272 research outputs found

    New pandemics: HIV and AIDS, HCV and chronic hepatitis, Influenza virus and flu

    Get PDF
    New pandemics are a serious threat to the health of the entire world. They are essentially of viral origin and spread at large speed. A meeting on this topic was held in Lyon, France, within the XIXth Jacques Cartier Symposia, a series of France-Québec meetings held every year. New findings on HIV and AIDS, on HCV and chronic hepatitis, and an update on influenza virus and flu were covered during this meeting on December 4 and 5, 2006. Aspects of viral structure, virus-host interactions, antiviral defenses, drugs and vaccinations, and epidemiological aspects were discussed for HIV and HCV. Old and recent data on the flu epidemics ended this meeting.The meeting sponsors were the Centre Jacques Cartier, the Agence Nationale de Recherches sur le SIDA et les hépatites (ANRS) France, the Ecole Normale Supérieure en Sciences de Lyon, The Réseau SIDA et Maladies Infectieuses from the Fond de la Recherche en Santé du Québec (FRSQ), The Institut de Recherches Cliniques de Montréal (IRCM), Boehringer Ingelheim, Sanofi Aventis, ViroChem Pharma and Merck Frosst. The authors thank the speakers for their meeting abstracts and comments that helped writing this review

    A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3

    Get PDF
    Reverse transcription in retroviruses and retrotransposons requires nucleic acid chaperones, which drive the rearrangement of nucleic acid conformation. The nucleic acid chaperone properties of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein have been extensively studied, and nucleic acid aggregation, duplex destabilization and rapid binding kinetics have been identified as major components of its activity. However, the properties of other nucleic acid chaperone proteins, such as retrotransposon Ty3 NC, a likely ancestor of HIV-1 NC, are not well understood. In addition, it is unclear whether a single zinc finger is sufficient to optimize the properties characteristic of HIV-1 NC. We used single-molecule DNA stretching as a method for detailed characterization of Ty3 NC chaperone activity. We found that wild type Ty3 NC aggregates single- and double-stranded DNA, weakly stabilizes dsDNA, and exhibits rapid binding kinetics. Single-molecule studies in the presence of Ty3 NC mutants show that the N-terminal basic residues and the unique zinc finger at the C-terminus are required for optimum chaperone activity in this system. While the single zinc finger is capable of optimizing Ty3 NC's DNA interaction kinetics, two zinc fingers may be necessary in order to facilitate the DNA destabilization exhibited by HIV-1 NC

    The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation

    Get PDF
    Reverse transcription of the genomic RNA by reverse transcriptase occurs soon after HIV-1 infection of target cells. The viral nucleocapsid (NC) protein chaperones this process via its nucleic acid annealing activities and its interactions with the reverse transcriptase enzyme. To function, NC needs its two conserved zinc fingers and flanking basic residues. We recently reported a new role for NC, whereby it negatively controls reverse transcription in the course of virus formation. Indeed, deleting its zinc fingers causes reverse transcription activation in virus producer cells. To investigate this new NC function, we used viruses with subtle mutations in the conserved zinc fingers and its flanking domains. We monitored by quantitative PCR the HIV-1 DNA content in producer cells and in produced virions. Results showed that the two intact zinc-finger structures are required for the temporal control of reverse transcription by NC throughout the virus replication cycle. The N-terminal basic residues also contributed to this new role of NC, while Pro-31 residue between the zinc fingers and Lys-59 in the C-terminal region did not. These findings further highlight the importance of NC as a major target for anti-HIV-1 drugs

    Chemotherapy and diffuse low-grade gliomas: a survey within the European Low-Grade Glioma Network.

    Get PDF
    Diffuse low-grade gliomas (DLGGs) are rare and incurable tumors. Whereas maximal safe, functional-based surgical resection is the first-line treatment, the timing and choice of further treatments (chemotherapy, radiation therapy, or combined treatments) remain controversial. An online survey on the management of DLGG patients was sent to 28 expert centers from the European Low-Grade Glioma Network (ELGGN) in May 2015. It contained 40 specific questions addressing the modalities of use of chemotherapy in these patients. The survey demonstrated a significant heterogeneity in practice regarding the initial management of DLGG patients and the use of chemotherapy. Interestingly, radiation therapy combined with the procarbazine, CCNU (lomustine), and vincristine regimen has not imposed itself as the gold-standard treatment after surgery, despite the results of the Radiation Therapy Oncology Group 9802 study. Temozolomide is largely used as first-line treatment after surgical resection for high-risk DLGG patients, or at progression. The heterogeneity in the management of patients with DLGG demonstrates that many questions regarding the postoperative strategy and the use of chemotherapy remain unanswered. Our survey reveals a high recruitment potential within the ELGGN for retrospective or prospective studies to generate new data regarding these issues

