254 research outputs found

    Consistent alleviation of abiotic stress with silicon addition: a meta-analysis

    Get PDF
    1. Hundreds of single species studies have demonstrated the facility of silicon (Si) to alleviate diverse abiotic stresses in plants. Understanding of the mechanisms of Si-mediated stress alleviation is progressing, and several reviews have brought information together. A quantitative assessment of the alleviative capacity of Si, however, which could elucidate plant Si function more broadly, was lacking. 2. We combined the results of 145 experiments, predominantly on agricultural species, in a meta-analysis to statistically assess the responses of stressed plants to Si supply across multiple plant families and abiotic stresses. We interrogated our database to determine whether stressed plants increased in dry mass and net assimilation rate, oxidative stress markers were reduced, antioxidant responses were increased and whether element uptake showed consistent changes when supplied with Si. 3. We demonstrated that across plant families and stress types, Si increases dry weight, assimilation rate and chlorophyll biosynthesis and alleviates oxidative damage in stressed plants. In general, results indicated that plant family (as a proxy for accumulator type) and stress type had significant explanatory power for variation in responses. The consistent reduction in oxidative damage was not mirrored by consistent increases in antioxidant production, indicative of the several different stress alleviation mechanisms in which Si is involved. Silicon addition increased K in shoots, decreased As and Cd in roots and Na and Cd in shoots. Silicon addition did not affect Al, Ca or Mn concentration in shoots and roots of stressed plants. Plants had significantly lower concentrations of Si accumulated in shoots but not in roots when stressed. 4. Meta-analyses showed consistent alleviation by Si of oxidative damage caused by a range of abiotic stresses across diverse species. Our findings indicate that Si is likely to be a useful fertilizer for many crops facing a spectrum of abiotic stresses. Similarities in responses across families provide strong support for a role of Si in the alleviation of abiotic stress in natural systems, where it has barely been explored. We suggest this role may become more important under a changing climate and more experiments using non-agricultural species are now needed

    Efeito do silicato de cálcio e da autoclavagem na supressividade e na conducividade de dois solos à Rhizoctonia solani

    Get PDF
    The effect of calcium silicate slag and soil sterilization on the natural suppressiveness of a Typic Acrustox (clay Dark Red Latosol – LEa) and the natural conduciveness of an Oxic Haplustoll (TRe) to Rhizoctonia solani were studied under greenhouse conditions. The experimental design was a three-replicate completely randomized one, with 2 x 3 x 2 factorial combination of the following treatments: two soil kinds (LEa and TRe, collected at 0-20 cm layer); three treatments with and without soil sterilization, calcium silicate slag and nontreated control; and uninfested and infested with R. solani. Each soil material was infested previously with 800 mg of the inoculum per kg soil. Application of silicate was done mixing 0,63 g of this product with 1 kg each soil material and incubated for 30 days. The application of silicate increased the exchangeable Ca2+ and bases amount in both soils. The decrease in the aluminum saturation level from 70 to 19% and the increase in base saturation from 9 to 21% altered significantly the natural suppressiveness of LEa to R. solani. Application of silicate to the TRe had no effect on its conduciveness, for its natural eutrophic character, which is benefic to R. solani development. Sterilization by autoclavation did not influence disease development on bean by R. solani. This suggests that possibly other abiotic factors were responsible for either suppressiveness or conduciveness of these soils.Objetivou-se verificar o efeito da aplicação de silicato de cálcio e da esterilização na supressividade natural de um Latossolo Vermelho-Escuro (LEa) álico textura muito argilosa e na conducividade natural de uma Terra Roxa Estruturada eutrófica (TRe) ao fungo Rhizoctonia solani, em condições de casa de vegetação. Utilizou-se o delineamento inteiramente casualizado em esquema fatorial 2 x 3 x 2. Os fatores foram: duas classes de solo (LEa e TRe - 0-20 cm); três tratamentos (esterilização ou não por autoclavagem, aplicação de silicato e testemunha) e infestação ou não com R. solani, com três repetições e 16 plântulas de feijoeiro por parcela. A aplicação de silicato foi feita incorporando 0,63 g do produto em 1 kg de cada material de solo, seguido de incubação por 30 dias. Para promover a infestação artificial, foram colocados 800 mg de inóculo em 1 kg de cada material de solo. O silicato de cálcio aumentou os teores de Ca trocável e a soma de bases nos dois solos. Um decréscimo na saturação por Al de 70 para 19% e um aumento na saturação por bases de 9 para 21% alteraram significativamente a supressividade natural do LEa à R. solani. Com relação à TRe, a aplicação de silicato não teve nenhum efeito na sua conducividade, dado ao seu natural caráter eutrófico, o qual já é favorável ao desenvolvimento deste fungo. A esterilização não influiu no desenvolvimento de R. solani, o que sugere que os fatores abióticos foram os responsáveis pela supressividade ou conducividade desses solos
    corecore