63 research outputs found

    Designed Polynuclear Lanthanide Complexes for Quantum Information Processing

    Full text link
    The design of dissymmetric organic ligands featuring combinations of 1,3-diketone and 2,6-diacetylpyridine coordination pockets has been exploited to produce dinuclear and trinuclear lanthanide-based coordination compounds. These molecules exhibit two or more non-equivalent Ln ions, most remarkably enabling the access to well-defined heterolanthanide compositions. The site-selective disposition of each metal ion within the molecular entities allows the study of each centre individually as a spin-based quantum bit, affording unparalleled versatility for quantum gate design. The inherent weak interaction between the Ln ions permits the performance of multi-qubit quantum logical operations realized through their derived magnetic states, or implementing quantum-error correction protocols. The different studies performed to date on these systems are revised, showing their vast potential within spin-based quantum information processing

    Controlled Heterometallic Composition in Linear Trinuclear [LnCeLn] Lanthanide Molecular Assemblies.

    Get PDF
    The combination of two different β-diketone ligands facilitates the size-controlled assembly of pure heterometallic [LnLn'Ln] linear compounds thanks to two different coordination sites present in the molecular scaffold. [HoCeHo], [ErCeEr], and [YbCeYb] analogues are presented here and are characterized both in the solid state and in solution, demonstrating the selectivity of this unique method to produce heterometallic 4f molecular entities

    Designed asymmetric coordination helicates with bis-β-diketonate ligands.

    Get PDF
    A new bis-(β-diketone) ligand featuring built-up structural asymmetry yields non-symmetric Fe(iii) and Ga(iii) dinuclear, triple-stranded helicates by design. Their structural properties have been studied, both in solid state and in solution, and compared with their corresponding symmetric analogues. The robustness observed shows the potential of this synthetic strategy to develop non-symmetric helicoidal motifs with specific functional groups

    A Dissymmetric [Gd2] Coordination Molecular Dimer Hosting six Addressable Spin Qubits

    Full text link
    Artificial magnetic molecules can host several spin qubits, which could then implement small-scale algorithms. In order to become of practical use, such molecular spin processors need to increase the available computational space and warrant universal operations. Here, we design, synthesize and fully characterize dissymetric molecular dimers hosting either one or two Gadolinium(III) ions. The strong sensitivity of Gadolinium magnetic anisotropy to its local coordination gives rise to different zero-field splittings at each metal site. As a result, the [LaGd] and [GdLu] complexes provide realizations of distinct spin qudits with eight unequally spaced levels. In the [Gd2] dimer, these properties are combined with a Gd-Gd magnetic interaction, sufficiently strong to lift all level degeneracies, yet sufficiently weak to keep all levels within an experimentally accessible energy window. The spin Hamiltonian of this dimer allows a complete set of operations to act as a 64-dimensional all-electron spin qudit, or, equivalently, as six addressable qubits. Electron paramagnetic resonance experiments show that resonant transitions between different spin states can be coherently controlled, with coherence times TM of the order of 1 µs limited by hyperfine interactions. Coordination complexes with embedded quantum functionalities are promising building blocks for quantum computation and simulation hybrid platforms

    Cytotoxicity of osmium(ii) and cycloosmated half-sandwich complexes from 1-pyrenyl-containing phosphane ligands

    Full text link
    Five metal-arene complexes of formula [MX2(η6-p-cymene)(diR(1-pyrenyl)phosphane)] (M = Os or Ru, X = Cl or I, R = isopropyl or phenyl) and symbolized as MRX2 were synthesized and fully characterized, namely OsiPrCl2, OsiPrI2, OsPhCl2, OsPhI2 and RuPhI2. Furthermore, nine cyclometalated half-sandwich complexes of formula [MX-(η6-p-cymene)(k2C-diR(1-pyrenyl)phosphane)] (M = Os or Ru, X = Cl or I, R = isopropyl or phenyl) or [M(η6-p-cymene)(kS-dmso)(k2C-diR(1-pyrenyl)phosphane)]PF6 (M = Os or Ru, R = isopropyl or phenyl) and symbolized as c-MRX were prepared; hence, c-OsiPrCl, c-OsiPrI, c-OsiPrdmso, c-OsPhCl, c-OsPhI, c-OsPhdmso, c-RuPhCl, c-RuPhI and c-RuPhdmso were obtained and fully characterized. The crystal structures of ten out of the fourteen complexes were solved. All complexes exhibit notable cytotoxic properties against A549 (Lung Adenocarcinoma) human cells, with IC50 values ranging from 48 to 1.42 μM. In addition, complex c-OsiPrdmso shows remarkable toxic behaviours agains other cell lines, namely MCF7 (breast carcinoma), MCF10A (non-tumorigenic epithelial breast) and MDA-MB-435 (melanoma) human cells, as illustrated by IC50 values of 4.36, 4.71 and 2.32 μM, respectively. Finally, it has been found that OsiPrI2 affects the cell cycle of A549 cells, impeding their replication (i.e., the cell cycle is blocked), whereas OsPhI2 (namely with phenyl groups instead of isopropyl ones) does not induce this effect

