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Abstract 1 

Multi-billion dollar investments in land restoration make it critical that conservation goals are achieved cost-2 

effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate 3 

landscape-scale, temporally-dynamic biodiversity outcomes from restoration, improving on traditional 4 

approaches of focusing on the most species-rich plantings. We investigated whether it is possible to apply a 5 

complementarity-based approach to evaluate the extent to which an existing network of restoration plantings 6 

meets representation targets. Using a case study of woodland birds of conservation concern in southeastern 7 

Australia, we compared complementarity-based selections of plantings based on temporally-dynamic species 8 

occurrences with (1) selections based on static species occurrences, and (2) selections based on ranking 9 

plantings by species richness. We found that incorporating dynamics in species occurrences across a five-year 10 

period resulted in higher species occurrences and proportion of targets met compared with using species 11 

occurrences taken at a single point in time. For equivalent cost, the dynamic complementarity approach also 12 

always resulted in higher average minimum percent occurrence of species maintained through time and a 13 

higher proportion of the bird community meeting representation targets compared with the species richness 14 

approach. Plantings selected under the complementarity approaches represented the full range of planting 15 

attributes, whilst those selected under the species richness approach were larger in size. Future restoration 16 

policy should not attempt to achieve all conservation goals within individual plantings, but should instead 17 

capitalise on restoration opportunities as they arise to achieve collective value of multiple plantings across the 18 

landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, 19 

and landscape context lead to considerably better outcomes than conventional restoration objectives of site-20 

scale species richness, and are crucial for allocating restoration investment wisely to reach desired 21 

conservation goals. 22 

 23 

  24 
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Introduction 25 

Restoration plantings are a widely implemented biodiversity conservation approach in agricultural landscapes 26 

(Bullock et al. 2011). Worldwide, international biodiversity targets for 2020 include the restoration of at least 27 

15% of degraded ecosystems (Aichi Biodiversity Target 15, CBD COP 2010). Similar international targets for 28 

the restoration of 150 million ha of degraded lands by 2020 (Rio+20, UNCSD 2012) are estimated to cost 29 

nations globally US$18 billion per year (Menz et al. 2013). Specific restoration targets have been set by the 30 

European Union (Bullock et al. 2011) and individual countries, including Australia, whose Biodiversity Fund 31 

aims to restore 18 million ha of native vegetation by 2020 with a budget of US$1 billion (Australian 32 

Government 2013). Given this substantial investment, it is important that restoration initiatives are both 33 

efficient and cost-effective, maximising biodiversity outcomes for the least cost (Menz et al. 2013). 34 

 35 

Most research on biodiversity outcomes within restoration plantings (a form of active restoration) has focused 36 

on whether and how individual plantings achieve high species occurrence, richness or abundance (Munro et 37 

al. 2007). In addition to comparing the value of restoration plantings to that of reference sites (e.g. Gould et al. 38 

2013), these studies have identified attributes of plantings that contribute to increased biodiversity at the site-39 

scale, including planting age (Vesk et al. 2008), area and shape (Lindenmayer et al. 2010; Jellinek et al. 2014) 40 

and vegetation structure (Munro et al. 2011). This earlier research recommends that future restoration 41 

investment be focused on maximising site-scale attributes related to high individual planting biodiversity. 42 

Restoration plantings, however, also have value at the landscape scale (Thomson et al. 2009; Rappaport et al. 43 

2015), and the collective features of different plantings across the landscape may be a better measure of 44 

biodiversity value than site-scale attributes. An alternative approach to restoration investment, therefore, is to 45 

maximise the number of species present across the entire landscape through a focus on networks of restoration 46 

plantings. 47 

 48 

Systematic conservation planning, originally developed for locating and designing cost-effective protected 49 

areas (Margules & Pressey 2000), has increasingly been used to spatially prioritise new areas for restoration 50 

(Thomson et al. 2009; Lethbridge et al. 2010; McBride et al. 2010; Wilson et al. 2011; Yoshioka et al. 2014; 51 

Possingham et al. 2015). A key concept is complementarity, which ensures that each restoration planting 52 
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contributes unrepresented features to the larger network of plantings (i.e. that each planting complements the 53 

others in the network) (Margules & Pressey 2000). Complementarity approaches to the selection of restoration 54 

plantings thus differ from selection based on traditional measures of conservation value that focus on the most 55 

species-rich plantings. This is because plantings with high individual species richness may not necessarily 56 

contribute to overall conservation goals of maximising diversity at a landscape or regional scale (Margules & 57 

Pressey 2000; see also Chadès et al. 2015). Systematic conservation planning has frequently been used to 58 

evaluate the performance of an existing set of protected areas (e.g. Stewart et al. 2003), and the same approach 59 

might be useful to evaluate the performance of an existing network of restoration plantings. Undertaking such 60 

an evaluation would: (a) identify the best complementary subset of plantings that contribute the most to the 61 

biodiversity benefits of the network, and might be afforded protection in cases of impact assessment and 62 

future landscape clearing, and (b) elucidate the attributes of plantings important for landscape-scale 63 

biodiversity outcomes. In doing so, landscapes undergoing restoration might have more efficient investment 64 

and conservation outcomes. 65 

 66 

Most systematic conservation planning usually considers species occurrence only at a single point in time, but 67 

plant and animal communities (particularly those in disturbed landscapes) are temporally dynamic (Grantham 68 

et al. 2011; Runge et al. 2014; Tulloch et al. 2016). Failure to incorporate dynamics into spatial prioritisations 69 

