72 research outputs found

    Aspergillus colonisation and antifungal immunity in cystic fibrosis patients

    Get PDF
    Invited Review. AB and AW are supported by the Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (grant 097377). AW is supported by the MRC Centre for Medical Mycology (grant MR/N006364/1) at the University of Aberdeen.Peer reviewedPostprintPostprin

    Experience of isavuconazole as a salvage therapy in chronic pulmonary fungal disease

    Get PDF
    Background: Instances of resistant fungal infection are rising in pulmonary disease, with limited therapeutic options. Therapeutic drug monitoring of azole antifungals has been necessary to ensure safety and efficacy but is considered unnecessary for the newest triazole isavuconazole. Aims: To characterise the prevalence of isavuconazole resistance and use in a tertiary respiratory centre. Methods: A retrospective observational analysis (2016ā€“2021) of adult respiratory patients analysing fungal culture, therapeutic drug monitoring, and outcome post-isavuconazole therapy. Results: During the study period, isavuconazole susceptibility testing was performed on 26 Aspergillus spp. isolates. A total of 80.8% of A. fumigatus isolates had isavuconazole (MIC > 1 mg/L, and 73.0% > 2 mg/L) with a good correlation to voriconazole MIC (r = 0.7, p = 0.0002). A total of 54 patients underwent isavuconazole therapy during the study period (median duration 234 days (IQR: 24ā€“499)). A total of 67% of patients tolerated isavuconazole, despite prior azole toxicity in 61.8%, with increased age (rpb = 0.31; p = 0.021) and male sex (Ļ†c = 0.30; p = 0.027) being associated with toxicity. A total of 132 isavuconazole levels were performed with 94.8% > 1 mg/L and 72% > 2 mg/L. Dose change from manufacturerā€™s recommendation was, however, required in 9.3% to achieve a concentration of >2 mg/L. Conclusion: We describe the use of isavuconazole as a salvage therapy in a chronic pulmonary fungal disease setting with a high prevalence of azole resistance. Therapeutic concentrations at standard dosing were high; however, results reinforce antifungal stewardship for optimization

    Caspofungin Increases Fungal Chitin and Eosinophil and Ī³Ī“ T Cell-Dependent Pathology in Invasive Aspergillosis

    Get PDF
    The polysaccharide-rich fungal cell wall provides pathogen-specific targets for antifungal therapy and distinct molecular patterns that stimulate protective or detrimental host immunity. The echinocandin antifungal caspofungin inhibits synthesis of cell wall Ī²-1,3-glucan and is used for prophylactic therapy in immune-suppressed individuals. However, breakthrough infections with fungal pathogen Aspergillus fumigatus are associated with caspofungin prophylaxis. In this study, we report in vitro and in vivo increases in fungal surface chitin in A. fumigatus induced by caspofungin that was associated with airway eosinophil recruitment in neutropenic mice with invasive pulmonary aspergillosis (IA). More importantly, caspofungin treatment of mice with IA resulted in a pattern of increased fungal burden and severity of disease that was reversed in eosinophil-deficient mice. Additionally, the eosinophil granule proteins major basic protein and eosinophil peroxidase were more frequently detected in the bronchoalveolar lavage fluid of lung transplant patients diagnosed with IA that received caspofungin therapy when compared with azole-treated patients. Eosinophil recruitment and inhibition of fungal clearance in caspofungin-treated mice with IA required RAG1 expression and Ī³Ī“ T cells. These results identify an eosinophil-mediated mechanism for paradoxical caspofungin activity and support the future investigation of the potential of eosinophil or fungal chitin-targeted inhibition in the treatment of IA

    Ibrutinib blocks Btk-dependent NF-ÄøB and NFAT responses in human macrophages during Aspergillus fumigatus phagocytosis

    Get PDF
    AB and AW are supported by the Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (G097377). AS was funded by an MRC Clinical Research Fellowship (MR/K002708/1). AW is supported by the MRC Centre for Medical Mycology (MR/N006364/1) at the University of Aberdeen. DAJ is supported by a Wellcome Trust Seed Award (204566/Z/16/Z).Peer reviewedPublisher PD

    Calcineurin Orchestrates Lateral Transfer of Aspergillus fumigatus During Macrophage Cell Death.