    Glycogen Synthase Kinase 3 Beta (GSK3β) Phosphorylates the RNAase III Enzyme Drosha at S300 and S302

    Get PDF
    The canonical microRNA (miRNA) pathway commences with the enzymatic cleavage of the primary gene transcript (pri-miRNA) by the RNAase III enzyme Drosha in the nucleus into shorter pre-miRNA species that are subsequently exported to the cytoplasm for further processing into shorter, mature miRNA molecules. Using a series of reporter constructs, we have previously demonstrated that phosphorylation of Drosha at Ser 300 and 302 was required for its nuclear localization. Here, we identify GSK3β as the culprit kinase. We demonstrate that Drosha is unable to selectively localize to the nucleus in cells deficient in GSK3β. These findings expand the substrate base of GSK3β to include a central component of the miRNA biogenesis pathway

    Early Reverse Transcription Is Essential for Productive Foamy Virus Infection

    Get PDF
    BACKGROUND: Although viral RNA constitutes the majority of nucleic acids packaged in virions, a late occurring step of reverse transcription leads to the presence of infectious viral cDNA in foamy virus particles. This peculiarity distinguishes them from the rest of the retroviral family. PRINCIPAL FINDINGS: To evaluate the respective contribution of these viral nucleic acids in the replication of foamy viruses, their fate was studied by real-time PCR and RT-PCR early after infection, in the presence or in the absence of AZT. We found that an early reverse transcription step, which occurs during the first hours post-entry, is absolutely required for productive infection. Remarkably, sensitivity to AZT can be counteracted by increasing the multiplicity of infection (moi). We also show that 2-LTR circular viral DNA, which appears as soon as four hours post-infection, is transcriptionally competent. CONCLUSION: Taken together, our data demonstrate that an early reverse transcription process, which takes place soon after viral entry, is indispensable for infectivity of FVs at low moi, when the amount of DNA-containing particles is not sufficient to lead to a productive infection. This study demonstrates a key role of the packaged viral RNA in the foamy virus infection, suggesting that the replication of this virus can be achieved by involving either viral DNA or RNA genome, depending on the condition of infection

    Efficient Production of HIV-1 Virus-Like Particles from a Mammalian Expression Vector Requires the N-Terminal Capsid Domain

    Get PDF
    It is now well accepted that the structural protein Pr55Gag is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55Gag is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55Gag sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55Gag-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development

    Single Nucleotide Polymorphism in Gene Encoding Transcription Factor Prep1 Is Associated with HIV-1-Associated Dementia

    Get PDF
    BACKGROUND: Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD). While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. METHODS: We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs) affecting HIV-1 replication in macrophages in vitro were also tested. RESULTS: The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2 × 10(-5)). Prep1 has recently been identified as a transcription factor preferentially binding the -2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. CONCLUSION: These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders

    Characterization of HCV Interactions with Toll-Like Receptors and RIG-I in Liver Cells

    Get PDF
    The aim of this study was to examine the mechanisms of IFN induction and viral escape. In order to accomplish the goal we compared our new hepatoma cell line LH86, which has intact TLR3 and RIG-I expression and responds to HCV by inducing IFN, with Huh7.5 cells which lack those features.The initial interaction of LH86 cells, Huh7.5 cells or their transfected counter parts (LH86 siRIG-I, siTLR3 or siTLR7 and Huh7.5 RIG-I, TLR3 or TLR7) after infection with HCV (strain JFH-1) was studied by measuring the expression levels of IFNβ, TRAIL, DR4, DR5 and their correlation to viral replication.HCV replicating RNA induces IFN in LH86 cells. The IFN induction system is functional in LH86, and the expression of the RIG-I and TLR3 in LH86 is comparable to the primary hepatocytes. Both proteins appear to play important roles in suppression of viral replication. We found that innate immunity against HCV is associated with the induction of apoptosis by RIG-I through the TRAIL pathway and the establishment of an antiviral state by TLR3. HCV envelope proteins interfere with the expression of TLR3 and RIG-I.These findings correlate with the lower expression level of PRRs in HCV chronic patients and highlight the importance of the PRRs in the initial interaction of the virus and its host cells. This work represents a novel mechanism of viral pathogenesis for HCV and demonstrates the role of PRRs in viral infection
    corecore