377 research outputs found

    Quantum Dissension: Generalizing Quantum Discord for Three-Qubit States

    Full text link
    We introduce the notion of quantum dissension for a three-qubit system as a measure of quantum correlations. We use three equivalent expressions of three-variable mutual information. Their differences can be zero classically but not so in quantum domain. It generalizes the notion of quantum discord to a multipartite system. There can be multiple definitions of the dissension depending on the nature of projective measurements done on the subsystems. As an illustration, we explore the consequences of these multiple definitions and compare them for three-qubit pure and mixed GHZ and W states. We find that unlike discord, dissension can be negative. This is because measurement on a subsystem may enhance the correlations in the rest of the system. This approach can pave a way to generalize the notion of quantum correlations in the multiparticle setting.Comment: 9 pages 6 figures typo fixed and some arguments adde

    Quantum discord evolution of three-qubit states under noisy channels

    Full text link
    We investigated the dissipative dynamics of quantum discord for correlated qubits under Markovian environments. The basic idea in the present scheme is that quantum discord is more general, and possibly more robust and fundamental, than entanglement. We provide three initially correlated qubits in pure Greenberger-Horne-Zeilinger (GHZ) or W state and analyse the time evolution of the quantum discord under various dissipative channels such as: Pauli channels σx\sigma_{x}, σy\sigma_{y}, and σz\sigma_{z}, as well as depolarising channels. Surprisingly, we find that under the action of Pauli channel σx\sigma_{x}, the quantum discord of GHZ state is not affected by decoherence. For the remaining dissipative channels, the W state is more robust than the GHZ state against decoherence. Moreover, we compare the dynamics of entanglement with that of the quantum discord under the conditions in which disentanglement occurs and show that quantum discord is more robust than entanglement except for phase flip coupling of the three qubits system to the environment.Comment: 17 pages, 4 figures, accepted for publication in EPJ

    Surface finish control by electrochemical polishing in stainless steel 316 pipes

    Get PDF
    Electrochemical machining (ECM) is a non-conventional machining process which is based on the localised anodic dissolution of any conductive material. One of the main applications of ECM is the polishing of materials with enhanced characteristics, such as high strength, heat-resistance or corrosion-resistance, i.e. electrochemical polishing. The present work presents an evaluation of the parameters involved in the ECM of Stainless Steel 316 (SS316) with the objective of predicting the resulting surface finish on the sample. The interest of studying ECM on SS316 resides on the fact that a repeatable surface finish is not easily achieved. ECM experimental tests on SS316 pipes of 1.5" (0.0381 m) diameter were conducted by varying machining parameters such as voltage, interelectrode gap, electrolyte inlet temperature, and electrolyte flow rate. The surface finish of the samples was then evaluated in order to find the significance of each of these parameters on the surface quality of the end product. Results showed that overvoltage, which is dependent on the interelectrode gap and the electrolyte temperature, is one of the main parameters affecting the surface finish; additionally there is a strong relationship between the resulting surface finish and the electrolyte flow. The interelectrode gap and inlet electrolyte temperature also affect the resulting surface finish but their influence was not so evident in this work. Finally, the variation of the electrolyte temperature during the process was found to have a great impact on the uniformity of the surface finish along the sample. We believe that this contribution enables the tailoring of the surface finish to specific applications while reducing manufacturing costs and duration of the ECM process

    A Self Assembled Nanoelectronic Quantum Computer Based on the Rashba Effect in Quantum Dots

    Full text link
    Quantum computers promise vastly enhanced computational power and an uncanny ability to solve classically intractable problems. However, few proposals exist for robust, solid state implementation of such computers where the quantum gates are sufficiently miniaturized to have nanometer-scale dimensions. Here I present a new approach whereby a complete computer with nanoscale gates might be self-assembled using chemical synthesis. Specifically, I demonstrate how to self-assemble the fundamental unit of this quantum computer - a 2-qubit universal quantum controlled-NOT gate - based on two exchange coupled multilayered quantum dots. Then I show how these gates can be wired using thiolated conjugated molecules as electrical connectors. A qubit is encoded in the ground state of a quantum dot spin-split by the Rashba interaction. Arbitrary qubit rotations are effected by bringing the spin splitting energy in a target quantum dot in resonance with a global ac magnetic field by applying a potential pulse of appropriate amplitude and duration to the dot. The controlled dynamics of the 2-qubit controlled-NOT operation (XOR) can be realized by exploiting the exchange coupling with the nearest neighboring dot. A complete prescription for initialization of the computer and data input/output operations is presented.Comment: 22 pages, 4 figure