– e.g. using static species distributions derived from a single year of data or pooled over years – can lead to 70 

insufficient representation of species over time (Runge et al. 2016; Tulloch et al. 2016). Whist previous spatial 71 

prioritisations for restoration have considered dynamics in the age and structural complexity of restored 72 

vegetation (e.g. Thomson et al. 2009), we are not aware of any spatial prioritisation study that has accounted 73 

for temporal dynamics in the distribution or occurrence of species colonising restoration plantings, potentially 74 

undermining the success of restoration schemes. 75 

 76 

In this study, we investigated whether taking a temporally-dynamic complementarity approach can evaluate 77 

the contribution of existing restoration plantings to achieve landscape-scale species occurrence. We used, as a 78 

case study, a network of plantings in the South West Slopes Bioregion of southeastern Australia. Only 15% of 79 

the once extensive temperate eucalypt woodland remains within this agricultural region (Benson 2008) and, 80 
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consequently, many woodland bird species are of conservation concern (Rayner et al. 2014). Since 1990, 81 

however, concerted investment has been made in establishing restoration plantings for a range of conservation 82 

and land management objectives, including increasing woodland bird habitat. Through extensive programs 83 

managed by multiple stakeholders, thousands of hectares of vegetation have been planted, corresponding to 84 

increases of 3-4% of vegetation cover in the landscape (Lindenmayer et al. 2012; Cunningham et al. 2014). As 85 

part of the South West Slopes Restoration Study (Cunningham et al. 2007), 61 plantings have been surveyed 86 

for birds and vegetation in five spring seasons since 2006.  87 

 88 

Our first aim in this study was to find the best complementary network (i.e. subset) of established restoration 89 

plantings to support landscape-scale occurrence of species of conservation concern for minimal establishment 90 

cost. We accounted for temporally dynamic species occurrences, by requiring representation targets for 91 

species occurrence to be met in every year (Runge et al. 2016). We compared the outcomes of taking a 92 

dynamic complementarity approach to find a network of plantings that met our desired representation target 93 

with (1) networks selected using a static complementarity approach based on single years of data, and (2) 94 

equivalently costed networks of plantings ranked by richness of species of conservation concern.  95 

 96 

Our second aim was to identify the attributes of plantings that contributed most to the landscape-scale 97 

occurrence of species of conservation concern. The plantings in our study were established for a variety of 98 

reasons (e.g. wind breaks, soil erosion and salinity), varied in age, area, shape, vegetation structure, and 99 

landscape context, and subsequently varied in their individual value for woodland birds (Lindenmayer et al. 100 

2010). This opportunistically created a network of a plantings that was ideal for exploring how subsets of 101 

plantings with different characteristics differed in terms of their ability to represent all bird species of 102 

conservation concern. Our study thus quantifies the value of evaluating biodiversity benefits of management 103 

at the landscape scale and incorporating temporally dynamic species distributions into restoration planning. 104 

The work informs future investment to ensure more efficient and cost-effective biodiversity outcomes across 105 

restoration landscapes. 106 

 107 
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Methods 108 

Study area, experimental design, and data collection 109 

The South-West Slopes Restoration Study is located in a 150 km x 120 km area of the South West Slopes 110 

Bioregion of New South Wales, Australia (Fig. 1). This region was once dominated by temperate box-gum 111 

Eucalyptus woodland, but is now characterised by cropping and livestock grazing. Farms typically have 112 

between 3% and 35% native vegetation cover, including old growth woodland, regrowth, and plantings 113 

(Cunningham et al. 2014). For this investigation, we used data from 61 plantings, distributed across 25 farms. 114 

These plantings were not established following any plant species composition or spacing protocols but, 115 

typically, planting composition was a mix of local endemic and exotic Australian ground cover, understorey 116 

and overstorey species, with plants spaced ~2 m apart. For each planting, we compiled data on variables 117 

known to be important for bird richness and occurrence in restoration plantings: years since establishment, 118 

area and width of plantings, vegetation structural complexity, surrounding woody vegetation cover (a proxy 119 

for connectivity), and landscape position (see Table S1 and S2 in the Supporting Information).  120 

 121 

We used the area and shape of plantings to estimate the total establishment cost of each planting. Our 122 

estimates were based on 2015 pricing rates used by Greening Australia, one of Australia’s largest and longest-123 

running restoration practitioners. We calculated costs ($AUD) of materials and labour for fencing and direct-124 

seeding of sites (Table S3). As our focus was on biodiversity as a public benefit, we considered only public 125 

costs of establishing restoration sites in this analysis. We acknowledge the importance of considering private 126 

opportunity costs and ongoing management costs in conservation planning on public land, but the inclusion of 127 

such information was beyond the scope of this study.   128 

 129 

We collected bird occurrence data in the spring seasons of 2006, 2008, 2009, 2011 and 2013. In each year, 130 

every planting was visited twice within a four day period in early November, on two days by different 131 

observers, and a five-minute point count was conducted at the 0 m, 100 m and 200 m points of a permanent 132 

transect. All birds seen or heard within 50 m of the point, excluding those flying overhead, were recorded as 133 

present. Surveys were conducted between sunrise and mid-morning, avoiding inclement weather. This strict 134 

survey protocol is designed to address biases in observer heterogeneity (Cunningham et al. 1999) and false-135 
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negative errors, i.e. failure to detect species that are present (Banks-Leite et al. 2014), and is applied across all 136 

our long-term major studies in woodlands.  137 

 138 

We defined woodland birds of conservation concern as those species: (i) dependent on woodland for foraging 139 

and/or nesting (Silcocks et al. 2005), and (ii) listed as threatened in New South Wales under the Threatened 140 

