46 research outputs found

    Addressing key issues in the consanguinity-related risk of autosomal recessive disorders in consanguineous communities: lessons from a qualitative study of British Pakistanis

    Get PDF
    Currently there is no consensus regarding services required to help families with consanguineous marriages manage their increased genetic reproductive risk. Genetic services for communities with a preference for consanguineous marriage in the UK remain patchy, often poor. Receiving two disparate explanations of the cause of recessive disorders (cousin marriage and recessive inheritance) leads to confusion among families. Further, the realisation that couples in non-consanguineous relationships have affected children leads to mistrust of professional advice. British Pakistani families at-risk for recessive disorders lack an understanding of recessive disorders and their inheritance. Such an understanding is empowering and can be shared within the extended family to enable informed choice. In a three-site qualitative study of British Pakistanis, we explored family and health professional perspectives on recessively inherited conditions. Our findings suggest, first, that family networks hold strong potential for cascading genetic information, making the adoption of a family centred approach an efficient strategy for this community. However, this is dependent on provision of high quality and timely information from health care providers. Secondly, families’ experience was of ill-coordinated and time-starved services, with few having access to specialist provision from Regional Genetics Services; these perspectives were consistent with health professionals’ views of services. Thirdly, we confirm previous findings that genetic information is difficult to communicate and comprehend, further complicated by the need to communicate the relationship between cousin marriage and recessive disorders. A communication tool we developed and piloted is described and offered as a useful resource for communicating complex genetic information

    Stem-cell-abundant proteins Nanog, Nucleostemin and Musashi1 are highly expressed in malignant cervical epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanog, nucleostemin (NS) and musashi1 (Msi1) are proteins that are highly expressed in undifferentiated embryonic stem (ES) cells and have been shown to be essential in maintaining the pluripotency and regulating the proliferation and asymmetric division of ES cells and several nervous system tumor cells. The roles of Nanog, NS and Msi1 in development and progression of cervical carcinoma have, until now, not been well documented.</p> <p>Methods</p> <p>In this study, expression of Nanog, NS and Msi1 was detected by immunohistochemistry analysis in 235 patients with various degrees of cervical epithelial lesions, including 49 with normal cervical epithelia, 31 with mild dysplasia (CIN I), 77 with moderate-severe dysplasia (CIN II-III) and 78 with squamous cervical carcinomas (SCCs). Associations with various clinical pathological prognostic variables were analyzed in 50 early-stage SCC patients.</p> <p>Results</p> <p>Nanog, NS and Msi1 expression levels were significantly higher in SCC patients compared with CIN patients, and were higher in CIN patients compared with those with normal cervical epithelia. Nanog expression levels showed significantly differences according to different tumor sizes (P < 0.05), whereas there were no differences in NS and Msi1 expression levels according to different clinical pathological parameters.</p> <p>Conclusion</p> <p>Our findings indicate that Nanog, NS and Msi1 may be involved in carcinogenesis of the cervix and progression of cervical carcinoma.</p

    NANOG Reporter Cell Lines Generated by Gene Targeting in Human Embryonic Stem Cells

    Get PDF
    Background: Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role in maintaining hESC pluripotency, but the precise role and regulation of NANOG are not well defined. Methodology/Principal Findings: To facilitate the study of NANOG expression and regulation in viable hESC cultures, we generated fluorescent NANOG reporter cell lines by gene targeting in hESCs. In these reporter lines, the fluorescent reporter gene was co-expressed with endogenous NANOG and responded to experimental induction or repression of the NANOG promoter with appropriate changes in expression levels. Furthermore, NANOG reporter lines facilitated the separation of hESC populations based on NANOG expression levels and their subsequent characterization. Gene expression arrays on isolated hESC subpopulations revealed genes with differential expression in NANOG high and NANOG low hESCs, providing candidates for NANOG downstream targets hESCs. Conclusion/Significance: The newly derived NANOG reporter hESC lines present novel tools to visualize NANOG expression in viable hESCs. In future applications, these reporter lines can be used to elucidate the function and regulation of NANO

    Transcriptome Analysis during Human Trophectoderm Specification Suggests New Roles of Metabolic and Epigenetic Genes

    Get PDF
    In humans, successful pregnancy depends on a cascade of dynamic events during early embryonic development. Unfortunately, molecular data on these critical events is scarce. To improve our understanding of the molecular mechanisms that govern the specification/development of the trophoblast cell lineage, the transcriptome of human trophectoderm (TE) cells from day 5 blastocysts was compared to that of single day 3 embryos from our in vitro fertilization program by using Human Genome U133 Plus 2.0 microarrays. Some of the microarray data were validated by quantitative RT-PCR. The TE molecular signature included 2,196 transcripts, among which were genes already known to be TE-specific (GATA2, GATA3 and GCM1) but also genes involved in trophoblast invasion (MUC15), chromatin remodeling (specifically the DNA methyltransferase DNMT3L) and steroid metabolism (HSD3B1, HSD17B1 and FDX1). In day 3 human embryos 1,714 transcripts were specifically up-regulated. Besides stemness genes such as NANOG and DPPA2, this signature included genes belonging to the NLR family (NALP4, 5, 9, 11 and 13), Ret finger protein-like family (RFPL1, 2 and 3), Melanoma Antigen family (MAGEA1, 2, 3, 5, 6 and 12) and previously unreported transcripts, such as MBD3L2 and ZSCAN4. This study provides a comprehensive outlook of the genes that are expressed during the initial embryo-trophectoderm transition in humans. Further understanding of the biological functions of the key genes involved in steroidogenesis and epigenetic regulation of transcription that are up-regulated in TE cells may clarify their contribution to TE specification and might also provide new biomarkers for the selection of viable and competent blastocysts

    The tomato Cab -4 and Cab -5 genes encode a second type of CAB polypeptides localized in Photosystem II

    Full text link
    The photosynthetic apparatus of plant chloroplasts contains two photosystems, termed Photosystem I (PSI) and Photosystem II (PSII). Both PSI and PSII contain several types of chlorophyll a/b-binding (CAB) polypeptides, at least some of which are structurally related. It has been previously shown that multiple genes encoding one type of PSII CAB polypeptides exist in the genome of many higher plants. In tomato, there are at least eight such genes, distributed in three independent loci. Genes encoding a second type of CAB polypeptides have been isolated from several plant species, but the precise location of the gene products has not been determined. Here we show that tomato has two unlinked genes encoding this second type and that this type of CAB polypeptide is also localized in PSII.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43458/1/11103_2004_Article_BF00015643.pd

    Deciphering the stem cell machinery as a basis for understanding the molecular mechanism underlying reprogramming

    Get PDF
    Stem cells provide fascinating prospects for biomedical applications by combining the ability to renew themselves and to differentiate into specialized cell types. Since the first isolation of embryonic stem (ES) cells about 30 years ago, there has been a series of groundbreaking discoveries that have the potential to revolutionize modern life science. For a long time, embryos or germ cell-derived cells were thought to be the only source of pluripotency—a dogma that has been challenged during the last decade. Several findings revealed that cell differentiation from (stem) cells to mature cells is not in fact an irreversible process. The molecular mechanism underlying cellular reprogramming is poorly understood thus far. Identifying how pluripotency maintenance takes place in ES cells can help us to understand how pluripotency induction is regulated. Here, we review recent advances in the field of stem cell regulation focusing on key transcription factors and their functional interplay with non-coding RNAs
    corecore