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ABSTRACT

The survey volume of a proper motion-limited sample is typically much smaller than a

magnitude-limited sample. This is because of the noisy astrometric measurements from detec-

tors that are not dedicated for astrometric missions. In order to apply an empirical completeness

correction, existing works limit the survey depth to the shallower parts of the sky that hamper

the maximum potential of a survey. The number of epoch of measurement is a discrete quan-

tity that cannot be interpolated across the projected plane of observation, so that the survey

properties change in discrete steps across the sky. This work proposes a method to dissect the

survey into small parts with Voronoi tessellation using candidate objects as generating points

such that each part defines a ‘mini-survey’ that has its own properties. Coupling with a maxi-

mum volume density estimator, the new method is demonstrated to be unbiased and recovered

∼20 per cent more objects than the existing method in a mock catalogue of a white dwarf-only

solar neighbourhood with Pan–STARRS 1-like characteristics. Towards the end of this work,

we demonstrate one way to increase the tessellation resolution with artificial generating points,

which would be useful for analysis of rare objects with small number counts.

Key words: methods: data analysis – methods: miscellaneous – proper motions – stars: lumi-

nosity function, mass function – white dwarfs – solar neighbourhood.

1 IN T RO D U C T I O N

A number of types of transient, variable and moving sources are not

rare, but their detection requires repeated observations of the same

part of sky. This was not possible to perform over a large sky area un-

til the era of digital astronomy. The highly automated observing runs

and efficient digital detectors allow efficient data collection, while

faster processors and the automated data reduction pipelines allow

the production of high volume of output. Earliest attempts for such

automations digitize the photographic plates from large sky area

surveys, where measurements are made objectively with computer,

as opposed to measuring manually. Large-scale projects of this

kind include the PPM catalogue (Röser & Bastian 1991; Bastian &

Röser 1993), Automated Plate Machine Project (Evans 1992; Evans

& Irwin 1995), USNO A 1.0, A 2.0 and B 1.0 (Monet 1996, 1998;

Monet et al. 2003), SuperCOSMOS (Hambly et al. 2001a; Hambly,

Irwin & MacGillivray 2001b; Hambly et al. 2001c), UCAC 1, 2, 3

and 4 (Zacharias et al. 2000, 2004, 2010, 2013) and SUPERBLINK

(Lépine, Shara & Rich 2002, 2003; Lépine 2005, 2008), all of which

had several epochs and simple tiling strategies.

In the current era of digital astronomy, some surveys continue to

use simple tiling patterns where multiple pawprints are combined

⋆ E-mail: mlam@roe.ac.uk

immediately to produce full coverage over a sky cell, for example in

the UKIDSS (Lawrence et al. 2007), four pawprints can cover a cell

while VISTA employs six (Sutherland et al. 2015). In other cases,

SDSS Stripe 82 had nine epochs on average (Bramich et al. 2008),

ALLWISE has a coverage from 12 to over 200 frames (Kirkpatrick

et al. 2014, 2016) and the Pan-STARRS1 (PS1) 3π Steradian Sur-

vey (3SS) typically has 60 epochs (Magnier et al. 2013). The Dark

Energy Survey will scan ∼5000 deg2 10 times (The Dark Energy

Survey Collaboration 2005), Gaia will have on average 81 tran-

sits, with over 140 in the most-visited parts of the sky at the end

of the 5-yr nominal mission (Gaia Collaboration et al. 2016) and

LSST will provide close to 1000 epochs for half of the sky towards

the end of the 10-yr survey mission (LSST Science Collabora-

tion et al. 2009).1 The key survey characteristics (depth and epoch

coverage) vary on small scales and in complex ways because tiling

strategies/overlapping patterns for these surveys are extremely com-

plicated to maximize coverage due to losses from, for example chip

gaps between CCDs and unfavourable observing conditions, unlike

the situation with large-format photographic plates. This in turn

complicates the analysis of any survey sample culled from them

because optimal techniques like 〈Vmax〉 require the precise survey

characteristics. This problem becomes even more complex when

1 https://github.com/LSSTScienceCollaborations/
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Maximizing survey volume with Voronoi diagram 1027

different surveys are combined to expand the wavelength cover-

age and/or maximum epoch difference, for example when SDSS is

combined with USNO-B 1.0 to derive the proper motions (Gould

& Kollmeier 2004; Munn et al. 2004), the survey typically has five

epochs (four from USNO-B and one from SDSS).

Existing methods tackle inhomogeneity by limiting the analy-

sis to the shallower part of the survey and by applying a global

correction in order not to run into unaccountable incompleteness

(e.g. Harris et al. 2006; Munn et al. 2017, hereafter M17). In view

of this problem, when deriving the white dwarf luminosity func-

tion (WDLF) with a maximum volume density estimator, Rowell

& Hambly (2011, hereafter RH11) measured the empirical photo-

metric and astrometric uncertainty for different skycells as defined

by the tiling of the photographic plates. Lam, Rowell & Hambly

(2015, hereafter LRH15) improved the completeness correction due

to kinematic selections. The methods described in these works al-

low an analysis to probe deeper, but in order to maximize the use of

the data, we propose a new method based on Voronoi tessellation

that can further maximize the analytical survey volume within which

completeness and other biases can be corrected. Voronoi tessellation

has been employed in defining simulation grids, clustering analysis,

visualization etc. However, its property that partitions sources into

well-defined grids has not been used in all domains of astrophysics.

