58 research outputs found

    Fish Assemblages and Benthic Biota Associated with Natural Hard-Bottom Areas in the Northwestern Gulf of Mexico

    Get PDF
    We report new observations of fish and benthic invertebrate assemblages at shallow-water (\u3c35 m depth), hard-bottom sites in the northwestern Gulf of Mexico. The biota of these previously unstudied areas and of three high-relief features in deeper water was observed during May 1980 using a combination of diver reconnaissance, videotape surveys, still-camera photography, and collection of invertebrates for identification. The six hard-bottom sites in shallow water typically comprised, small, often patchy, rock outcrops, and the associated sessile invertebrates included hydroids, bryozoans, sponges, octocorals, and ahermatypic stony corals. Sea urchins and arrow crabs were the most common motile epifauna. Fish assemblages were typified by red snapper, Atlantic spadefish, blue runner gray triggerfish, sheepshead, and tomtate. Three deeper stations had many of the same fish and invertebrate species, but also possessed a more tropical assemblage including fire corals, antipatharians, spiny lobsters, and a variety of tropical fish species. Hermatypic corals characteristic of some large, offshore banks were not abundant at any of the sites. Differences in the composition of fish assemblages between nearshore and deeper stations parallel those previously observed at petroleum platforms in the area. Shallow-water stations presumably experience a greater seasonal temperature range and lower absolute temperatures in winter and may be exposed to stresses such a lowered salinity and depleted oxygen levels due to their relative proximity to Mississippi River discharge. The fauna of these shallow hard-bottom sites has predominantly warm-temperate rather than tropical affinities

    Secretory granule neuroendocrine protein 1 (SGNE1) genetic variation and glucose intolerance in severe childhood and adult obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>7B2 is a regulator/activator of the prohormone convertase 2 which is involved in the processing of numerous neuropeptides, including insulin, glucagon and pro-opiomelanocortin. We have previously described a suggestive genetic linkage peak with childhood obesity on chr15q12-q14, where the 7B2 encoding gene, <it>SGNE1 </it>is located. The aim of this study is to analyze associations of <it>SGNE1 </it>genetic variation with obesity and metabolism related quantitative traits.</p> <p>Methods</p> <p>We screened <it>SGNE1 </it>for genetic variants in obese children and genotyped 12 frequent single nucleotide polymorphisms (SNPs). Case control analyses were performed in 1,229 obese (534 children and 695 adults), 1,535 individuals with type 2 diabetes and 1,363 controls, all French Caucasians. We also studied 4,922 participants from the D.E.S.I.R prospective population-based cohort.</p> <p>Results</p> <p>We did not find any association between <it>SGNE1 </it>SNPs and childhood or adult obesity. However, the 5' region SNP -1,701A>G associated with higher area under glucose curve after oral glucose tolerance test (p = 0.0005), higher HOMA-IR (p = 0.005) and lower insulinogenic index (p = 0.0003) in obese children. Similar trends were found in obese adults. SNP -1,701A>G did not associate with risk of T2D but tends to associate with incidence of type 2 diabetes (HR = 0.75 95%CI [0.55–1.01]; p = 0.06) in the prospective cohort.</p> <p>Conclusion</p> <p><it>SGNE1 </it>genetic variation does not contribute to obesity and common forms of T2D but may worsen glucose intolerance and insulin resistance, especially in the background of severe and early onset obesity. Further molecular studies are required to understand the molecular bases involved in this process.</p

    Estimating the Worldwide Extent of Illegal Fishing

    Get PDF
    Illegal and unreported fishing contributes to overexploitation of fish stocks and is a hindrance to the recovery of fish populations and ecosystems. This study is the first to undertake a world-wide analysis of illegal and unreported fishing. Reviewing the situation in 54 countries and on the high seas, we estimate that lower and upper estimates of the total value of current illegal and unreported fishing losses worldwide are between 10bnand10 bn and 23.5 bn annually, representing between 11 and 26 million tonnes. Our data are of sufficient resolution to detect regional differences in the level and trend of illegal fishing over the last 20 years, and we can report a significant correlation between governance and the level of illegal fishing. Developing countries are most at risk from illegal fishing, with total estimated catches in West Africa being 40% higher than reported catches. Such levels of exploitation severely hamper the sustainable management of marine ecosystems. Although there have been some successes in reducing the level of illegal fishing in some areas, these developments are relatively recent and follow growing international focus on the problem. This paper provides the baseline against which successful action to curb illegal fishing can be judged

    Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies

    Get PDF
    Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic “microzoo-plankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding,we propose a new functional grouping of planktonic protists in an eco- physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity,(iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accord- ingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks

    Glutathione Levels and Susceptibility to Chemically Induced Injury in Two Human Prostate Cancer Cell Lines