    Get PDF
    RATIONALE: Pulmonary aspergillosis is a lethal mould infection in the immunocompromised host. Understanding initial control of infection, and how this is altered in the immunocompromised host, is a key goal for understanding the pathogenesis of pulmonary aspergillosis. OBJECTIVES: To characterise the outcome of human macrophage infection with Aspergillus fumigatus, and how this is altered in transplant recipients on calcineurin inhibitor immunosuppressants. METHODS: We defined the outcome of human macrophage infection with Aspergillus fumigatus, and the impact of calcineurin inhibitors, through a combination of single cell fluorescence imaging, transcriptomics, proteomics, and in vivo studies. MEASUREMENTS AND MAIN RESULTS: Macrophage phagocytosis of Aspergillus fumigatus enabled control of 90% of fungal germination. However fungal germination in the late phagosome led to macrophage necrosis. During programmed necroptosis, we observed frequent cell-cell transfer of Aspergillus fumigatus between macrophages which assists subsequent control of germination in recipient macrophages. Lateral transfer occurred through actin-dependent exocytosis of the late endosome in a vasodilator-stimulated phosphoprotein (VASP) envelope. Its relevance to the control of fungal germination was also shown by direct visualisation in our zebrafish aspergillosis model in vivo. The calcineurin inhibitor FK506/tacrolimus reduced cell death and lateral transfer in vitro by 50%. This resulted in uncontrolled fungal germination in macrophages and hyphal escape. CONCLUSIONS: These observations identify programmed necrosis-dependent lateral transfer of Aspergillus fumigatus between macrophages as an important host strategy for controlling fungal germination. This process is critically dependent on calcineurin. Our studies provide fundamental insights into the pathogenesis of pulmonary aspergillosis in the immunocompromised host

    The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis

    Get PDF
    Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Raw data have been deposited in the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE54810. Funding: This work was supported in part by grants to EMB from the MRC (G0501164) and BBSRC (BB/G009619/1), to EMB and NDR from the Wellcome Trust (WT093596MA), to MB from Imperial College London (Division of Investigative Sciences PhD Studentship), to HH from the ERA-NET PathoGenoMics project TRANSPAT, Austrian Science Foundation (FWF I282-B09), to SGF from the National Institutes of Health, USA (R01AI073829). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    System-wide approaches to antimicrobial therapy and antimicrobial resistance in the UK: the AMR-X framework

    Get PDF
    Antimicrobial resistance (AMR) threatens human, animal, and environmental health. Acknowledging the urgency of addressing AMR, an opportunity exists to extend AMR action-focused research beyond the confines of an isolated biomedical paradigm. An AMR learning system, AMR-X, envisions a national network of health systems creating and applying optimal use of antimicrobials on the basis of their data collected from the delivery of routine clinical care. AMR-X integrates traditional AMR discovery, experimental research, and applied research with continuous analysis of pathogens, antimicrobial uses, and clinical outcomes that are routinely disseminated to practitioners, policy makers, patients, and the public to drive changes in practice and outcomes. AMR-X uses connected data-to-action systems to underpin an evaluation framework embedded in routine care, continuously driving implementation of improvements in patient and population health, targeting investment, and incentivising innovation. All stakeholders co-create AMR-X, protecting the public from AMR by adapting to continuously evolving AMR threats and generating the information needed for precision patient and population care

    Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus.

    Get PDF
    Transplant recipients on calcineurin inhibitors are at high risk of invasive fungal infection. Understanding how calcineurin inhibitors impair fungal immunity is a key priority for defining risk of infection. Here, we show that the calcineurin inhibitor tacrolimus impairs clearance of the major mould pathogen Aspergillus fumigatus from the airway, by inhibiting macrophage inflammatory responses. This leads to defective early neutrophil recruitment and fungal clearance. We confirm these findings in zebrafish, showing an evolutionarily conserved role for calcineurin signalling in neutrophil recruitment during inflammation. We find that calcineurin-NFAT activation is phagocytosis dependent and collaborates with NF-ĪŗB for TNF-Ī± production. For yeast zymosan particles, activation of macrophage calcineurin-NFAT occurs via the phagocytic Dectin-1-spleen tyrosine kinase pathway, but for A. fumigatus, activation occurs via a phagosomal TLR9-dependent and Bruton's tyrosine kinase-dependent signalling pathway that is independent of MyD88. We confirm the collaboration between NFAT and NF-ĪŗB for TNF-Ī± production in primary alveolar macrophages. These observations identify inhibition of a newly discovered macrophage TLR9-BTK-calcineurin-NFAT signalling pathway as a key immune defect that leads to organ transplant-related invasive aspergillosis

    AIDS-related mycoses: the way forward.

    Get PDF
    The contribution of fungal infections to the morbidity and mortality of HIV-infected individuals is largely unrecognized. A recent meeting highlighted several priorities that need to be urgently addressed, including improved epidemiological surveillance, increased availability of existing diagnostics and drugs, more training in the field of medical mycology, and better funding for research and provision of treatment, particularly in developing countries
    • ā€¦
    corecore