By dividing the sky through Voronoi tessellation into a number of

cells that is equal to the number of candidate sources, we can treat

each cell as a mini-survey that has well-defined local properties.

Analysis can also be performed at lower or higher resolution if

needed.

In Section 2, we will describe the mathematical framework and

the construction of the simulated solar neighbourhood in Section 3.

The new method is applied to the simulated data in Section 4 under

different selection criteria and we describe one procedure through

which the resolution can be increased. The bias due to the choice

of model is briefly discussed. In the final section, we discuss one

possible way to increase the resolution for the analysis and conclude

this work.

2 M AT H E M AT I C A L F R A M E WO R K O F T H E

VO RO N O I M E T H O D

The maximum volume density estimator (Schmidt 1968) tests the

observability of a source by finding the maximum volume in which

it can be observed by a survey (e.g. at a different part of the sky

at a different distance). It is proven to be unbiased (Felten 1976)

and easily can combine multiple surveys (Avni & Bahcall 1980).

In a sample of proper motion sources, we need to consider both

the photometric and astrometric properties (see LHR15 for details).

The number density is found by summing the number of sources

weighted by the inverse of the maximum volumes. For surveys with

small variations in quality from field to field and from epoch to

epoch, or with small survey footprint areas, the survey limits can

be defined easily. However, in modern surveys, the variations are

not small; this is especially true for ground-based observations.

Therefore, properties have to be found locally to analyse the data

most accurately. Through the use of Voronoi tessellation, sources

can be partitioned into individual 2D cells within which we assume

the sky properties are defined by the governing source. Each of

these cells has a different area depending on the projected density

of the population.

An important assumption for using the Voronoi method is that

the distributions of the observing parameters of the cells at differ-

ent resolutions are very similar to each other, hence the integrated

maximum volume is approximately equal to the exact solution. In

the rest of the article, cell will be used to denote Voronoi cell and

h-pixel for HEALPix pixel (Górski et al. 2005, see Section 2.3) and

pixels for the ones on a detector.

2.1 Voronoi tessellation

A Voronoi tessellation is made by partitioning a plane with n points

into n convex polygons such that each polygon contains one point.

Any position in a given polygon (cell) is closer to its generating

point than to any other for the case of Voronoi tessellation using

Euclidean distance
(

DE =
√

(x1 − x2)2 + (y1 − y2)2

)

. For use in

astronomy, such a tessellation has to be done on a spherical surface

(two-sphere).

In the following work, the tessellation is constructed with the

SCIPY package spatial.Spherical Voronoi, where each polygon is

given a unique ID that is combined with the vertices to form a dic-

tionary. The areas are calculated by first decomposing the polygons

into spherical triangles with the generating points and their vertices2

and then by using L’Huilier’s Theorem to find the spherical excess.

For a unit sphere, the spherical excess is equal to the solid angle of

the triangle. The sum of the constituent spherical triangles provides

the solid angle of each cell.

2.2 Cell properties

For a Voronoi cell j, the properties of the cell are assumed to be

represented by generating source i. Both i and j are indexed from 1

to N , but since each source has to be tested for observability in each

cell to calculate the maximum volume, i and j cannot be contracted

to a single index. Furthermore, the cells do not need to be defined

by only the sources. Arbitrary points can be used for tessellation

such that i and j will not have a one-to-one mapping. The epoch

of the measurement is labelled by k. When tested for observability,

epoch-wise information is essential in calculating the photometric

and proper motion uncertainties as functions of distance. The major

difference in the following approach is that the proper motion un-

certainty is found from the formal propagation of errors instead of

measuring the empirical form as a function of magnitude, σμ(mag),

which limits the survey to the worst part of a tile (RH11). This new

approach does not need to take into account the scatter in σμ(mag),

due to different local sky properties and different colours of the

sources and their neighbours. Different types of source can differ

by up to a few magnitudes in the optical/infrared colours, so two

sources with similar magnitudes in one filter can have very different

proper motion uncertainties if one is close to the detection limit in

another filter. The modelling of the photometric uncertainties from

CCD detectors is much simpler than that for photographic plates,

because the photometric response of the modern detectors is much

more linear at both the faint and bright ends. Thus, the uncertainties

can be estimated with relatively simple equations.

2.2.1 Photometric uncertainty

When a source is being tested for the observability, it is ‘placed’ at

a different distance so the apparent brightness changes as a conse-

quence. The background and other instrumental noises are constant,

but the Poisson noise from the source changes with the measured

2 https://github.com/tylerjereddy/py_sphere_Voronoi
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1028 M. C. Lam

flux, hence the photometric uncertainties are functions of distance.

