24 research outputs found

    Patch-Scale Movement Dynamics in the Iowa Grassland Butterflies \u3ci\u3eSpeyeria Cybele\u3c/i\u3e and \u3ci\u3eMegisto Cymela\u3c/i\u3e (Lepidoptera: Nymphalidae)

    Get PDF
    An understanding of the movement dynamics of invertebrates can be critical to their conservation, especially when managing relatively small, isolated habitats. Most studies of butterfly movement have focused on metapopulation dynamics at relatively large spatial scales, and the results from these studies may not translate well for patchy populations within a single nature preserve. In this work we use individual mark and recapture (IMR) methods to follow the movements of two species of butterfly, Megisto cymela (Cramer) and Speyeria cybele F. (Lepidoptera: Nymphalidae) within a 240 hectare forest and grassland preserve in central Iowa, USA. Significant redistribution was seen in both species, with 55.7% of S. cybele and 31.1% of M. cymela undergoing interpatch movement. Median movement rates during the study were 105 m/day for S. cybele and 38 m/day for M. cymela, with the top decile moving at a rate of over five times these values. This movement did not appear to be random. S. cybele exhibited directed movement towards patches with high nectaring potential, although not all such patches were selected. M. cymela aggregated in particular prairie patches, especially those with high edge to area ratios, although the reason for aggregation is not clear

    Patch-Scale Movement Dynamics in the Iowa Grassland Butterflies \u3ci\u3eSpeyeria Cybele\u3c/i\u3e and \u3ci\u3eMegisto Cymela\u3c/i\u3e (Lepidoptera: Nymphalidae)

    Get PDF
    An understanding of the movement dynamics of invertebrates can be critical to their conservation, especially when managing relatively small, isolated habitats. Most studies of butterfly movement have focused on metapopulation dynamics at relatively large spatial scales, and the results from these studies may not translate well for patchy populations within a single nature preserve. In this work we use individual mark and recapture (IMR) methods to follow the movements of two species of butterfly, Megisto cymela (Cramer) and Speyeria cybele F. (Lepidoptera: Nymphalidae) within a 240 hectare forest and grassland preserve in central Iowa, USA. Significant redistribution was seen in both species, with 55.7% of S. cybele and 31.1% of M. cymela undergoing interpatch movement. Median movement rates during the study were 105 m/day for S. cybele and 38 m/day for M. cymela, with the top decile moving at a rate of over five times these values. This movement did not appear to be random. S. cybele exhibited directed movement towards patches with high nectaring potential, although not all such patches were selected. M. cymela aggregated in particular prairie patches, especially those with high edge to area ratios, although the reason for aggregation is not clear

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Synthetic oxygen carriers related to biological systems

    No full text
    corecore