440 research outputs found
Nuclear vorticity and the low-energy nuclear response - Towards the neutron drip line
The transition density and current provide valuable insight into the nature
of nuclear vibrations. Nuclear vorticity is a quantity related to the
transverse transition current. In this work, we study the evolution of the
strength distribution, related to density fluctuations, and the vorticity
strength distribution, as the neutron drip line is approached. Our results on
the isoscalar, natural-parity multipole response of Ni isotopes, obtained by
using a self-consistent Skyrme-Hartree-Fock + Continuum RPA model, indicate
that, close to the drip line, the low-energy response is dominated by L>1
vortical transitions.Comment: 8 pages, incl. 4 figures; to appear in Phys.Lett.
Probing Nuclear forces beyond the drip-line using the mirror nuclei N and F
Radioactive beams of O and O were used to populate the resonant
states 1/2, 5/2 and in the unbound F and F
nuclei respectively by means of proton elastic scattering reactions in inverse
kinematics. Based on their large proton spectroscopic factor values, the
resonant states in F can be viewed as a core of O plus a proton
in the 2s or 1d shell and a neutron in 1p. Experimental
energies were used to derive the strength of the 2s-1p and
1d-1p proton-neutron interactions. It is found that the former
changes by 40% compared with the mirror nucleus N, and the second by
10%. This apparent symmetry breaking of the nuclear force between mirror nuclei
finds explanation in the role of the large coupling to the continuum for the
states built on an proton configuration.Comment: 6 pages, 3 figures, 2 tables, accepted for publication as a regular
article in Physical Review
New pathway to bypass the 15O waiting point
We propose the sequential reaction process
O(,)O as a new pathway to bypass of the
O waiting point. This exotic reaction is found to have a surprisingly
high cross section, approximately 10 times higher than the
O(,)O. These cross sections were calculated after
precise measurements of energies and widths of the proton-unbound F low
lying states, obtained using the H(O,p)O reaction. The large
cross section can be understood to arise from the more
efficient feeding of the low energy wing of the ground state resonance by the
gamma decay. The implications of the new reaction in novae explosions and X-ray
bursts are discussed.Comment: submitte
The N=14 shell closure in O viewed through a neutron sensitive probe
NESTER PTHInternational audienceTo investigate the behavior of the N=14 neutron gap far from stability with a neutron-sensitive probe, proton elastic and 2+1 inelastic scattering angular distributions for the neutron-rich nucleus 22O were measured with a secondary beam intensity of only 1200 particles per second using the MUST silicon strip detector array at the GANIL facility. A phenomenological analysis yields a deformation parameter bp;p' = 0.26 +- 0.04 for the 2+1 state, much lower than in 20O, showing a surprisingly weak neutron contribution to this state. A fully microscopic analysis was performed using optical potentials obtained from matter and transition densities generated by continuum Skyrme-HFB and QRPA calculations, respectively. When the present results and those from a 22O + 197Au scattering experiment are combined, the ratio of neutron to proton contributions to the 2+1 state is found close to the N/Z ratio, demonstrating a strong N=14 shell closure in the vicinity of the neutron drip-line
Inverse kinematics proton scattering from the exotic nucleus O
NESTER PTHInternational audienceWe have measured for the first time elastic and inelastic proton scattering from the neutron rich nucleus 22O at 46.6 AMeV using the MUST array
Accelerated apoptotic death and <i>in vivo</i> turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2
The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in
apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte
death called eryptosis is characterized by cell shrinkage and cell membrane
scrambling leading to phosphatidylserine (PS) externalization. Here, we
explored whether MSK1/2 participates in the regulation of eryptosis. To this
end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk−/−)
and corresponding wild-type mice (msk+/+). Blood count, hematocrit, hemoglobin
concentration and mean erythrocyte volume were similar in both msk−/− and
msk+/+ mice, but reticulocyte count was significantly increased in msk−/−
mice. Cell membrane PS exposure was similar in untreated msk−/− and msk+/+
erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo
such as hyperosmotic shock or energy depletion to significantly higher levels
in msk−/− erythrocytes than in msk+/+ erythrocytes. Cell shrinkage following
hyperosmotic shock and energy depletion, as well as hemolysis following
decrease of extracellular osmolarity was more pronounced in msk−/−
erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled
erythrocytes from circulating blood was faster in msk−/− mice. The spleens
from msk−/− mice contained a significantly greater number of PS-exposing
erythrocytes than spleens from msk+/+ mice. The present observations point to
accelerated eryptosis and subsequent clearance of erythrocytes leading to
enhanced erythrocyte turnover in MSK1/2-deficient mice
First g(2+) measurement on neutron-rich 72 Zn, and the high-velocity transient field technique for radioactive heavy-ion beams
The high-velocity transient-field (HVTF) technique was used to measure the g factor of the 2+ state of 72Zn produced as a radioactive beam. The transient-field strength was probed at high velocity in ferromagnetic iron and gadolinium hosts using 76Ge beams. The potential of the HVTF method is demonstrated and the difficulties that need to be overcome for a reliable use of the TF technique with high-Z, high-velocity radioactive beams are revealed. The polarization of K-shell vacancies at high velocity, which shows more than an order of magnitude difference between Z = 20 and Z = 30 is discussed. The g-factor measurement hints at the theoretically predicted transition in the structure of the Zn isotopes near N = 40
Study of β-delayed charged particle emission of 11Li: Evidence of new decay channels
5 pags., 3 figs. -- 9th International Conference on Clustering Aspects of Nuclear Structure and Dynamics (CLUSTERS'07) 3–7 September 2007, Stratford upon Avon, UKThe break-up of the 18.2 MeV state in 11Be was studied in a 11Li β-decay experiment. We report here on the study of the dominating breakup channels involving na6He or 3n2α in the final state, with special emphasis dedicated in this contribution to the three-particle channel. The two emitted charged particles were detected in coincidence using a highly segmented experimental set-up. The observed experimental energy-vs-energy scatter plot indicates a sequential breakup where nuclei of mass 4, alpha particles, and mass 7, 7He, are involved. A Monte-Carlo simulation of the sequential channel, 11Be* → α + 7He → nα6He was performed and compared to the experimental data and to a simulation of the direct break-up of the 18.2 MeV state nα6He by phase space energy distribution. The energy-versus-energy plot are explained by the sequential simulation but not by the phase space simulation. © 2008 IOP Publishing Ltd
- …
