32 research outputs found

    Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    Get PDF
    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations

    Fire and brief human occupations in Iberia during MIS 4: Evidence from Abric del Pastor (Alcoy, Spain)

    Get PDF
    There is a relatively low amount of Middle Paleolithic sites in Europe dating to MIS 4. Of the few that exist, several of them lack evidence for anthropogenic fire, raising the question of how this period of global cooling may have affected the Neanderthal population. The Iberian Peninsula is a key area to explore this issue, as it has been considered as a glacial refugium during critical periods of the Neanderthal timeline and might therefore yield archaeological contexts in which we can explore possible changes in the behaviour and settlement patterns of Neanderthal groups during MIS 4. Here we report recent data from Abric del Pastor, a small rock shelter in Alcoy (Alicante, Spain) with a stratified deposit containing Middle Palaeolithic remains. We present absolute dates that frame the sequence within MIS 4 and multi-proxy geoarchaeological evidence of in situ anthropogenic fire, including microscopic evidence of in situ combustion residues and thermally altered sediment. We also present archaeostratigraphic evidence of recurrent, functionally diverse, brief human occupation of the rock shelter. Our results suggest that Neanderthals occupied the Central Mediterranean coast of the Iberian Peninsula during MIS 4, that these Neanderthals were not undergoing climatic stress and they were habitual fire users.This research was funded by a Leakey Foundation General Grant, Spanish Ministry of Science, Innovation and Universities Projects HAR2008-06117/HIST and HAR2015-68321-P, Junta de Castilla y León-FEDER Project BU235P18, the LabEx Sciences Archéologiques de Bordeaux (LaScArBx ANR-10-LABX-52) and ERC Consolidator Grant ERC-CoG-2014. Archaeological excavations at Abric del Pastor are supported by the Archaeological Museum of Alcoy and the Government of Valencia Cultural Heritage Department

    Molecular identification and microscopic characterization of poxvirus in a Guiana dolphin and a common bottlenose dolphin, Brazil

    Get PDF
    The poxviruses identified in cetaceans are associated with characteristic tattoo or ring skin lesions. However, little is known regarding the prevalence and progression of these lesions and the molecular characterization of cetacean poxviruses in the Southern Hemisphere. This manuscript describes the progression of poxvirus-like skin lesions in 5 free-ranging Guiana dolphins Sotalia guianensis. Additionally, 151 skin samples from 113 free-ranging cetaceans from Brazil, including 4 animals with tattoo skin lesions, were selected for poxvirus testing. Poxviral DNA polymerase gene PCR amplification was used to detect the virus in β-actin-positive samples (145/151). DNA topoisomerase I gene PCR was then used in Cetaceanpoxvirus (CePV)-positive cases (n = 2), which were further evaluated by histopathology and electron microscopy. Based on photo-identification, adult Guiana dolphins presented regressing or healed poxvirus-like lesions (2/2), while juveniles presented persistent (2/3) or healed and progressive lesions (1/3). CePV DNA was amplified in a common bottlenose dolphin Tursiops truncatus and in a Guiana dolphin. Intracytoplasmic inclusion bodies and viral particles consistent with poxvirus were identified by histology and electron microscopy, respectively. CePV-specific amino acid motifs were identified through phylogenetic analysis. Our findings corroborate previous studies that suggest the placement of poxviruses from cetaceans within the novel CePV genus. This is the first molecular identification of poxvirus in South American odontocetes

    Safeguarding human–wildlife cooperation

    Get PDF
    Human–wildlife cooperation occurs when humans and free-living wild animals actively coordinate their behavior to achieve a mutually beneficial outcome. These interactions provide important benefits to both the human and wildlife communities involved, have wider impacts on the local ecosystem, and represent a unique intersection of human and animal cultures. The remaining active forms are human–honeyguide and human–dolphin cooperation, but these are at risk of joining several inactive forms (including human–wolf and human–orca cooperation). Human–wildlife cooperation faces a unique set of conservation challenges, as it requires multiple components—a motivated human and wildlife partner, a suitable environment, and compatible interspecies knowledge—which face threats from ecological and cultural changes. To safeguard human–wildlife cooperation, we recommend: (i) establishing ethically sound conservation strategies together with the participating human communities; (ii) conserving opportunities for human and wildlife participation; (iii) protecting suitable environments; (iv) facilitating cultural transmission of traditional knowledge; (v) accessibly archiving Indigenous and scientific knowledge; and (vi) conducting long-term empirical studies to better understand these interactions and identify threats. Tailored safeguarding plans are therefore necessary to protect these diverse and irreplaceable interactions. Broadly, our review highlights that efforts to conserve biological and cultural diversity should carefully consider interactions between human and animal cultures. Please see AfricanHoneyguides.com/abstract-translations for Kiswahili and Portuguese translations of the abstract

    Fish assemblages in a coastal bay adjacent to a network of marine protected areas in southern Brazil

    Get PDF
    Abstract Baía Norte (North Bay) in Santa Catarina State is considered a typical coastal bay and is surrounded by a network of Marine Protected Areas. The objectives of this study were to describe the composition of the demersal fish assemblage, identify seasonal and spatial structures on a fine scale and evaluate the role of habitat descriptors and abiotic variables affecting the fish assemblage structure. Seasonal samplings were conducted in 2005, using bottom trawls in six pre-established areas in Baía Norte in summer, fall, winter and spring. Simultaneously with each trawl, environmental data were collected with a multiparameter probe. Temporal and spatial differences in fish abundance were tested by a PERMANOVA. To illustratethe differences detected graphically we ran a canonical analysis of principal coordinates (CAP). The influence of environmental variables on the fish fauna was evaluated using a Distant Based Linear Model (DistLM) with Akaike's information criterion (AIC). A total of 9,888 specimens, distributed in 27 families and 62 species, were collected. Citharichthys spilopterus was the most abundant species. PERMANOVA detected differences for abundance between seasons, areas and interaction among all the factors. The DISTLM selected temperature and pH. The results highlight seasonality as an important factor in the structuring of fish fauna of the study place

    Comments on Flores and Bazzalo (2004)

    No full text
    corecore