The total noise, N, of a photometric measurement can be estimated

by

N =
√

(F + d + s) × t + r2 (1)

where F is the instrumental flux per unit time, d is the dark current

per unit time, s is the sky background flux per unit time, t is the

exposure time and r is the read noise. Among these quantities, d, s,

t and r are fixed quantities in a given epoch, only the flux varies as

a function of distance. We use F as the measured flux and F (D) as

the flux at an arbitrary distance D. Therefore, in a Voronoi cell j at

epoch k, the photometric noise of source i is

Ni,j ,k(D) =
√

(
Fi(D) + dj,k + sj,k

)
× tj,k + r2 (2)

where the flux at D is calculated from applying the inverse square

law on the observed flux Fi and observed distance Di,

Fi(D) = Fi ×
(

Di

D

)2

. (3)

The random photometric uncertainty of a source at an arbitrary

distance in a given epoch is the inverse signal-to-noise ratio,

δFi,j ,k(D) =
Ni,j ,k(D)

Fi(D)
. (4)

The total photometric uncertainty of the source as a function of

distance, combining with the systematic uncertainty, σ s, coming

from the absolute calibration of the detector, is therefore

σi,j ,k(D) =
√

δF2
i,j ,k(D) + σ 2

s , (5)

which represents the photometric uncertainty as a function of the

distance to the source.

2.2.2 Astrometric uncertainty

The least square solution of proper motion in one direction for

source i can be expressed in the following matrix form, the epoch

is labelled by the subscript from 1 to M(j), where M is the number

of epochs in cell j,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1

σ1

�t1

σ1

· ·
· ·
1

σM(j )

�tM(j )

σM(j )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

A

×
(

α

μα

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

�α1

σ1

·
·

�αM(j )

σM(j )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(6)

where �tk is the time difference between the mean epoch and epoch

k, �αk is the positional offset from the mean position, α, and proper

motion, μα , in the direction of the right ascension. The associated

uncertainties can be found from the diagonal terms of the normal

matrix,

A
T
A =

⎡

⎢
⎢
⎢
⎣

∑

k

(
1

σk

)2
∑

k

(
1

σk

�tk

σk

)

∑

k

(
1

σk

�tk

σk

)
∑

k

(
�tk

σk

)2

⎤

⎥
⎥
⎥
⎦

(7)

so for each cell,

1

σ 2
μα cos δ

=
∑

k

(
�tk

σk

)2

(8)

and the total proper motion uncertainty is

σμ =
√

σ 2
μα cos δ

+ σ 2
μδ

=
√

2σμα cos δ
. (9)

The uncertainties in the α and δ directions are symmetrical in four-

parameter astrometric solution (two positions and two proper mo-

tions). In the case of five-parameter solution where parallax is solved

and for the seven-parameter solution where, in addition, the accel-

eration terms in both directions are solved for, the uncertainties will

not be symmetrical due to the parallactic term, so the off-diagonal

terms have to be taken into account, which would otherwise be neg-

ligible compared to the diagonal terms. However, for a variance-

weighted mean epoch, the off-diagonal terms are exactly zero by

definition.

2.3 Consequence to 〈Vmax〉 calculation

There is only one minor adjustment to the volume integral – the

lower proper motion limit. Instead of finding the limit by measuring

from a number of nearby sources that include mostly sources with

different colours, the limit is defined by the properties of the Voronoi

cell that comes only from the generating source of the cell. A

different set of pixelization by HEALPix, denoted by l, is for the

line-of-sight tangential velocity completeness correction (see RH11

for detailed description). For source i, the maximum volume has to

be tested in each cell j, the expression is almost identical to that in

LRH15, except for the j and l indexes

<Vmax> =
∑

j

�j

∫ Dmax,j

Dmin,j

ρ(D)

ρ⊙
× D2

×
[∫ b(D)

a(D)

Pl(j )(vT) dvT

]

dD (10)

where ρ(D)

ρ⊙
is the density normalized by that at the solar neighbour-

hood, Pl(j) is the tangential velocity distribution, l(j) denotes the

h-pixel mapped from cell j with area �j, vT is the tangential ve-

locity, Dmin and Dmax are the minimum and maximum photometric

distances and σμ(D) is the proper motion uncertainty as a func-

tion of the distance to the source. This is to model the change in the

proper motion uncertainties due to varying apparent magnitude with

distance (i.e. at greater distance the proper motion uncertainty will

be larger because the source becomes fainter, which increases the

single-epoch positional uncertainty). The lower tangential velocity

limit in the inner integral, a(D), is

a(D) = max
[
vmin, 4.74 × s × σμ(D) × D

]
(11)

where the factor of 4.74 comes from the unit conversion from arc-

sec yr−1 to km s−1 at distance D, vmin is the global lower tangential

velocity limit and s is the significance of the proper motions. The

expression is identical to that in LRH15, but σμ(D) is calculated in

a completely different way.

The inner integral can vanish before reaching the distance limits

so the integrator must use a small step size or the distances at

which the inner integral vanish have to be calculated explicitly.

The cell ID j and h-pixel ID l can be set as a one-to-one mapping

by calculating the tangential velocity distribution for each of the

Voronoi cell. However, the Voronoi tessellation is dependent on the

sample, while the tangential velocity correction is fixed on the sky,

using a pre-computed look-up table because the tangential velocity

correction can significantly reduce computation time.

MNRAS 469, 1026–1035 (2017)
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Table 1. Physical properties of the Galaxy used in the Monte Carlo

simulation.