    No full text
    More aggressive prostate cancer cells (PCCs) are often resistant to chemotherapy. Differences exist in redox status and mitochondrial metabolism that may help explain this phenomenon. Two human PCC lines, PC-3 cells (more aggressive) and LNCaP cells (less aggressive), were compared with regard to cellular glutathione (GSH) levels, susceptibility to either oxidants or GSH depletors, and expression of several proteins involved in apoptosis and stress response to test the hypothesis that more aggressive PCCs exhibit higher GSH concentrations and are relatively resistant to cytotoxicity. PC-3 cells exhibited 4.2-fold higher GSH concentration than LNCaP cells but only modest differences in acute cytotoxicity were observed at certain time points. However, only LNCaP cells underwent diamide-induced apoptosis. PC-3 cells exhibited higher levels of Bax and caspase-8 cleavage product but lower levels of Bcl-2 than LNCaP cells. However, LNCaP cells exhibited higher expression of Fas receptor (FasR) but also higher levels of several stress response and antioxidant proteins than PC-3 cells. LNCaP cells also exhibited higher levels of several mitochondrial antioxidant systems, suggesting a compensatory response. Thus, significant differences in redox status and expression of proteins involved in apoptosis and stress response may contribute to PCC aggressiveness

    Influence of compensatory renal growth on susceptibility of primary cultures of renal cells to chemically induced injury. Toxicol Sci 94

    No full text
    Primary cultures of rat renal proximal tubular (PT) and distal tubular (DT) cells from control and uninephrectomized (NPX) Sprague-Dawley rats were established to study whether the altered toxicological responses identified in freshly isolated cells are maintained in culture. Previous work showed that primary cultures of PT cells from hypertrophied rat kidneys maintained their differentiated properties, as evidenced by their high respiratory rate, active transport function, transport and metabolism of glutathione, and their hypertrophic phenotype. In the present study, primary cultures of PT cells from NPX rat kidneys, but to a much lesser extent DT cells, were more susceptible to cellular injury induced by either mercuric chloride, KCN, or tert-butyl hydroperoxide (tBH), than corresponding cells from normal rat kidneys. Direct comparisons of cytotoxicity and lipid peroxidation induced by tBH in freshly isolated renal cells showed that the primary cultures of cells from NPX rat kidneys retained their altered susceptibility relative to cells from control rats. These results show that primary cultures of PT cells from NPX rats are more sensitive to cellular injury induced by three mechanistically distinct toxicants, demonstrating their usefulness in the study of the molecular and biochemical basis for the altered phenotype of compensatory renal growth. This is the first report validating the use of a mammalian renal cell culture model to study the toxicological effects of compensatory renal cellular hypertrophy

    Improvement of prostate cancer diagnosis using a multiplex test of PSA, GDF-15 (NAG-1) and glycan-binding auto-IgG in plasma

    No full text
    The blood prostate-specific antigen (PSA) assay is used for prostate cancer diagnosis but specificity of the assay is not satisfactory. Previously a combined PSA and GDF-15 (NAG-1) score was shown to improve specificity of prostate cancer detection. Our hypothesis was that, in prostate cancer, glycoproteins were secreted from tumor tissues into blood and induce autoimmune immunoglobulin G (auto-IgG) production and, thus, measurement of the glycan-auto-IgG in blood would improve prostate cancer diagnosis. The 24 glycan-containing microarray analyses have been carried out with plasma samples obtained from 35 prostate cancer patients and 46 healthy subjects to identify glycan-binding auto-IgG biomarker candidates by incubating the auto-IgG captured by glycans spotted on the slide with biotinylated anti-human secondary IgG/streptavidin-Alexa647. Among the 24 glycans, GlcNAc-polyacrylamide (PAA) (G09) and Fucα1-3GlcNAcβ-PAA (G24) glycans showed lower signals of the auto-IgG in the prostate cancer after quantile normalization. β-D-Galactose-PAA (G04) and L-rhamnose-PAA (G08) glycans showed higher signals of the auto-IgG in prostate cancer. No auto-IgM signal was detected. Subsequently, a 5-glycan subarray analysis was developed and lower signals of G09 and G24 glycan-binding auto-IgG were verified by the subarray analysis using 35 prostate cancer plasma samples compared with 54 controls. A higher signal of Neu5Acα2-8Neu5Acα2-8Neu5Acα-sp-PAA (G81)-binding auto-IgG in prostate cancer was detected by the subarray analysis. When the result obtained with the G81-binding auto-IgG was combined with levels of PSA and NAG-1, the prediction rate of prostate cancer increased to 86.2% from 78.2% with PSA levels alone, improving diagnostic accuracy of prostate cancer. The G81 glycan-binding auto-IgG was isolated from prostate cancer and control plasma samples using G81 glycan-affinity chromatography. Western blot analysis of the auto-IgG eluate with a secondary IgG antibody revealed that the level of the 50 kDa heavy chain of the auto-IgG obtained from the prostate cancer patient was ~3-fold higher than the control sample. The 50 kDa fragment was identified as an IgG heavy chain variable region by N-terminal sequencing (Edman\u27s degradation). Our result demonstrated that a multiplex biomarker diagnostic consisting of glycan-binding auto-IgG, PSA and NAG-1 increased specificity and sensitivity of prostate cancer diagnosis. Supported by NCI SBIR Phase I, CA159721
    corecore