Species Conservation Act 1995 (this also captures relevant nationally-listed threatened species) and/or 141 

identified as having a >20% decrease in South West Slopes bioregion reporting rate between the first and 142 

second Atlas of Australian Birds (Barrett et al. 2003). Excluding very rare species (only recorded once during 143 

the five years), this definition resulted in 26 species of conservation concern for analysis (Table S4). We used 144 

Permutational Multivariate Analysis of Variance (PERMANOVA) to test for significant differences in species 145 

composition between years, based on a Bray-Curtis dissimilarity matrix adjusted for species presence/absence 146 

data, using the vegan package in R (R Development Core Team 2007). 147 

 148 

Data analysis 149 

To address our first aim (i.e. achieve targets of landscape-scale occurrence of species of conservation concern 150 

for least investment), we compared the outcomes of using ‘dynamic’ versus ‘static’ complementarity 151 

approaches, and ‘complementarity’ versus ‘ranked’ approaches, to find the best subset network of restoration 152 

plantings. We set an objective of representing targets of 10% to 100 % (10% increments) occurrence of each 153 

species per year in all years (equivalent to 10% to 100% of plantings where each species occurred in each 154 

year).  155 

 156 

To find the best complementarity-based networks of plantings for each target, we used the decision-support 157 

software, Marxan, which uses a simulated annealing algorithm to solve the minimum set problem (Ball et al. 158 

2009). The objective was to minimise resources expended (i.e. cost of the planting network) whilst meeting 159 

pre-specified representation targets (i.e. scenarios of 10% to 100% individual species occurrence per year in 160 

all years). To account for temporal variation in species occurrence between plantings (planning units), we 161 

created a conservation feature for each species for each survey year (five conservation features per species of 162 

conservation concern, giving 130 conservation features in total), following Runge et al. (2016). 163 
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Representation of conservation features in a given planting was based on presence/absence data, i.e. whether 164 

or not each species was recorded in each planting in each year. For each increasing 10% target scenario, we 165 

compared the ‘dynamic’ approach with five ‘static’ approaches, based on single years of data (2006 only, 166 

2008 only, 2009 only, 2011 only, and 2013 only). The objective of the static approaches was to meet 167 

representation targets only for that particular year. We parameterised Marxan to find the most cost-effective 168 

network irrespective of spatial configuration (by setting the boundary length modifier to zero), and performed 169 

100 runs per scenario. We confirmed that the selected networks were not driven by planting cost by 170 

comparing the scenarios with baseline ‘no cost’ scenarios (Table S5). We considered two Marxan outputs for 171 

each scenario: the ‘best’ network of plantings that met the representation target for the least cost, and the 172 

‘selection frequency’ (i.e. irreplaceability) of each planting (the number of times each planting was selected 173 

across the 100 runs). For our scenarios, these two values were strongly positively correlated (≥ 0.9), and the 174 

average selection frequency for plantings selected in the best network was close to 100% (Table S6). Because 175 

this indicates high irreplaceability in selected plantings, we used the ‘best’ networks of plantings for 176 

subsequent analyses.  177 

 178 

We paired each dynamic complementarity scenario with a ranked scenario of equivalent cost, creating ten 179 

matched pairs of networks (i.e. one for each species occurrence target (10% to 100%)). To do this, we 180 

calculated total richness of species of conservation concern across the five survey years and ranked individual 181 

plantings from high to low species richness. We calculated the cumulative cost of the plantings based on these 182 

rankings, and included in the best network only those plantings that could be afforded for less than or equal to 183 

the cost of the dynamic complementarity scenario.  184 

 185 

For each network selected by the dynamic, static, and ranked approaches, we calculated the: (i) cumulative 186 

establishment cost, (ii) number of plantings in the network, and (iii) summary statistics for the minimum 187 

percentage of the occurrence of each species that was met over the five years. We also calculated Bray-Curtis 188 

dissimilarity (adjusted for presence/absence data) between networks to assess spatial concordance between the 189 

selected plantings (e.g. low Bray-Curtis dissimilarity between a pair of networks indicates that the spatial 190 

locations of the plantings in the networks were similar). We confirmed that differences between the dynamic 191 
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complementarity and ranked networks were not driven by cost-effectiveness by comparing our results with 192 

equivalently-costed networks that were based on ranking plantings by cost-effectiveness but ignoring 193 

complementarity (dividing species richness by cost) (Table S8).  194 

 195 

To address our second aim (i.e. identify the attributes of plantings that contribute to landscape-scale 196 

occurrence of species of conservation concern), we modelled the relationship between planting attributes and 197 

the probability of the planting being selected in the dynamic and static complementarity and ranked scenarios 198 

for two representation targets (30% and 60% species occurrence in all years). We also modelled the number of 199 

times (frequency) each planting was selected in the static networks for these targets over the five years. The 200 

first target (30% occurrence) was chosen to reflect typical targets for conservation assessments (Svancara et 201 

al. 2005). The second target (60% occurrence) was chosen based on the results of the Marxan analyses, as 202 

there was a threshold jump in planting benefits at this target level for the dynamic complementarity approach. 203 

