tectonic reconstructions of the southwest Pacific suggest that the subducting plate consists of captured, oceanic crust. The anomalous nature of this crust partly accounts for the unusual features of the Hikurangi margin, e.g. the shallow trench, in comparison with the subducting margin further north

    Evaluating complementary networks of restoration plantings for landscape-scale occurrence of temporally dynamic species

    Get PDF
    Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost-effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape-scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species-rich plantings. We investigated whether it is possible to apply a complementarity-based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity-based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species-richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species-richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and landscape context lead to considerably better outcomes than conventional restoration objectives of site-scale species richness and are crucial for allocating restoration investment wisely to reach desired conservation goals.We thank the Australian Research Council, the Murrayand Riverina Local Land Services, and the Caring for OurCountry Program for funding for this project

    Flexible scientific data management for plant phenomics research

    Get PDF
    In this paper, we expand on the design and implementation of the Phenomics Ontology Driven Data repository [1] (PODD) with respect to the capture, storage and retrieval of data and metadata gen- erated at the High Resolution Plant Phenomics Centre (Canberra, Aus- tralia). PODD is a schema-driven Semantic Web database which uses the Resource Description Framework (RDF) model to store semi-structured information. RDF allows PODD to process information about a range of phenomics experiments without needing to define a universal schema for all of the di ff erent structures. To illustrate the process, exemplar datasets were generated using a medium throughput, high resolution, three-dimensional digitisation system purposely built for studying plant structure and function simultaneously under specific environmental con- ditions. The High Performance Compute (HPC), storage and data collec- tion publication aspects of the workflow and their realisation in CSIRO infrastructure are also discussed along with their relationship to PODD
    corecore