    Accessing Lanthanide-to-Lanthanide Energy Transfer in a Family of Site-Resolved [LnIIILnIII'] Heterometallic Complexes

    Get PDF
    The ligand H3 L (6-[3-oxo-3-(2-hydroxyphenyl)propionyl]pyridine-2-carboxylic acid), which exhibits two different coordination pockets, has been exploited to engender and study energy transfer (ET) in two dinuclear [LnIII LnIII '] analogues of interest, [EuYb] and [NdYb]. Their structural and physical properties have been compared with newly synthesised analogues featuring no possible ET ([EuLu], [NdLu], and [GdYb]) and with the corresponding homometallic [EuEu] and [NdNd] analogues, which have been previously reported. Photophysical data suggest that ET between EuIII and YbIII does not occur to a significant extent, whereas emission from YbIII originates from sensitisation of the ligand. In contrast, energy migration seems to be occurring between the two NdIII centres in [NdNd], as well as in [NdYb], in which YbIII luminescence is thus, in part, sensitised by ET from Nd. This study shows the versatility of this molecular platform to further the investigation of lanthanide-to-lanthanide ET phenomena in defined molecular systems

    Selective Lanthanide Distribution within a Comprehensive Series of Heterometallic [LnPr] Complexes

    Get PDF
    The preparation of heterometallic, lanthanide-only complexes is an extremely difficult synthetic challenge. By a ligandbased strategy, a complete isostructural series of dinuclear heterometallic [LnPr] complexes has been synthesized and structurally characterized. The two different coordination sites featured in this molecular entity allow study of the preferences of the praseodymium ion for a specific position depending on the ionic radii of the accompanying lanthanide partner. The purity of each heterometallic moiety has been evaluated in the solid state and in solution by means of crystallographic and spectrometric methods, respectively, revealing the limits of this strategy for ions with similar sizes. DFT calculations have been carried out to support the experimental results, confirming the nature of the siteselective lanthanide distribution. The predictable selectivity of this system has been exploited to assess the magnetic properties of the [DyPr] and [LuPr] derivatives, showing that the origin of the slow dynamics observed in the former arises from the dysprosium ion

    Steric hindrance, ligand ejection and associated photocytotoxic properties of ruthenium(II) polypyridyl complexes

    Full text link
    Two ruthenium(II) polypyridyl complexes were prepared with the {Ru(phen)2}2+ moiety and a third sterically non-hindering bidentate ligand, namely 2,2'-dipyridylamine (dpa) and N-benzyl-2,2'-dipyridylamine (Bndpa). Hence, complexes [Ru(phen)2(dpa)](PF6)2 (1) and [Ru(phen)2(Bndpa)](PF6)2 (2) were characterized and their photochemical behaviour in solution (acetonitrile and water) was subsequently investigated. Compounds 1 and 2, which do not exhibit notably distorted octahedral coordination environments, contrarily to the homoleptic 'parent' compound [Ru(phen)3](PF6)2, experience two-step photoejection of the dpa and Bndpa ligand upon irradiation (1050-430 nm) for several hours. DNA-binding studies revealed that compounds 1 and 2 affect the biomolecule differently upon irradiation; while 2 solely modifies its electrophoretic mobility, complex 1 is also capable of cleaving it. In vitro cytotoxicity studies with two cancer-cell lines, namely A549 (lung adenocarcinoma) and A375 (melanoma), showed that both 1 and 2 are not toxic in the dark, while only 1 is significantly cytotoxic if irradiated, 2 remaining non-toxic under these conditions
    corecore