7 research outputs found

    Thin film composite membranes with regulated crossover and water migration for long-life aqueous redox flow batteries.

    Get PDF
    Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems

    Thin Film Composite Membranes with Regulated Crossover and Water Migration for Long-Life Aqueous Redox Flow Batteries

    Get PDF
    Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    AbstractLarge datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences.</jats:p

    Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell

    No full text

    Dental-craniofacial manifestation and treatment of rare diseases

    No full text
    corecore