440 research outputs found

    Nuclear vorticity and the low-energy nuclear response - Towards the neutron drip line

    Full text link
    The transition density and current provide valuable insight into the nature of nuclear vibrations. Nuclear vorticity is a quantity related to the transverse transition current. In this work, we study the evolution of the strength distribution, related to density fluctuations, and the vorticity strength distribution, as the neutron drip line is approached. Our results on the isoscalar, natural-parity multipole response of Ni isotopes, obtained by using a self-consistent Skyrme-Hartree-Fock + Continuum RPA model, indicate that, close to the drip line, the low-energy response is dominated by L>1 vortical transitions.Comment: 8 pages, incl. 4 figures; to appear in Phys.Lett.

    Probing Nuclear forces beyond the drip-line using the mirror nuclei 16^{16}N and 16^{16}F

    Get PDF
    Radioactive beams of 14^{14}O and 15^{15}O were used to populate the resonant states 1/2+^+, 5/2+^+ and 0,1,20^-,1^-,2^- in the unbound 15^{15}F and 16^{16}F nuclei respectively by means of proton elastic scattering reactions in inverse kinematics. Based on their large proton spectroscopic factor values, the resonant states in 16^{16}F can be viewed as a core of 14^{14}O plus a proton in the 2s1/2_{1/2} or 1d5/2_{5/2} shell and a neutron in 1p1/2_{1/2}. Experimental energies were used to derive the strength of the 2s1/2_{1/2}-1p1/2_{1/2} and 1d5/2_{5/2}-1p1/2_{1/2} proton-neutron interactions. It is found that the former changes by 40% compared with the mirror nucleus 16^{16}N, and the second by 10%. This apparent symmetry breaking of the nuclear force between mirror nuclei finds explanation in the role of the large coupling to the continuum for the states built on an =0\ell=0 proton configuration.Comment: 6 pages, 3 figures, 2 tables, accepted for publication as a regular article in Physical Review

    New pathway to bypass the 15O waiting point

    Full text link
    We propose the sequential reaction process 15^{15}O(pp,γ)(β+\gamma)(\beta^{+})16^{16}O as a new pathway to bypass of the 15^{15}O waiting point. This exotic reaction is found to have a surprisingly high cross section, approximately 1010^{10} times higher than the 15^{15}O(pp,β+\beta^{+})16^{16}O. These cross sections were calculated after precise measurements of energies and widths of the proton-unbound 16^{16}F low lying states, obtained using the H(15^{15}O,p)15^{15}O reaction. The large (p,γ)(β+)(p,\gamma)(\beta^{+}) cross section can be understood to arise from the more efficient feeding of the low energy wing of the ground state resonance by the gamma decay. The implications of the new reaction in novae explosions and X-ray bursts are discussed.Comment: submitte

    The N=14 shell closure in 22^{22}O viewed through a neutron sensitive probe

    Get PDF
    NESTER PTHInternational audienceTo investigate the behavior of the N=14 neutron gap far from stability with a neutron-sensitive probe, proton elastic and 2+1 inelastic scattering angular distributions for the neutron-rich nucleus 22O were measured with a secondary beam intensity of only 1200 particles per second using the MUST silicon strip detector array at the GANIL facility. A phenomenological analysis yields a deformation parameter bp;p' = 0.26 +- 0.04 for the 2+1 state, much lower than in 20O, showing a surprisingly weak neutron contribution to this state. A fully microscopic analysis was performed using optical potentials obtained from matter and transition densities generated by continuum Skyrme-HFB and QRPA calculations, respectively. When the present results and those from a 22O + 197Au scattering experiment are combined, the ratio of neutron to proton contributions to the 2+1 state is found close to the N/Z ratio, demonstrating a strong N=14 shell closure in the vicinity of the neutron drip-line

    Inverse kinematics proton scattering from the exotic nucleus 22^{22}O

    Get PDF
    NESTER PTHInternational audienceWe have measured for the first time elastic and inelastic proton scattering from the neutron rich nucleus 22O at 46.6 AMeV using the MUST array

    Accelerated apoptotic death and <i>in vivo</i> turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2

    Get PDF
    The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte death called eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Here, we explored whether MSK1/2 participates in the regulation of eryptosis. To this end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk−/−) and corresponding wild-type mice (msk+/+). Blood count, hematocrit, hemoglobin concentration and mean erythrocyte volume were similar in both msk−/− and msk+/+ mice, but reticulocyte count was significantly increased in msk−/− mice. Cell membrane PS exposure was similar in untreated msk−/− and msk+/+ erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo such as hyperosmotic shock or energy depletion to significantly higher levels in msk−/− erythrocytes than in msk+/+ erythrocytes. Cell shrinkage following hyperosmotic shock and energy depletion, as well as hemolysis following decrease of extracellular osmolarity was more pronounced in msk−/− erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled erythrocytes from circulating blood was faster in msk−/− mice. The spleens from msk−/− mice contained a significantly greater number of PS-exposing erythrocytes than spleens from msk+/+ mice. The present observations point to accelerated eryptosis and subsequent clearance of erythrocytes leading to enhanced erythrocyte turnover in MSK1/2-deficient mice

    First g(2+) measurement on neutron-rich 72 Zn, and the high-velocity transient field technique for radioactive heavy-ion beams

    Get PDF
    The high-velocity transient-field (HVTF) technique was used to measure the g factor of the 2+ state of 72Zn produced as a radioactive beam. The transient-field strength was probed at high velocity in ferromagnetic iron and gadolinium hosts using 76Ge beams. The potential of the HVTF method is demonstrated and the difficulties that need to be overcome for a reliable use of the TF technique with high-Z, high-velocity radioactive beams are revealed. The polarization of K-shell vacancies at high velocity, which shows more than an order of magnitude difference between Z = 20 and Z = 30 is discussed. The g-factor measurement hints at the theoretically predicted transition in the structure of the Zn isotopes near N = 40

    Study of β-delayed charged particle emission of 11Li: Evidence of new decay channels

    Get PDF
    5 pags., 3 figs. -- 9th International Conference on Clustering Aspects of Nuclear Structure and Dynamics (CLUSTERS'07) 3–7 September 2007, Stratford upon Avon, UKThe break-up of the 18.2 MeV state in 11Be was studied in a 11Li β-decay experiment. We report here on the study of the dominating breakup channels involving na6He or 3n2α in the final state, with special emphasis dedicated in this contribution to the three-particle channel. The two emitted charged particles were detected in coincidence using a highly segmented experimental set-up. The observed experimental energy-vs-energy scatter plot indicates a sequential breakup where nuclei of mass 4, alpha particles, and mass 7, 7He, are involved. A Monte-Carlo simulation of the sequential channel, 11Be* → α + 7He → nα6He was performed and compared to the experimental data and to a simulation of the direct break-up of the 18.2 MeV state nα6He by phase space energy distribution. The energy-versus-energy plot are explained by the sequential simulation but not by the phase space simulation. © 2008 IOP Publishing Ltd
    corecore