278 research outputs found

    The Dark Energy Survey

    Get PDF
    We describe the Dark Energy Survey (DES), a proposed optical-near infrared survey of 5000 sq. deg of the South Galactic Cap to ~24th magnitude in SDSS griz, that would use a new 3 sq. deg CCD camera to be mounted on the Blanco 4-m telescope at Cerro Telolo Inter-American Observatory (CTIO). The survey data will allow us to measure the dark energy and dark matter densities and the dark energy equation of state through four independent methods: galaxy clusters, weak gravitational lensing tomography, galaxy angular clustering, and supernova distances. These methods are doubly complementary: they constrain different combinations of cosmological model parameters and are subject to different systematic errors. By deriving the four sets of measurements from the same data set with a common analysis framework, we will obtain important cross checks of the systematic errors and thereby make a substantial and robust advance in the precision of dark energy measurements.Comment: White Paper submitted to the Dark Energy Task Force, 42 page

    The Dark Energy Survey

    Get PDF
    We describe the Dark Energy Survey (DES), a proposed optical-near infrared survey of 5000 sq. deg of the South Galactic Cap to ~24th magnitude in SDSS griz, that would use a new 3 sq. deg CCD camera to be mounted on the Blanco 4-m telescope at Cerro Telolo Inter-American Observatory (CTIO). The survey data will allow us to measure the dark energy and dark matter densities and the dark energy equation of state through four independent methods: galaxy clusters, weak gravitational lensing tomography, galaxy angular clustering, and supernova distances. These methods are doubly complementary: they constrain different combinations of cosmological model parameters and are subject to different systematic errors. By deriving the four sets of measurements from the same data set with a common analysis framework, we will obtain important cross checks of the systematic errors and thereby make a substantial and robust advance in the precision of dark energy measurements

    DES Y3 + KIDS-1000: Consistent cosmology combining cosmic shear surveys

    Get PDF
    We present a joint cosmic shear analysis of the Dark Energy Survey (DES Y3) and the Kilo-Degree Survey (KiDS-1000) in a collaborative effort between the two survey teams

    Maximizing survey volume for large-area multi-epoch surveys with Voronoi tessellation

    Get PDF
    The survey volume of a proper motion-limited sample is typically much smaller than a magnitude-limited sample. This is because of the noisy astrometric measurements from detectors that are not dedicated for astrometric missions. In order to apply an empirical completeness correction, existing works limit the survey depth to the shallower parts of the sky that hamper the maximum potential of a survey. The number of epoch of measurement is a discrete quantity that cannot be interpolated across the projected plane of observation, so that the survey properties change in discrete steps across the sky. This work proposes a method to dissect the survey into small parts with Voronoi tessellation using candidate objects as generating points such that each part defines a ‘mini-survey’ that has its own properties. Coupling with a maximum volume density estimator, the new method is demonstrated to be unbiased and recovered ∼20 per cent more objects than the existing method in a mock catalogue of a white dwarf-only solar neighbourhood with Pan–STARRS 1-like characteristics. Towards the end of this work, we demonstrate one way to increase the tessellation resolution with artificial generating points, which would be useful for analysis of rare objects with small number counts

    Probing dark energy with atom interferometry

    Get PDF
    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

    Anisotropy in the matter distribution beyond the baryonic acoustic oscillation scale

    Full text link
    Tracing the cosmic evolution of the Baryonic Acoustic Oscillation (BAO) scale with galaxy two point correlation functions is currently the most promising approach to detect dark energy at early times. A number of ongoing and future experiments will measure the BAO peak with unprecedented accuracy. We show based on a set of N-Body simulations that the matter distribution is anisotropic out to ~150 Mpc/h, far beyond the BAO scale of ~100M pc/h, and discuss implications for the measurement of the BAO. To that purpose we use alignment correlation functions, i.e., cross correlation functions between high density peaks and the overall matter distribution measured along the orientation of the peaks and perpendicular to it. The correlation function measured along (perpendicular to) the orientation of high density peaks is enhanced (reduced) by a factor of ~2 compared to the conventional correlation function and the location of the BAO peak shifts towards smaller (larger) scales if measured along (perpendicular to) the orientation of the high density peaks. Similar effects are expected to shape observed galaxy correlation functions at BAO scales.Comment: 4 pages, 3 figures, accepted for publication in ApJ

    Automated cross-identifying radio to infrared surveys using the LRPY algorithm: A case study