Parameter Thin disc Thick disc Stellar halo

〈U〉/km s−1 −8.62a −11.0d −26.0d

〈V〉/km s−1 −20.04a −42.0d −199.0d

〈W〉/km s−1 −7.10a −12.0d −12.0d

σU/km s−1 32.4a 50.0d 141.0d

σV/km s−1 23.0a 56.0d 106.0d

σW/km s−1 18.1a 34.0d 94.0d

H/pc 250b 1000e ∞
n/pc−3 0.003 10c 0.000 64c 0.000 19c

Notes. aFuchs, Jahreiß & Flynn (2009).
bMendez & Guzman (1998).
cRH11.
dChiba & Beers (2000).
eSandage & Fouts (1987).

3 SIMULATED DATA SET

To demonstrate the power of the Voronoi method described in

Section 2, we apply it to catalogues of simulations of the solar

neighbourhood. This section details the construction of the Monte

Carlo simulation.

We generated snapshots of white dwarf (WD)-only populations

in the solar neighbourhood containing six-dimensional phase space

information. The procedure is very similar to that described in

LRH15; however, we introduce changes to the noise model of the

system and include epoch-wise information. The volume probed is

assumed to be small such that the simulation is performed in a Carte-

sian space, instead of a plane polar system centred at the Galactic

Centre. The Galaxy has three distinct kinematic components: a thin

disc, a thick disc and a stellar halo, all of which we model with

no density variations along the co-planar directions of the Galac-

tic plane. The vertical structures of the discs follow exponential

profiles, with scaleheight Hthin and Hthick such that

ρ(D)

ρ⊙
= exp

(

−
|z|
H

)

= exp

(

−
|D sin b|

H

)

, (12)

where z is the vertical distance from the Galactic plane and b the

Galactic latitude. None of the three components are tilted relative to

each other. The velocity components, U, V and W, of each WD are

drawn from the Gaussian distributions described by the measured

means and standard deviations of the three sets of kinematics that

describe the three populations in the solar neighbourhood (Table 1).

Theoretical WDLFs are used as the probability distribution func-

tions (pdfs) in the simulations. The normalizations of the pdfs are

taken from the WD densities found in RH11. The input parameters

for a WDLF are the star formation rate (SFR), initial mass function

(IMF), MS evolution model and WD cooling model. The standard

equation for modelling the WDLF with those four given inputs is

	(Mbol) =
∫

Mu

Ml

dtcool

dMbol

ψ (t0 − tcool − tMS) φ (M) dM, (13)

where 	(Mbol) is the number density of WDs at magnitude Mbol.

The derivative inside the integral is the characteristic cooling time

of WDs, ψ(t) is the SFR at time t and φ is the IMF. The input pa-

rameters are assumed to be invariant with time and are summarized

in Table 1. The integral also depends on the lifetimes of MS progen-

itors, tMS, as a function of mass and metallicity. We have adopted

the stellar evolution tracks from the Padova group (PARSEC; Bres-

san et al. 2012) with a metallicity of Z = 0.019 and Y = 0.30

Table 2. Parameters for the sky background count.

Filter Mean Standard deviation Lower limit

(photon s−1) (photon s−1) (photon s−1)

g 39.972 12.355 16.761

r 135.728 47.981 50.712

i 262.725 72.499 108.612

z 257.930 90.175 92.511

y 272.195 72.493 88.358

(Girardi et al. 2000). By assuming a fixed surface gravity log g = 8.0

and pure hydrogen atmosphere (DA),3 the WD cooling time, tcool, is

a function of mass and luminosity (Holberg & Bergeron 2006;

Kowalski & Saumon 2006; Bergeron et al. 2011; Tremblay,

Bergeron & Gianninas 2011), and t0 is the total time since the

onset of star formation. The integral is over all MS masses that have

had time to produce WDs at the present day, with the magnitude-

dependent lower limit, Ml , corresponding to the solution of

t0 = tcool (Mbol, ξ (Ml)) + tMS (Ml, Z) (14)

and the upper limit for WD production Mu ≈ 8M⊙. The initial–

final mass relation, ξ , relates the MS progenitor mass to the mass

of the WD, is adopted from Kalirai et al. (2009) without including

globular clusters in the analysis where the final WD mass can be

expressed as

ξ (Mi) = Mf (Mi) = 0.101Mi + 0.463 M⊙. (15)

The thin and thick disc populations are assigned with constant SFRs

since look-back time, τ = 8 Gyr and τ = 10 Gyr, respectively, while

the halo has a starburst of 1 Gyr at τ = 13 Gyr. The IMF has an

exponent of −2.3 in the mass range of interest (Kroupa 2001).

From the pdfs of the kinematics, distance and bolometric magni-

tude, we calculate the apparent magnitudes in the PS1 gP1, rP1, iP1,

zP1 and yP1 filters4 (Schlafly et al. 2012; Tonry et al. 2012; Magnier

et al. 2013, 2016a,b,c; Chambers et al. 2016; Flewelling et al. 2016;

Waters et al. 2016). The line of sight and the projected velocity can

be derived from the given 3D kinematics and 3D position. The un-

certainties in the five filters are calculated from the sky background

flux, exposure time, dark current and read noise that are repre-

sentative of the PS1 3SS at Processing Version 2 (PV2). The sky

background flux is drawn from a Gaussian distribution measured

from the 3SS in each of the filters (Table 2). The means and standard

deviations5 were measured from 100 fields drawn randomly across

the survey footprint area.