Planting attributes included standardised site-level variables (Table S1). Planting width was strongly and 204 

positively correlated with planting area, and so was excluded from further analyses  We adopted an 205 

information theoretic approach to model selection (Burnham & Anderson 2002), and compared a candidate set 206 

of 31 models that included single and additive combinations of all planting attributes (Table 2). We 207 

considered the univariate planting area model to be the null model, as previous research suggests that this 208 

attribute is of primary importance in restoration (e.g. Lindenmayer et al. 2010). We fitted generalised linear 209 

models (GLM), with a binomial error distribution and log link (AICcmodavg package).We modelled each 210 

response variable against a distance-weighted spatial autocovariate (spdep package) to check for spatial 211 

autocorrelation between sites. For response variables that showed evidence of spatial autocorrelation, we 212 

included the distance-weighted spatial autocovariate in each alternative model. We ranked the candidate set of 213 

models by Akaike’s Information Criterion corrected for small sample bias (AICc). For top-ranked models 214 

(within 2 ΔAICc of the model with the lowest AICc), we assessed model support using Nagelkerke’s 215 

coefficient of determination (R2; fmsb package), and calculated model-averaged effect sizes for the model 216 

terms. 217 

 218 
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Results 219 

Over the five survey years, we recorded 100 woodland bird species, including 26 of conservation concern 220 

(Table S4). Total richness of species of conservation concern ranged from 1 to 14 species per planting. 221 

Species composition differed significantly between years (F = 2.723, p = 0.006). 222 

 223 

Dynamic vs static complementary restoration planting networks 224 

The complementarity approach that incorporated dynamic species occurrences consistently resulted in higher 225 

mean minimum percent occurrence of species across the five survey years than the static complementarity 226 

approaches based on single years of data (Fig. 2a, Table S7). Although more expensive to achieve any given 227 

target than the static approaches, the dynamic approach always met the representation target for every species 228 

(Fig. 2b). In comparison, although plantings selected using a static single-year approach met the 229 

representation target for that year, they failed to meet the representation target across all time (2006-2013) for 230 

more than a third of species. This is because all 61 plantings were required to meet the dynamic representation 231 

target of 100% occurrence for each species across all time, compared with between 42 and 54 plantings for the 232 

static targets. 233 

 234 

The spatial locations of the best network of selected plantings differed markedly between years. For example, 235 

for the 30% target, there was 44 % – 78 % Bray-Curtis dissimilarity in selected plantings between years 236 

(Table 1). To meet this target, each planting was selected an average of 1.46 times (out of 5 possible static 237 

networks); 20 plantings were never selected and only one planting was always selected. The spatial locations 238 

of the selected plantings also differed between the dynamic and static approaches (average Bray-Curtis 239 

dissimilarity for the 30% target = 49%). However, within each approach, plantings selected under low 240 

representation targets were usually also selected under higher targets (average Bray-Curtis dissimilarity 241 

between increments = 12%).  242 

 243 

Dynamic complementary vs ranked restoration planting networks 244 

The dynamic-complementarity approach consistently resulted in higher mean percent species occurrence than 245 

the species-richness ranked approach (Fig. 3a, Table S8). For equivalent cost, mean minimum percent 246 
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occurrence of species was up to 30% higher in the complementarity scenarios. Further, whilst the 247 

representation target was achieved in every complementarity scenario (i.e. all species met the specified target), 248 

up to 46% of species did not meet the target in the equivalent-costed ranked scenarios (Fig. 3b). On average, 249 

there was 78% overlap in the spatial location of plantings selected under the complementarity and ranked 250 

approaches (average Bray-Curtis dissimilarity = 22%). 251 

 252 

Relationships with planting attributes 253 

Plantings selected under the static and dynamic complementarity approach for the 30% and 60% targets did 254 

not consistently differ in their attributes from the non-selected plantings. Model uncertainty was high, as top-255 

ranked models had relatively low R2 values (Table 2). The effect sizes of terms in the models were generally 256 

small and variable (confidence intervals crossed 0) (Fig. 4a – c, Fig. S1). Similarly, there was no consistent 257 

relationship between the number of times each planting was selected in the static networks over the five years 258 

and planting attributes (Fig. 4d). Plantings selected more frequently to meet the 30% target were younger and 259 

surrounded by more woody vegetation cover but effect sizes were small, and these effects were variable for 260 

plantings selected to meet the 60% target. In comparison, plantings selected under the richness ranked 261 

scenarios were larger than non-selected plantings, and model certainty was relatively high (Table 2, Fig. 4e). 262 