    Wave function mapping conditions in Open Quantum Dots structures

    Get PDF
    We discuss the minimal conditions for wave function spectroscopy, in which resonant tunneling is the measurement tool. Two systems are addressed: resonant tunneling diodes, as a toy model, and open quantum dots. The toy model is used to analyze the crucial tunning between the necessary resolution in current-voltage characteristics and the breakdown of the wave functions probing potentials into a level splitting characteristic of double quantum wells. The present results establish a parameter region where the wavefunction spectroscopy by resonant tunneling could be achieved. In the case of open quantum dots, a breakdown of the mapping condition is related to a change into a double quantum dot structure induced by the local probing potential. The analogy between the toy model and open quantum dots show that a precise control over shape and extention of the potential probes is irrelevant for wave function mapping. Moreover, the present system is a realization of a tunable Fano system in the wave function mapping regime.Comment: 6 pages, 6 figure

    Coherent electron-phonon coupling and polaron-like transport in molecular wires

    Full text link
    We present a technique to calculate the transport properties through one-dimensional models of molecular wires. The calculations include inelastic electron scattering due to electron-lattice interaction. The coupling between the electron and the lattice is crucial to determine the transport properties in one-dimensional systems subject to Peierls transition since it drives the transition itself. The electron-phonon coupling is treated as a quantum coherent process, in the sense that no random dephasing due to electron-phonon interactions is introduced in the scattering wave functions. We show that charge carrier injection, even in the tunneling regime, induces lattice distortions localized around the tunneling electron. The transport in the molecular wire is due to polaron-like propagation. We show typical examples of the lattice distortions induced by charge injection into the wire. In the tunneling regime, the electron transmission is strongly enhanced in comparison with the case of elastic scattering through the undistorted molecular wire. We also show that although lattice fluctuations modify the electron transmission through the wire, the modifications are qualitatively different from those obtained by the quantum electron-phonon inelastic scattering technique. Our results should hold in principle for other one-dimensional atomic-scale wires subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to appear march 2001

    Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence

    Full text link
    We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read-out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects, and evaluate quantitatively its fidelity

    Tomonaga-Luttinger parameters for quantum wires

    Full text link
    The low-energy properties of a homogeneous one-dimensional electron system are completely specified by two Tomonaga-Luttinger parameters KρK_{\rho} and vσv_{\sigma}. In this paper we discuss microscopic estimates of the values of these parameters in semiconductor quantum wires that exploit their relationship to thermodynamic properties. Motivated by the recognized similarity between correlations in the ground state of a one-dimensional electron liquid and correlations in a Wigner crystal, we evaluate these thermodynamic quantities in a self-consistent Hartree-Fock approximation. According to our calculations, the Hartree-Fock approximation ground state is a Wigner crystal at all electron densities and has antiferromagnetic order that gradually evolves from spin-density-wave to localized in character as the density is lowered. Our results for KρK_{\rho} are in good agreement with weak-coupling perturbative estimates KρpertK_{\rho}^{pert} at high densities, but deviate strongly at low densities, especially when the electron-electron interaction is screened at long distances. Kρpertn1/2K_{\rho}^{pert}\sim n^{1/2} vanishes at small carrier density nn whereas we conjecture that Kρ1/2K_{\rho}\to 1/2 when n0n\to 0, implying that KρK_{\rho} should pass through a minimum at an intermediate density. Observation of such a non-monotonic dependence on particle density would allow to measure the range of the microscopic interaction. In the spin sector we find that the spin velocity decreases with increasing interaction strength or decreasing nn. Strong correlation effects make it difficult to obtain fully consistent estimates of vσv_{\sigma} from Hartree-Fock calculations. We conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit n0n\to 0 where V0V_0 is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics
    corecore