To simulate the variations in the observing properties of the sky,

HEALPix is used to pixelate the sky using a resolution of nside = 256,

i.e. each has a size of ∼0.0534 deg2, which is sufficiently small

compared to the projected density of white dwarfs that is less than

1 deg−2 (e.g. RH11). The HEALPix resolution is on a much finer

scale than the Voronoi tessellation used for determining the maxi-

mum volume in order to test the accuracy later (Section 4.4). One

feature of this approach is that when the analysis is done at a higher

resolution, the new set of cells will be guaranteed to land on a dif-

ferent set of h-pixels and as such will provide a self-consistency

check. There is not a switching from Voronoi cells to HEALPix

3 http://www.astro.umontreal.ca/∼bergeron/CoolingModels/
4 http://panstarrs.stsci.edu/
5 1.4826 times the median absolute deviation is used for robust estimation

of the standard deviation.
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pixels in the analysis: there is simply a look-up table for matching

a given cell with the h-pixel that the cell-generating source lands

on. Each h-pixel is given a sky background noise for each epoch

of the measurement. When the sky brightness is below the lower

limit, a sky brightness that is fainter than 99.73 per cent of the mea-

sured values, the background noise is resampled until it is above the

limit. An analogue-to-digital unit of 1 e− per photon is assumed.

The 3SS has 12 epochs on average in each of the filters, so the

number of epochs for each source in the simulation is drawn from a

distribution6 that follows 1 + P(11), where P(11) is Poisson distri-

bution with a mean of 11 and the epochs are drawn from a random

distribution over a period of 3 yr with 6 h on either side of the

source masked out to simulate seasonal observing. When sources

are distributed over the sky, they will take the set of values defined

by the nearest pixel. Using the treatments from Section 2.2.1, with

a dark current of 0.2 e−s−1, exposure times of 43, 40, 35, 30 and

30 s, zero-point magnitudes at 24.563, 24.750, 24.611, 24.250 and

23.320 mag in the five filters, and a constant read noise of 5.5 e−

(Metcalfe et al. 2013), each source is assigned with proper mo-

tion uncertainty using equation (9). These inputs produce an all-sky

survey that has 10σ detections (and their standard deviations) in

gP1, rP1, iP1, zP1 and yP1 at 21.98 ± 0.04, 21.53 ± 0.05, 21.12 ±
0.04, 20.54 ± 0.05 and 19.59 ± 0.04 mag. They are similar to the

PV2 values, but the distribution is much narrower because the noise

model is itself noiseless (e.g. the sources are not affected by diffrac-

tion spikes, optical ghosts, cosmic rays or other effects that lead to

larger scatter).

4 A P P LIC ATION TO WDLFS

This section describes the application of our survey dissection

method (presented in Section 2) to simulated PS1-like WD cata-

logues generated using the recipe described in Section 3. The bright

limits at all filters are set at 15 mag. The faint limits are at 21.5, 21.0,

20.5, 20.0 and 19.5 mag in gP1, rP1, iP1, zP1 and yP1 filters, respec-

tively, which are the typical magnitudes at which the 3SS is com-

plete. The lower proper motion limit is set to five times the proper

motion uncertainties, σμ, unless specified otherwise; and the upper

proper motion limit is set at 0.08438 and 0.4219 arcsec yr−1 for the

cases using lower tangential velocity limits at 40 and 200 km s−1,

respectively. The two limits correspond to a minimum distance of

100 pc; this is to avoid any bias coming from the unaccounted paral-

lax signature of very nearby sources. The upper tangential velocity

limits are different in each analysis. The photometric parallaxes

were not derived, and the real distances and bolometric magnitudes

are used. The volume and the maximum volume are found by in-

tegrating equation (10) from Dmin to D, and from Dmin to Dmax,

respectively.

4.1 Comparison with the RH11 selection

The RH11 method increases the survey volume by restricting shal-

low survey depths only over areas that are severely limited by

a small number of poor observations. In this section, we illus-

trate how the Voronoi method can further increase the number of

sources that can be recovered while rigorous completeness cor-

rection can be performed. In Fig. 1, under the selection criteria:

6 This study only focuses on tessellation; the effect of non-detection is

another huge step in the optimization of analysis.

Figure 1. The number of sources recovered using the Voronoi and RH11

methods in a mixed thin disc, thick disc and halo simulation as a function

of proper motion significance. The Voronoi method is plotted as a thin solid

line, RH11 method is plotted as a dashed line, values correspond to the

ordinate axis in logarithmic scale on the left. The use of a global proper

motion uncertainty at 95th percentile (i.e. 18.7 mas yr−1) instead of RH11

tiling is shown by the dot–dashed line. The ratios between the two methods

to the Voronoi method are plotted as thick solid lines and correspond to the

ordinate axis on the right.

Figure 2. The number of sources in a moving 0.5 mag bin discovered as a

function of absolute bolometric magnitude with the Voronoi method (solid)

and RH11 method (dashed) at 5σ (black), 10σ (grey) and 20σ (light grey)

level, values correspond to the ordinate axis in logarithmic scale on the left.