 263 

Discussion 264 

The restoration of degraded lands is an international conservation goal, with multi-billion dollar annual 265 

investment, requiring wise allocation of resources (Bullock et al. 2011; Menz et al. 2013). Our study shows 266 

that it is possible to apply the principles of systematic conservation planning to evaluate the extent to which an 267 

existing network of restoration plantings meets representation targets for woodland birds of conservation 268 

concern. Incorporating dynamics in species occurrences across a five-year period resulted in higher species 269 

occurrences and proportion of targets met compared with using species occurrences representing a single 270 

point in time. Importantly, we found that for equivalent cost, the dynamic complementarity approach always 271 

resulted in higher average minimum percent occurrence of species maintained through time and a higher 272 

proportion of the bird community meeting representation targets compared with ranking plantings by species 273 

richness (Aim 1). We also found that plantings selected to achieve goals of both representation and 274 
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complementarity represented the full range of planting attributes, whilst those selected under the richness 275 

approach were larger in size (Aim 2).  276 

 277 

We found that incorporating dynamic species occurrences led to more expensive networks of restoration 278 

plantings, but considerably higher long-term species occurrences and achievement of representation targets 279 

compared with static approaches. This was because the bird community was highly spatially and temporally 280 

dynamic, with little overlap between networks selected based on single years of data. Compared with static 281 

distribution approaches, incorporating temporally-dynamic species ranges in systematic conservation planning 282 

leads to more expensive and less flexible networks, but improved biodiversity outcomes (see also Grantham et 283 

al. 2011; Lourival et al. 2011; Van Teeffelen et al. 2012). For example, Runge et al. (2016), found that 284 

accounting for annual and seasonal range variation in nomadic bird species led to greater areas of land 285 

needing to be conserved to achieve targets but greater levels of species protection. Similarly, in their case 286 

study of the South American Pantanal wetlands, Lourival et al. (2011) found that incorporating dynamic 287 

vegetation distributions, although increasing expense, improved the reliability and long-term adequacy of their 288 

reserve networks. A dynamic prioritisation approach is thus crucial for allocating investment wisely to reach 289 

desired conservation goals (Tulloch et al. 2016). 290 

 291 

Using a landscape-scale complementarity approach was critical to achieve cost-effective subsets of restoration 292 

plantings across the existing network. For example, to achieve similar species representation (for targets 293 

≤90% species occurrence), the complementarity approach required less investment, fewer plantings, and less 294 

combined restored area than the ranked approach based on site-scale species richness.  Further, even with the 295 

substantial additional investment needed for the ranked approaches, many species still did not meet the 296 

representation target in every year (compared with all targets achieved under the complementarity approach). 297 

Complementarity approaches to reserve design have long been recognised as superior to ranked approaches 298 

(Chadès et al. 2015), and our study supports their utility in restoration programs (Yoshioka et al. 2014). 299 

However, by definition, the high efficiency that complementarity achieves may result in low redundancy 300 

across the network of restoration sites, with implications for network robustness to disturbance (O’Hanley et 301 

al. 2007). In our scenarios, we incorporated multiple years of data, including from severe drought (2006 - 302 
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2009) and post-drought recovery (2011 - 2013). Incorporating these dynamics within our system likely 303 

reduced the trade-off between complementarity and robustness through accounting for stochastic processes 304 

(Lourival et al. 2011; Van Teeffelen et al. 2012). 305 

 306 

Our finding that no single attribute makes plantings best for bird occupancy over space and time challenges 307 

conventional thinking that there is a type of restoration planting best for woodland birds (Lindenmayer et al. 308 

2010). Instead, our findings support previous research on the differing and complementary habitat suitability 309 

of plantings for different functional groups (Loyn et al. 2007). By collectively considering occupancy of 310 

plantings by each species in our analyses, we were able to specifically account for the variable habitat 311 

requirements of our bird community. However, it is difficult to evaluate to what extent the bird occurrence 312 

patterns within the best networks of plantings were influenced by bird occurrence in unselected plantings (to 313 

which highly-mobile taxa like birds could disperse) or by other vegetation types (e.g. regrowth and remnant 314 

vegetation) in the study landscape (Lindenmayer et al. 2012). Future research should investigate 315 

complementarity and connectivity between restoration plantings, regrowth vegetation (i.e. passive 316 

restoration), and remnant vegetation for landscape-scale species persistence. Future research could also 317 

integrate dynamics in planting attributes with dynamics in species occurrences. For instance, in our study we 318 

held planting attributes constant, yet some attributes such as age, structural complexity, and connectivity may 319 

change through time (Thomson et al. 2009). As such, the attributes of plantings that are likely to maximise 320 

complementarity may also change through time, as suggested by our findings from our static models. Ideally, 321 

any future research that uses cost-effectiveness analysis to prioritise restored habitat in agricultural landscapes 322 

should also incorporate costs associated with lost farming opportunities in restored areas (Naidoo et al. 2006).  323 

 324 

Translating our findings into future restoration policy involves some challenges. Our results show that it is 325 

desirable from a complementarity perspective to encourage a mixed portfolio of restoration projects that differ 326 

in the attributes of plantings and landscape context. Given real-world social, economic and political 327 

constraints on biologically-driven conservation planning ‘informed opportunism’ (sensu Noss et al. 2002) may 328 

be appropriate. That is, in addition to available biodiversity knowledge, future investment in restoration 329 

initiatives also should be guided by the capacity and willingness of land owners to participate (Knight et al. 330 
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2010). A key difficulty is developing policy that can capitalise on informed opportunism to achieve 331 

complementary planting networks. One approach may be to implement policies that support consistent, 332 

incremental funding of restoration plantings in a region, so that a breadth of planting ages and structural 333 

attributes is maintained. Another more resource-intensive approach could be to allocate funding for new 334 

plantings that would complement the attributes of existing restoration plantings.  335 