    Get PDF
    Cross-identifying complex radio sources with optical or infra red (IR) counterparts in surveys such as the Australia Telescope Large Area Survey (ATLAS) has traditionally been performed manually. However, with new surveys from the Australian Square Kilometre Array Pathfinder detecting many tens of millions of radio sources, such an approach is no longer feasible. This paper presents new software (LRPY - Likelihood Ratio in PYTHON) to automate the process of cross-identifying radio sources with catalogues at other wavelengths. LRPY implements the likelihood ratio (LR) technique with a modification to account for two galaxies contributing to a sole measured radio component. We demonstrate LRPY by applying it to ATLAS DR3 and a Spitzer-based multiwavelength fusion catalogue, identifying 3848 matched sources via our LR-based selection criteria. A subset of 1987 sources have flux density values for all IRAC bands which allow us to use criteria to distinguish between active galactic nuclei (AGNs) and star-forming galaxies (SFG). We find that 936 radio sources (˜47 per cent) meet both of the Lacy and Stern AGN selection criteria. Of the matched sources, 295 have spectroscopic redshifts and we examine the radio to IR flux ratio versus redshift, proposing an AGN selection criterion below the Elvis radio-loud AGN limit for this dataset. Taking the union of all three AGNs selection criteria we identify 956 as AGNs (˜48 per cent). From this dataset, we find a decreasing fraction of AGNs with lower radio flux densities consistent with other results in the literature

    Cosmological parameter constraints from galaxy–galaxy lensing and galaxy clustering with the SDSS DR7

    Get PDF
    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy–galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h^(−1) Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg^2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ_8 and Ω_m (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ_8(Ω_m/0.25)^(0.57) = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed n_s = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ_8, Ω_m, H_0, w_(de) and ∑m_ν become 30–80 per cent tighter than with CMB data alone, since our data break several parameter degeneracies

    SDSS quasars in the WISE preliminary data release and quasar candidate selection with optical/infrared colors

    Full text link
    We present a catalog of 37,842 quasars in the SDSS Data Release 7, which have counterparts within 6" in the WISE Preliminary Data Release. The overall WISE detection rate of the SDSS quasars is 86.7%, and it decreases to less than 50.0% when the quasar magnitude is fainter than i=20.5i=20.5. We derive the median color-redshift relations based on this SDSS-WISE quasar sample and apply them to estimate the photometric redshifts of the SDSS-WISE quasars. We find that by adding the WISE W1- and W2-band data to the SDSS photometry we can increase the photometric redshift reliability, defined as the percentage of sources with the photometric and spectroscopic redshift difference less than 0.2, from 70.3% to 77.2%. We also obtain the samples of WISE-detected normal and late-type stars with SDSS spectroscopy, and present a criterion in the zW1z-W1 versus gzg-z color-color diagram, zW1>0.66(gz)+2.01z-W1>0.66(g-z)+2.01, to separate quasars from stars. With this criterion we can recover 98.6% of 3089 radio-detected SDSS-WISE quasars with redshifts less than four and overcome the difficulty in selecting quasars with redshifts between 2.2 and 3 from SDSS photometric data alone. We also suggest another criterion involving the WISE color only, W1W2>0.57W1-W2>0.57, to efficiently separate quasars with redshifts less than 3.2 from stars. In addition, we compile a catalog of 5614 SDSS quasars detected by both WISE and UKIDSS surveys and present their color-redshift relations in the optical and infrared bands. By using the SDSS ugrizugriz, UKIDSS YJHK and WISE W1- and W2-band photometric data, we can efficiently select quasar candidates and increase the photometric redshift reliability up to 87.0%. We discuss the implications of our results on the future quasar surveys. An updated SDSS-WISE quasar catalog consisting of 101,853 quasars with the recently released WISE all-sky data is also provided.Comment: 27 pages, 9 figures and 5 tables. Revised to match the published version in the Astronomical Journal. 5 tables are available electronically at (http://vega.bac.pku.edu.cn/~wuxb/sdsswiseqso.htm). A new SDSS-WISE quasar catalog consisting of 101,853 quasars with the WISE all-sky data is available as Table

    Lensing Bias in Cosmic Shear

    Full text link
    Only galaxies bright enough and large enough to be unambiguously identified and measured are included in galaxy surveys used to estimate cosmic shear. We demonstrate that because gravitational lensing can scatter galaxies across the brightness and size thresholds, cosmic shear experiments suffer from lensing bias. We calculate the effect on the shear power spectrum and show that - unless corrected for - it will lead analysts to cosmological parameters estimates that are biased at the 2-3\sigma level in DETF Stage III experiments, such as the Dark Energy Survey.Comment: 14 pages; 4 figures (this version). Accepted for publication in ApJ. v2: incorporating referee's comments; v3: updated acknowledgment
    corecore