The ratios between the two methods are in thick solid lines and correspond

to the ordinate axis on the right.

40 km s−1 < vtan < 60 km s−1, proper motion less than half an arc-

sec yr−1 and a minimum distance of 100 pc, the number of sources

recovered by the Voronoi method is plotted as a solid line, RH11

method as a dashed line and the global 95th percentile as a dotted

line. The ratio between the RH11 and Voronoi methods is plot-

ted as a thick black solid line, while that between a global lower

proper motion limit and the Voronoi method is plotted as a thick

grey solid line. With the Voronoi method, more sources can be re-

covered. The ratio between the RH11 and Voronoi methods slowly

decreases as the absolute bolometric magnitudes increase; the ratio

with the global limit simply plummets given that the upper proper

motion limit is only 0.5 arcsec yr−1. Fig. 2 shows that the ratios

stay fairly constant until some faint limits. The sources lost with the
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Maximizing survey volume with Voronoi diagram 1031

Figure 3. Top: the WLDFs for a thin disc-only realization using the new

method, where 0.5 and 0.25 mag binning are displayed in black and grey,

respectively. The light grey line shows the input function. Middle: the devia-

tions of the WDLF as a function of absolute bolometric magnitude. Bottom:

the 〈V/Vmax〉 as a function of absolute bolometric magnitude. The dashed

line indicates the overall 〈V/Vmax〉.

RH11 treatment are due to a combination of (1) the reassignment of

proper motion uncertainties based on empirical observations where

95 per cent of all sources are given larger uncertainty values than

their measured ones and (2) the loss of the deepest areas of the

survey.

Due to the simplistic noise model of the simulation (i.e. no bad

pixels, saturation, diffraction, optical ghosts and other effects that

affect the photometric and astrometric precision significantly), the

distribution of the proper motion uncertainties in the simulation

is typically narrower than real measurements. Nevertheless, at 5σ

level the Voronoi method can recover ∼15 per cent more sources

than the RH11 method and much more sources than applying a

global lower proper motion limit (Fig. 2).

4.2 Thin disc and combined discs

Study of the thin disc WDLF requires a selection of the low-velocity

population in order to minimize the contaminations from older pop-

ulations, which typically possess higher velocities. In this section,

we show the observed WDLFs from a thin disc-only simulation

and from a mixed thin disc, thick disc and halo simulation. The

WDLF comparison plots are displayed with the WDLF in the top

panel, differences between the input and calculated WDLFs and the

〈V/Vmax〉 as a function of bolometric magnitude are in the middle

panel and at the bottom panel, respectively.

4.2.1 Thin disc-only sample

In an analysis selecting only thin-disc WDs, the observed WDLF

agrees very closely with the input function down to Mbol ≈ 15 mag

when the number of sources drops significantly (Fig. 3). From

the 〈V/Vmax〉(mag) distribution, the derived solution is very sta-

ble throughout, except at the brightest and faintest ends where the

1
<Vmax>

method is known to become less reliable as the number

of sources decreases. In theory, 〈V/Vmax〉 = 0.5, because it is the

expected value of a uniform distribution between 0 and 1. Statisti-

cally, it is expected that only ∼60 per cent of the time the 〈V/Vmax〉
lies within the error bar. The uncertainty in 〈V/Vmax〉 is 1√

12N
. The

small oscillation about the line at 〈V/Vmax〉(mag) = 0.5 is a good

indication that the sample is unbiased over a large dynamic range

of magnitudes. The outliers at the extreme ends result from the ap-

plication of the density estimator to a small number of sources, and

so likely do not represent the true values. Taking 40 and 60 km s−1

as the lower and upper tangential velocity limits of the inner in-

tegral (equations 10 and 11 and the equivalent set of the upper

limit), the total integrated number density of the work is 3.65 ±
1.03 × 10−3 pc−3, compared to the input 3.10 × 10−3 pc−3. The

overall 〈V/Vmax〉 = 0.4944 ± 0.0031, which is very close to 0.5,

indicating an unbiased sample.

4.2.2 Mixed population (40–60 km s−1)

The modification to the density estimator itself is small, only the

lower limit of the inner integral is changed (equation 11) and it is

not expected that the effect due to contamination should differ from

the previous analysis in LRH15. The extra depth enabled by the

new method could have led to a significant increase in the measured

density due to a combination of two effects: (1) an increase in

contamination fraction as the thin disc contribution drops rapidly

with distance: at the Galactic poles, the thin disc and thick disc

densities equate at 525 pc, and (2) the kinematic completeness

correction applied on contaminants, which are more common at

fainter magnitudes.