 336 

In summary, our study shows that a complementarity approach can be used to find the best network of 337 

established restoration plantings, and that this network is more cost-effective and represents more of species’ 338 

landscape occupancy than a traditional species richness approach,. Further, incorporating temporally-dynamic 339 

species occurrences leads to a more cost-effective and robust restoration plantings network compared with 340 

using static single-year data (Grantham et al. 2011; Lourival et al. 2011; Van Teeffelen et al. 2012; Runge et 341 

al. 2014). Substantial resources will continue to be invested in restoration initiatives in response to 342 

international and national policy, and as part of wider agri-environmental schemes (Bullock et al. 2011; Menz 343 

et al. 2013). This investment should not attempt to achieve all conservation goals within individual plantings, 344 

but could instead be implemented incrementally to capitalise on restoration opportunities as they arise (Noss 345 

et al. 2002) to achieve collective value of multiple plantings across the landscape. Adopting a landscape-scale 346 

temporally-dynamic approach leads to considerably better outcomes for a faunal community of conservation 347 

concern than applying conventional site-scale metrics, and is crucial for the wise allocation of restoration 348 

investment to reach desired conservation goals. 349 

 350 
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Tables and Figures 
 

Table 1: Percent Bray-Curtis dissimilarity between the spatial locations of plantings selected in the static and 

dynamic complementarity restoration planting networks for the 30% representation target. 

 
2006 2008 2009 2011 2013 

2008 44.44 
    

2009 52.94 57.89 
   

2011 54.29 48.72 78.38 
  

2013 43.75 50.00 58.82 54.29 
 

Dynamic 50.00 38.46 36.00 45.10 41.67 
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Table 2: Candidate set of models. Nagelkerke’s coefficient of determination (R2) is presented for the top-ranked models (ΔAICc a ≤ 2). ‘Area’ is planting area, 

‘Age’ is years since planting establishment, ‘HCS’ (habitat complexity score) represents vegetation structural complexity, ‘Woody Veg’ is percentage of 

vegetation cover within 1 km, and ‘TWI’ (topographic wetness index) represents position in landscape ranging from ridges to valley floors. 

Model 2006 2008 2009 2011 2013 Dynamic Frequency b Ranked 

 
30% 60% 30% 60% 30% 60% 30% 60% 30% 60% 30% 60% 30% 60% 30% 60% 

Area c 0.08 0.04 0.00 0.01 0.01 0.00 0.04 0.02 0.01 0.01 0.05 0.06 0.17 0.07 0.20 0.27 

Age 
   

0.20 0.02 0.02 0.18 0.07 0.08 0.10 0.01 0.04 
 

0.29 
  

Age + Woody Veg 
  

0.15 0.21 0.02 
 

0.23 0.10 
 

0.11 0.07 0.10 0.36 0.31 
  

Area + Age 0.14 
   

0.04 
 

0.19 0.13 0.10 0.14 
 

0.08 
   

0.27 

TWI 
 

0.04 
  

0.01 0.00 
 

0.06 0.09 
 

0.03 0.03 
    

Age + TWI 
   

0.21 0.02 
 

0.20 0.11 0.14 0.13 
   

0.31 
  

Age + Woody Veg + TWI 
      

0.26 0.16 
 

0.16 0.11 0.15 0.40 0.35 
  

Woody Veg 
 

0.04 0.09 
 

0.00 0.00 
    

0.05 0.06 
    

Area + TWI 
 

0.10 
     

0.10 
  

0.10 0.12 
  

0.21 0.28 

Area + Woody Veg 0.15 0.12 
        

0.08 0.09 
  

0.21 
 

Woody Veg + TWI 
  

0.11 
    

0.11 
  

0.10 0.12 
    

Area + Age + Woody Veg 0.22 
 

0.16 
      

0.18 
  

0.40 
   

Area + Age + TWI 
       

0.14 0.15 0.16 
 

0.13 
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Area + Woody Veg + TWI 
 

0.16 
     

0.18 
  

0.14 0.17 
    

Area + HCS 
     

0.03 
        

0.21 0.28 

Age + HCS 
     

0.03 0.20 0.12 
        

Age + HCS + Woody Veg 
  

0.15 
   

0.23 0.10 
        

Area + Age + Woody Veg + TWI 
         

0.20 
 

0.18 0.43 
   

HCS 
    

0.00 0.02 
          

Area + HCS + Woody Veg 0.20 0.17 
              

Age + HCS + TWI 
       

0.15 0.16 
       

HCS + Woody Veg 
  

0.12 
             

HCS + TWI 
        

0.13 
       

HCS + Woody Veg + TWI 
          

0.11 
     

Area + Age + HCS + Woody Veg 0.23 
               

Age + HCS + Woody Veg + TWI 
       

0.14 
        

Area + Age + HCS + Woody Veg + TWI 
            

0.44 
   

Area +  Age + HCS d 
                

Area + Age + Woody Veg d 
                

Area + HCS + TWI d 
                

Area + Age + HCS + TWI d 
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a delta Akaike Information Criterion adjusted for small sample size. b Spatial autocovariate included in all alternative models. c Null model. Values in 

italics indicate that the model was not within the top-ranked model set. d Not a top-ranked model.
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Figure 1: Map of study area showing restoration planting sites (note that points are not drawn to scale). Grey 

shading shows native woody vegetation cover. Insets show location of study area within Australia (top) and 

