18 research outputs found

    Epstein Barr Virus-Encoded EBNA1 Interference with MHC Class I Antigen Presentation Reveals a Close Correlation between mRNA Translation Initiation and Antigen Presentation

    Get PDF
    Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general

    The nascent polypeptide-associated complex (NAC) controls translation initiation in cis by recruiting nucleolin to the encoding mRNA

    No full text
    Protein aggregates and abnormal proteins are toxic and associated with neurodegenerative diseases. There are several mechanisms to help cells get rid of aggregates but little is known on how cells prevent aggregate-prone proteins from being synthesised. The EBNA1 of the Epstein-Barr virus (EBV) evades the immune system by suppressing its own mRNA translation initiation in order to minimize the production of antigenic peptides for the major histocompatibility (MHC) class I pathway. Here we show that the emerging peptide of the disordered glycine-alanine repeat (GAr) within EBNA1 dislodges the nascent polypeptide-associated complex (NAC) from the ribosome. This results in the recruitment of nucleolin to the GAr-encoding mRNA and suppression of mRNA translation initiation in cis. Suppressing NAC alpha (NACA) expression prevents nucleolin from binding to the GAr mRNA and overcomes GAr-mediated translation inhibition. Taken together, these observations suggest that EBNA1 exploits a nascent protein quality control pathway to regulate its own rate of synthesis that is based on sensing the nascent GAr peptide by NAC followed by the recruitment of nucleolin to the GAr-encoding RNA sequence

    Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway

    No full text
    The scanning of maturing mRNAs by ribosomes plays a key role in the mRNA quality control process. When ribosomes first engage with the newly synthesized mRNA, and if peptides are produced, is unclear, however. Here we show that ribosomal scanning of prespliced mRNAs occurs in the nuclear compartment, and that this event produces peptide substrates for the MHC class I pathway. Inserting antigenic peptide sequences in introns that are spliced out before the mRNAs exit the nuclear compartment results in an equal amount of antigenic peptide products as when the peptides are encoded from the main open reading frame (ORF). Taken together with the detection of intron-encoded nascent peptides and RPS6/RPL7-carrying complexes in the perinucleolar compartment, these results show that peptides are produced by a translation event occurring before mRNA splicing. This suggests that ribosomes occupy and scan mRNAs early in the mRNA maturation process, and suggests a physiological role for nuclear mRNA translation, and also helps explain how the immune system tolerates peptides derived from tissue-specific mRNA splice variants
    corecore