The kinematics of the two discs are well measured; however, the

relative density of WDs in them is much less studied – there is

only one measurement on record (RH11). To understand the effects

of contamination, a better understanding of the two populations

is needed. Nevertheless, we can compare the WDLFs from the

last section to a mixed population with the same set of upper and

lower tangential velocity limits (40 and 60 km s−1; Fig. 4). The total

integrated number density is 4.00 ± 1.03 × 10−3 pc−3 as compared

to 3.10 × 10−3 pc−3 for the thin disc and 0.64 × 10−3 pc−3 for

the thick disc, which sum to 3.74 × 10−3 pc−3. If it is treated as

a pure thin disc WDLF, there is a roughly constant overestimation

of 0.1 dex at all magnitudes. When both discs are considered, the

small overdensity (0.26 × 10−3 pc−3) is due to contamination from

the thick disc where the using of a thin disc scaleheight on these

sources will lead to an overestimation of the maximum volume. In

this simulation, 16.0 per cent of the data are from the thick disc.

The 〈V/Vmax〉 distribution is very similar to the clean sample, and

for the entire sample 〈V/Vmax〉 = 0.4984 ± 0.0028, which is within

1 standard deviation of the ideal value 0.5. We believe this velocity

range is a good choice for driving an upper limit of the thin disc

white dwarf density in the solar neighbourhood.

4.2.3 Mixed population (40–120 km s−1)

In M17, 40 and 120 km s−1 are used as the tangential velocity limits

to study both discs together, with a scaleheight of 300 pc instead of

250 pc. From H06, it is known that the effect of scaleheight is larger

at the bright end because sources can be seen at a larger distance

hence the density-correction is larger in equation (10). The effect

on the total normalization is small because faint sources dominate

after density and completeness corrections. However, studies in, for
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1032 M. C. Lam

Figure 4. Top: WLDF for all sources with tangential velocities between 40

and 60 km s−1 from a mixed-population catalogue using the new method

assuming thin disc properties bins (black), the input thin and thick disc

luminosity functions (thin grey line) and the combined thin and thick disc

luminosity function (thick grey line). Middle: the deviations of the WDLF

as a function of absolute bolometric magnitude from the thin disc luminosity

function (grey) and from the combined luminosity function (black). Bottom:

the 〈V/Vmax〉 as a function of absolute bolometric magnitude. The dashed

line indicates the overall 〈V/Vmax〉.

example, star formation history (Rowell 2013) or high energy ex-

otic particles (Isern et al. 2008) are sensitive to the whole range of

magnitudes. This cannot simply be assumed to be negligible. Fig. 5

investigates this effect by comparing the cases of 250 and 300 pc

scaleheights. It shows that the choice of scaleheight has almost no

effect to the WDLFs except at the brightest magnitudes, and for the

distribution of 〈V/Vmax〉, the differences are negligible. However, the

absolute normalizations from using the two scaleheights are consis-

tently overestimated by ∼0.1 dex. In this simulation, 23.1 per cent

of the sources in the range of 40–120 km s−1 are from the thick disc

and the halo; in comparison, only 15.5 per cent of sources are not

from the thin disc in the 40–60 km s−1 selection.

4.3 Halo

The study of the halo WDLF requires a selection of high-velocity

population in order to minimize the contaminations from the thick

disc. In this section, we will show the observed WDLFs from a

halo-only simulation and from a mixed thin disc, thick disc and

halo simulation.

4.3.1 Halo-only sample

In the halo-only simulation, the observed WDLF agrees very well

with the input function (Fig. 6). From the 〈V/Vmax〉(mag) distribu-

tion, the derived solution is stable throughout, except at the faintest

bin where there are only two sources. The small oscillation about

the line at 〈V/Vmax〉 = 0.5 is a good indication that the sample is

unbiased over the entire range of magnitudes. The upper and lower

Figure 5. Top: WLDFs for all sources with tangential velocity between 40

and 120 km s−1 from a mixed-population catalogue using the new method

assuming thin disc properties. Black uses a scaleheight of 250 pc, grey uses

300 pc and the light grey line is the input function. Middle: the deviations of

the WDLF as a function of magnitude. Bottom: the 〈V/Vmax〉 as a function

of magnitude. The dashed line indicates the overall 〈V/Vmax〉.

Figure 6. Top: observed WLDFs (black) for a halo-only realization using

the new method and the input function (grey). Middle: the deviations of

the WDLF as a function of absolute bolometric magnitude. Bottom: the

〈V/Vmax〉 as a function of absolute bolometric magnitude. The dashed line

indicates the overall 〈V/Vmax〉.

tangential velocity limits are set at 200 and 500 km s−1, which de-

fine the survey limits of the inner integral (equations 10 and 11 and

the equivalent set of the upper limit), the total integrated number

density of the work is 1.77 ± 0.10 × 10−4 pc−3, compared to the

MNRAS 469, 1026–1035 (2017)
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Maximizing survey volume with Voronoi diagram 1033

Figure 7. Top: a Voronoi diagram with 15 cells. The generating points (only

10 are shown) and the tessellation vertices are displayed in black and grey,

respectively. Bottom: a Voronoi diagram with increased resolution generated

with the points and vertices from the top panel; grey lines show the original

cells.

input 1.90 × 10−4 pc−3 (the integrated density up to 15 mag is

1.68 × 10−4 pc−3) and 〈V/Vmax〉 = 0.5116 ± 0.0200.