image of a typical planting site (bottom). Image by D. Blair. 
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Figure 2. Comparison of five-year outcomes under dynamic and static complementarity approaches for (a) 5-

year mean minimum percent occurrence, and (b) targets met. Each line represents 10% to 100% representation 

targets.  
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Figure 3: Comparison of dynamic complementarity and ranked approaches to maximise landscape-scale 

occurrence of species of conservation concern for (a) 5-year mean minimum percent occurrence, and (b) 

targets met. Each line represents 10% to 100% representation targets.   
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Figure 4: Summary of model-averaged effect sizes (and 95% confidence intervals) for terms in the top-ranked 

models (ΔAICc≤ 2) for 30% (closed circles) and 60% (open circles) representation targets. See Table 2 for a 

description of model terms. See Figure S1 for plots for 2008 only, 2009 only and 2011 only models. 
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Supporting Information 

Table S1: Summary of explanatory variables considered in the analyses, and example of a previous study that 

has found the variable to be important in explaining bird diversity in restoration plantings. 

Variable Definition Mean (Range) Example studies 

Cost Establishment cost $16, 052  

($4, 948 – 

$75,869) 

Polyakov et al. 2015 

Age Number of years since the establishment of the 

planting (since 2006). 

11 (0 – 44) Lindenmayer et al. 2010 

Munro et al. 2011 

Area Size of planting (ha). 4.24 (0.3 – 

60.3) 

Kavanagh et al. 2007 

Lindenmayer et al. 2010 

Munro et al. 2011 

Width Width of planting (m). 65.16 (10 – 

300) 

Kinross 2004 

Lindenmayer et al. 2007 

Lindenmayer et al. 2010 

Munro et al. 2011 

Habitat 

complexity 

score (HCS) 

Vegetation structural complexity was based on 

vegetation data collected in 2007/08 and 2013: 

(i) the percent cover of overstorey, midstorey 

and understorey vegetation, the number of logs 

per ha, and the presence of large trees (> 50 cm 

diameter at breast height) were recorded within 

three 20 x 20 m plots located at the 0 m, 100 m 

and 200 m transect points; and (ii) the percent 

cover of native grass, exotic grass, exotic 

perennials, broadleaf weeds, forbs, leaf litter, 

and moss and lichen were recorded within 

twelve 1 m x 1 m quadrats located at the 

corners of the plots. A combined site-level 

habitat complexity score was calculated from 

these data, following Munro et al. (2011) 

(Table S2). 

18 (9 – 29) Lindenmayer et al. 2010 

Munro et al. 2011 

Woody 

vegetation 

(WoodyVeg) 

Percentage of vegetation cover within a 1 km 

buffer from the 100 m transect point. Derived 

5.45% (0.00% 

– 23.00%) 

Kavanagh et al. 2007 

Lindenmayer et al. 2010 

Munro et al. 2011 
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Variable Definition Mean (Range) Example studies 

from Landsat satellite imagery (Danaher 

2011). 

Radford et al. 2005 

Topographic 

wetness 

index (TWI) 

Position in landscape, ranging from ridge tops 

to valley floors. Derived from a 20 m 

resolution Digital Elevation Model (DEM) 

(Montague-Drake et al. 2011), and calculated 

at the 100 m transect point 

0.61 (-2.68 – 

10.23) 

Lindenmayer et al. 2010 

Montague-Drake et al. 

2011 
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Table S2: Habitat complexity score (HCS). Planting HCS was the sum of the scores for each element. 

Score Strata % cover* Logs/ha Trees > 50 cm/ha 

0 < 1% < 1 < 1 

1 1-5% 1-10  

2 6-30% 11-50  

3 31-70% 51-100  

4 > 70% > 100 ≥ 1 

*Strata includes overstorey, midstorey, understorey and ground layer (native tussock, exotic tussock, exotic 

grass, broadleaf weeds, forbs, and leaf litter). 

 

 

 

Table S3: Costs of materials and labour for fencing and direct-seeding of restoration sites 

Item Description Rate ($AUD) 

Fencing Fencing materials and labour $10,000/km 

Direct-seeding  - materials Seed, machinery < 2 ha = $750/ha 

2-4 ha = $625/ha 

>4 ha = $550/ha 

Direct-seeding  - labour Labour, site preparation $77.68/ha  
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Table S4: Woodland bird species of conservation concern, justification for inclusion and number of 

observations between 2006 and 2013. ‘Legislation’: listed as threatened in NSW under the Threatened Species 

Conservation Act 1995 (this also captures relevant nationally-listed threatened species) and/or ‘Atlas’: 

identified as having a >20% decrease in South West Slopes bioregion reporting rate between the first and 

second Atlas of Australian Birds. 

