105 research outputs found

    Anaplasmataceae as Human Pathogens : Biology, Ecology and Epidemiology

    Get PDF
    This review describes the biology, ecology, and epidemiology of known human pathogens in the family Anaplasmataceae that are transmitted by ticks and belong to the genus Anaplasma and genus Ehrlichia. We discuss the current status of diagnosis and surveillance of the diseases they cause, and address the challenges and new perspectives raised due to continuous recognition of new emerging human pathogens in the family Anaplasmataceae

    Challenges Posed by Tick-borne Rickettsiae: Eco- Epidemiology and Public Health Implications

    Get PDF
    Rickettsiae are obligately intracellular bacteria that are transmitted to vertebrates by a variety of arthropod vectors, primarily by fleas and ticks. Once transmitted or experimentally inoculated into susceptible mammals, some rickettsiae may cause febrile illness of different morbidity and mortality, and which can manifest with different types of exhanthems in humans. However, most rickettsiae circulate in diverse sylvatic or peridomestic reservoirs without having obvious impacts on their vertebrate hosts or affecting humans. We have analyzed the key features of tick-borne maintenance of rickettsiae, which may provide a deeper basis for understanding those complex invertebrate interactions and strategies that have permitted survival and circulation of divergent rickettsiae in nature. Rickettsiae are found in association with a wide range of hard and soft ticks, which feed on very different species of large and small animals. Maintenance of rickettsiae in these vector systems is driven by both vertical and horizontal transmission strategies, but some species of Rickettsia are also known to cause detrimental effects on their arthropod vectors. Contrary to common belief, the role of vertebrate animal hosts in maintenance of rickettsiae is very incompletely understood. Some clearly play only the essential role of providing a blood meal to the tick while other hosts may supply crucial supplemental functions for effective agent transmission by the vectors. This review summarizes the importance of some recent findings with known and new vectors that afford an improved understanding of the eco-epidemiology of rickettsiae; the public health implications of that information for rickettsial diseases are also described. Special attention is paid to the co-circulation of different species and genotypes of rickettsiae within the same endemic areas and how these observations may influence, correctly or incorrectly, trends, and conclusions drawn from the surveillance of rickettsial diseases in humans

    The Biology and Taxonomy of Head and Body Lice— Implications for Louse-Borne Disease Prevention

    Get PDF
    Sucking lice (Phthiraptera: Anoplura) are obligate blood-feeding ectoparasites of placental mammals including humans. Worldwide, more than 550 species have been described and many are specific to a particular host species of mammal [1]. Three taxa uniquely parasitize humans: the head louse, body louse, and crab (pubic) louse. The body louse, in particular, has epidemiological importance because it is a vector of the causative agents of three important human diseases: epidemic typhus, trench fever, and louse-borne relapsing fever. Since the advent of antibiotics and more effective body louse control measures in the 1940s, these diseases have markedly diminished in incidence. However, due to 1) increasing pediculicide resistance in human lice, 2) reemergence of body louse populations in some geographic areas and demographic groups, 3) persistent head louse infestations, and 4) recent detection of body louse-borne pathogens in head lice, lice and louse-borne diseases are an emerging problem worldwide. This mini-review is focused on human body and head lice including their biological relationship to each other and its epidemiological relevance, the status and treatment of human louse-borne diseases, and current approaches to prevention and control of human louse infestations

    The Biology and Taxonomy of Head and Body Lice: Implications for Louse-Borne Disease Prevention

    Get PDF
    Sucking lice (Phthiraptera: Anoplura) are obligate blood-feeding ectoparasites of placental mammals including humans. Worldwide, more than 550 species have been described and many are specific to a particular host species of mammal. Three taxa uniquely parasitize humans: the head louse, body louse, and crab (pubic) louse. The body louse, in particular, has epidemiological importance because it is a vector of the causative agents of three important human diseases: epidemic typhus, trench fever, and louse-borne relapsing fever. Since the advent of antibiotics and more effective body louse control measures in the 1940s, these diseases have markedly diminished in incidence. However, due to 1) increasing pediculicide resistance in human lice, 2) reemergence of body louse populations in some geographic areas and demographic groups, 3) persistent head louse infestations, and 4) recent detection of body louse-borne pathogens in head lice, lice and louse-borne diseases are an emerging problem worldwide. This mini-review is focused on human body and head lice including their biological relationship to each other and its epidemiological relevance, the status and treatment of human louse-borne diseases, and current approaches to prevention and control of human louse infestations

    On Rickettsia Nomenclature

    Get PDF
    On Rickettsia Nomenclatur

    \u3cem\u3eRickettsia felis\u3c/em\u3e in \u3cem\u3eCtenocephalides felis\u3c/em\u3e from Guatemala and Costa Rica

    Get PDF
    Rickettsia felis is an emerging human pathogen associated primarily with the cat flea Ctenocephalides felis. In this study, we investigated the presence of Rickettsia felis in C. felis from Guatemala and Costa Rica. Ctenocephalides felis were collected directly from dogs and cats, and analyzed by polymerase chain reaction for Rickettsia-specific fragments of 17-kDa protein, OmpA, and citrate synthase genes. Rickettsia DNA was detected in 64% (55 of 86) and 58% (47 of 81) of flea pools in Guatemala and Costa Rica, respectively. Sequencing of gltA fragments identified R. felis genotype URRWXCal2 in samples from both countries, and genotype Rf2125 in Costa Rica. This is the first report of R. felis in Guatemala and of genotype Rf2125 in Costa Rica. The extensive presence of this pathogen in countries of Central America stresses the need for increased awareness and diagnosis

    Rocky Mountain Spotted Fever, Panama

    Get PDF
    We describe a fatal pediatric case of Rocky Mountain spotted fever in Panama, the first, to our knowledge, since the 1950s. Diagnosis was established by immunohistochemistry, PCR, and isolation of Rickettsia rickettsii from postmortem tissues. Molecular typing demonstrated strong relatedness of the isolate to strains of R. rickettsii from Central and South America

    Eschar-associated Spotted Fever Rickettsiosis, Bahia, Brazil

    Get PDF
    In Brazil, Brazilian spotted fever was once considered the only tick-borne rickettsial disease. We report eschar-associated rickettsial disease that occurred after a tick bite. The etiologic agent is most related to Rickettsia parkeri, R. africae, and R. sibirica and probably widely distributed from São Paulo to Bahia in the Atlantic Forest
    corecore