4.3.2 Mixed population (200–500 km s−1)

In 10 realizations of the halo-only simulation, under the selection of

200–500 km s−1, there is a mean contamination rate of 7.3 per cent

(minimum at 3.6 per cent and maximum at 11.9 per cent). In the

thin disc analysis, where the contamination is over 15 per cent, we

do not observe any significant bias in the WDLF or 〈V/Vmax〉(mag)

distribution. We believe these fractions of contaminations have little

effect on the analysis so the samples should be representative of the

halo; we therefore do not consider them further.

4.4 Sensitivity to resolution

The purpose of this new method is to tackle a complex survey that

has small-scale variations that reduce the maximum survey volume

that is available to a study. The way this method divides the sky

has avoided the detailed treatment of the survey and approximates

it with the source properties that go into the analysis, which raises

a concern whether the resolution for a small sample would be suf-

ficient, and not causing significant systematic bias. We suggest a

method to increase the resolution by a factor of ∼3, which can be

repeated to further increase the resolution if needed, as it would be

useful if there are only a few sources over the sky. A higher resolu-

tion can be achieved by using the vertices as new generating points

(Fig. 7). However, an increased resolution requires much more com-

putation time, because the time complexity of the Voronoi method

is O
(
N 2

)
. There is a trade-off between the accuracy and the com-

puting time. The properties at the new cells can be approximated

by those carried by the nearest sources (or they can be extracted

directly from the field from the raw data). Fig. 8 demonstrates with

Figure 8. Top: the ratio of number density between the high resolution (∼3

×) analysis to the standard resolution as a function of absolute bolometric

magnitude. Bottom: the ratio of number density between the low resolu-

tion (∼ 1
3
×) analysis to the standard resolution as a function of absolute

bolometric magnitude.

10 halo analyses that for a very well-behaved survey (small differ-

ences in survey depths), a resolution in the order of ∼30 deg2 per

cell compared to ∼100 deg2 per cell will only lead to an increase of

<1 per cent in number density (top panel). The increase arises from

the deeper parts of the survey that the standard resolution always

underestimates (as it is statistically less likely to land on the deeper

parts). To understand the effect at lower resolutions, we simulate this

by using one in three sources to generate the Voronoi tessellation.

The change in number density is only in the range of a few percent-

age points (bottom panel). Over a large number of simulations, the

ratios should average to 1. The asymmetric distribution comes from

the inverse proportionality between the maximum volume and the

number density.

5 C O N C L U S I O N

In this work, we have demonstrated that the use of Voronoi tessel-

lation can increase the survey volume to more optimally retrieve

sources from a large sky area multi-epoch survey. The assumption

behind this is not ideal, but it is not possible to take an average value

of the number of epochs and their properties for each cell. Further

subdivisions will take much more time to compute the volumes as

this algorithm scales as x × N 2, where x is the number of subdivi-

sion of each cell and N is the number of sources. Nevertheless, this

method is one big step in approaching the optimal sampling of the

survey footprint with limited computing power.

From a mixed population simulation, we find that under the

framework of our Galactic models, the new method recovers ∼10–

15 per cent more sources than the RH11 method under a typical

lower proper motion selection. When considering a restricted tan-

gential velocity selection (40–60 km s−1), we do not observe any

bias in the WDLFs brighter than 15 mag. Similar result is observed

from the 40–120 km s−1 sample. However, this conclusion is valid

only up to Mbol = 15 mag, the result should not be extrapolated to
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fainter magnitudes where thin disc contribution to the number den-

sity drops significantly compared to the thick disc and the halo. This

work has deliberately removed sources closer than 100 pc to avoid

bias caused by parallactic displacements, which as a consequence

removed all the faint sources that can be seen only from a small

distance. In the high velocity regime, at the given thick disc-to-halo

density ratio, a 200–500 km s−1 selection will only contain a small

fraction of contaminations so it is a good sample for studying the

halo.

We have demonstrated one way to increase the resolution of the

tessellation and it shows that for a well-behaved survey, a low reso-

lution only limits the volume by ∼1 per cent. An adaptive way that

only subdivides cells larger than a certain solid angle can provide

a grid of cells that have similar areas should it be more useful in

some certain scenarios. When applying this method to real sur-

veys, careful treatment at the boundaries is needed because the

area of the survey is important. Leaving the boundaries untreated,

one will always end up with 4π steradian of sky area. In order

to have a correct boundary that defines the survey, artificial points

have to be added to create a layer of bounding cells surrounding

the survey area such that the boundaries of the second last layer

of cells overlap the survey footprint. One can identify the artificial

points by using the survey boundary as a cell boundary, and then

locate a generating point that can produce the correct boundary

geometry. However, one should note that a typical survey bound-

ary is given by a small circle on the celestial sphere while the

Voronoi tessellation constructs cell boundaries along the great cir-

cles. The total area described by the Voronoi cells is always going

to be slightly different from the true survey area (unless it is a full

sky survey). However, the difference in area is very small, com-

parable to the unaccounted non-perfect fill-factor or dead pixels at

the detector.

In future surveys, the complexity of the tiling pattern, scanning

strategy as well as the detector arrays at the focal plane will only in-

crease. There is an increasing need for a more optimal analytic tool

to maximally use the available data. The Voronoi method can in-

clude the faintest objects that would otherwise be neglected because

of unaccountable incompleteness.
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Lépine S., Shara M. M., Rich R. M., 2002, AJ, 124, 1190
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