Common name Scientific name Source Records 

Black-chinned Honeyeater Melithreptus gularis Legislation 6 

Brown Songlark Cincloramphus cruralis Atlas 56 

Brown Treecreeper Climacteris picumnus Legislation 8 

Cockatiel Nymphicus hollandicus Atlas 15 

Crested Shrike-tit Falcunculus frontatus Atlas 30 

Diamond Firetail Stagonopleura guttata Legislation 21 

Dollarbird Eurystomus orientalis Atlas 2 

Dusky Woodswallow Artamus cyanopterus Atlas 10 

Fairy Martin Petrochelidon ariel Atlas 5 

Grey-crowned Babbler Pomatostomus temporalis Legislation 11 

Jacky Winter Microeca fascinans Atlas 3 

Little Lorikeet Glossopsitta pusilla Legislation 3 

Masked Woodswallow Artamus personatus Atlas 7 

Pied Butcherbird Cracticus nigrogularis Atlas 5 

Rainbow Bee-eater Merops ornatus Atlas 13 

Restless Flycatcher Myiagra inquieta Atlas 9 

Scarlet Robin Petroica boodang Legislation 2 

Southern Whiteface Aphelocephala leucopsis Atlas 10 

Speckled Warbler Chthonicola sagittata Legislation 9 

Superb Parrot Polytelis swainsonii Legislation 19 

Weebill Smicrornis brevirostris Atlas 66 

White-browed Woodswallow Artamus superciliosus Atlas 54 

White-fronted Chat Epthianura albifrons Legislation 8 

White-winged Triller Lalage sueurii Atlas 46 

Yellow-rumped Thornbill Acanthiza chrysorrhoa Atlas 119 

Zebra Finch Taeniopygia guttata Atlas 2 
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Table S5 Comparison of scenarios with cost included and excluded, for the 30% and 60% species occurrence 

targets. The locations of plantings selected under the two scenarios were similar (Bray-Curtis dissimilarity 

13% and 23% for the 30% target and 60% target, respectively). 

Scenario Cost Plantings Area (ha) % Occurrence Target met 

30%: cost included $535,125.80 32 185.00 60.63 100 

30%: cost excluded $591,778.60 30 203.80 60.28 100 

60%: cost included $725,628.00 43 222.20 80.19 100 

60%: cost excluded $754,132.20 42 227.50 80.53 100 

 

 

Table S6. Mean (SD) selection frequencies of plantings selected in the best solutions for each representation 

target and those not selected. 

 
Best solution 

Target Selected Not selected 

10% 98.71 (6.42) 1.06 (5.92) 

20% 96.34 (13.32) 3.22 (9.90) 

30% 96.88 (10.93) 3.55 (10.92) 

40% 98.00 (7.91) 3.07 (19.93) 

50% 98.06 (7.80) 3.19 (9.03) 

60% 98.21 (7.56) 4.28 (11.40) 

70% 96.25 (12.42) 13.92 (17.29) 

80% 97.22 (11.57) 24.00 (21.76) 

90% 99.62 (2.89) 19.67 (15.31) 

100% 100.00 (0.00) - 
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Table S7. Summary of dynamic and static complementarity scenarios 
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10 $503,891 54 100 $114,068 5 15 $209,546 11 31 $156,488 4 19 $281,986 11 35 $166,364 4 12 

20 $509,593 55 100 $123,890 5 12 $247,124 17 42 $166,002 5 4 $297,123 11 31 $177,061 6 19 

30 $535,126 61 100 $163,907 7 12 $283,631 19 38 $216,123 8 8 $332,201 17 27 $212,421 11 15 

40 $573,122 66 100 $195,243 8 4 $330,638 33 50 $266,335 9 4 $370,808 19 27 $257,570 12 4 

50 $575,591 66 100 $229,085 13 12 $381,571 34 42 $305,878 10 4 $395,025 20 23 $300,573 22 15 

60 $725,628 80 100 $332,518 13 8 $549,920 41 31 $448,961 21 4 $480,195 35 23 $395,403 28 8 

70 $814,979 87 100 $397,461 25 8 $620,428 48 27 $534,510 26 4 $525,713 36 15 $459,828 36 12 

80 $889,818 96 100 $503,252 31 8 $690,304 57 27 $606,834 28 4 $661,279 54 27 $572,794 45 15 

90 $951,035 99 100 $574,287 38 8 $789,620 76 35 $704,481 37 8 $746,849 59 23 $751,666 57 12 

100 $979,198 100 100 $633,418 51 19 $890,734 89 62 $816,398 64 31 $788,795 61 23 $870,880 71 27 
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Table S8. Summary of dynamic complementarity and ranked scenarios. 

 
Dynamic Species-richness ranked Species-richness / cost ranked 
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10 $503,891 54 100 $504,144 39 65 $502,903 51 77 

20 $509,593 55 100 $504,144 39 65 $502,903 51 77 

30 $535,126 61 100 $520,595 39 54 $525,424 51 73 

40 $573,122 66 100 $567,577 49 54 $565,378 55 81 

50 $575,591 66 100 $574,061 54 54 $565,378 55 81 

60 $725,628 80 100 $721,545 64 65 $701,886 73 69 

70 $814,979 87 100 $805,461 85 77 $819,627 86 81 

80 $889,818 96 100 $885,168 92 77 $865,478 91 88 

90 $951,035 99 100 $943,044 96 92 $892,227 91 85 

100 $979,198 100 100 $979,198 100 100 $979,198 100 100 
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Figure S1. Summary of model-averaged effect sizes (and 95% confidence intervals) for terms in the top-

ranked models (ΔAICc≤ 2) for 30% (closed circles) and 60% (open circles) representation targets. ‘Area’ is 

planting area, ‘Age’ is years since planting establishment, ‘HCS’ (habitat complexity score) represents 

vegetation structural complexity, ‘Woody Veg’ is percentage of vegetation cover within 1000 m, and ‘TWI’ 

(topographic wetness index) represents position in landscape ranging from ridges to valley floors. See Table 

S1 for a full description of model terms. 
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