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Abstract

The polysaccharide-rich fungal cell wall provides pathogen-specific targets for antifungal therapy 

and distinct molecular patterns that stimulate protective or detrimental host immunity. The 

echinocandin antifungal caspofungin inhibits synthesis of cell wall β-1,3-glucan and is used for 

prophylactic therapy in immune suppressed individuals. However, breakthrough infections with 

fungal pathogen Aspergillus fumigatus are associated caspofungin prophylaxis. In this study, we 

report in vitro and in vivo increases in fungal surface chitin in A. fumigatus induced by 

caspofungin that was associated with airway eosinophil recruitment in immune competent and 

neutropenic mice with invasive pulmonary aspergillosis (IA). More importantly, caspofungin 

treatment of mice with IA resulted in a pattern of increased fungal burden and severity of disease 

that was reversed in eosinophil-deficient mice. In addition, the eosinophil granule proteins major 

basic protein and eosinophil peroxidase were more frequently detected in the bronchoalveolar 

lavage fluid of lung transplant patients diagnosed with IA that received caspofungin therapy when 

compared to azole-treated patients. Eosinophil recruitment and inhibition of fungal clearance in 

caspofungin-treated mice with IA required RAG1 expression and γδ T cells. These results identify 

an eosinophil-mediated mechanism for paradoxical caspofungin activity and support the future 

investigation of the potential of eosinophil or fungal chitin-targeted inhibition in the treatment of 

IA.
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Introduction

The ubiquitous filamentous fungus Aspergillus fumigatus is an opportunistic pathogen and 

aeroallergen source capable of inducing lung inflammation, colonization, and/or invasive 

infection contingent on the level of immune capability of the host (1–3). The incidence of 

invasive pulmonary aspergillosis (IA) has increased along with the use of immune 

suppressive and myeloablative therapies. Mortality in immune suppressed patients with IA 

may reach 90% depending on the population, and current options for antifungal therapy are 

not highly effective and often require prolonged administration (3–5). It is therefore of 

paramount importance for clinicians and researchers to increase their understanding of the 

underlying biological mechanisms that reduce antifungal efficacy in order to facilitate the 

development of new and improved therapies.

The cell wall/membrane of A. fumigatus is comprised of multiple structures distinct from 

mammalian cell membranes, thus offering pathogen-specific targets for antifungal therapy 

and host immunity (6). Voriconazole or other triazole drugs that inhibit synthesis of fungal 

cell membrane ergosterol are currently recommended for primary or empiric therapy (7, 8). 

However, fungal azole resistance in IA patients is increasing, possibly due to increased 

agricultural use of fungicidal azole compounds (9–12). In contrast to azoles, the 

echinocandin class of antifungals inhibit the synthesis of the fungal cell wall polysaccharide 

β-1,3-glucan (13). Administration of echinocandins is indicated for aspergillosis patients 

that do not respond to azole therapy alone (5, 14). In addition, echinocandins such as 

caspofungin may be used as a part of a prophylactic regimen for patients that are highly 

susceptible to fungal infections (15). However, among susceptible patients receiving 

prophylactic caspofungin, a commonly reported “breakthrough” fungal infection was 

aspergillosis (16–19). In a mouse model of IA, lung fungal burden was decreased at lower 

caspofungin doses, but paradoxically increased at the highest dose (20). Thus, in some 

patients caspofungin/echinocandin therapy may be less effective at preventing or treating A. 
fumigatus infection in comparison to other fungal pathogens.

The early lung immune response to inhalation of A. fumigatus conidia is shaped by innate 

recognition of fungal cell wall polysaccharides, particularly β-1,3-glucan and chitin (21–23). 

In dormant conidia, these covalently-linked sugars are masked by a hydrophobic rodlet layer 

that breaks down upon swelling and germination, thus initiating recognition via innate 

receptors on resident tissue macrophages and newly recruited inflammatory cells (24). 

Notably, early recognition of β-1,3-glucan and chitin in A. fumigatus conidia initiates 

distinct immune profiles (23). β-1,3-glucan recognition by dectin-1 promotes type 1 and 

IL-17-skewed immune responses while chitin promotes type 2 immunity that is detrimental 

in response to fungal pathogens but are otherwise protective for chitin-containing helminths 

(25–33). Notably, mouse inhalation of purified chitin induced lung accumulation of 
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eosinophils and alternate activation of lung macrophages that was dependent on IL-5 and 

IL-13 secretion by type 2 innate lymphoid cells (31, 34). We previously observed that 

eosinophils in particular mediated type 2 pathology in a mouse model of IA; their absence 

resulted in increased fungal clearance (30). Although eosinophils were detrimental in this 

setting, the potential for eosinophil-mediated pathology in clinical invasive aspergillosis 

remains less clear.

A significant body of work has described the cell wall of A. fumigatus as exhibiting 

plasticity marked by structural changes in response to mutation and environmental stress 

(reviewed by Latge and Beauvais (35)). Furthermore, environmental stressors are not limited 

to outdoor and indoor environments, but also include the microenvironment encountered in 
vivo during host lung colonization and infection. Not surprisingly, antifungal drugs induce a 

significant amount of stress by directly inhibiting cell wall or membrane synthesis. For 

example, direct inhibition of the β-1,3-glucan synthesis pathway by in vitro growth in the 

presence of caspofungin resulted in a cell wall architecture characterized by increased levels 

of chitin in A. fumigatus (36, 37). However, a connection between increased caspofungin-

mediated chitin exposure and increased eosinophil activation and pathology has not been 

described. Two clinical reports described eosinophilia in caspofungin-treated patients with 

IA, although a mechanism explaining these observations was neither proposed nor examined 

(38, 39). When considered together, these results suggest that caspofungin has the potential 

to increase detrimental eosinophilia in patients with IA, although direct evidence supporting 

this hypothesis remains lacking.

In this study, we demonstrate a clinical relevance for this relationship by demonstrating that 

caspofungin treatment increases eosinophil recruitment and pathology in a mouse model 

invasive aspergillosis. Furthermore, we identify a role for γδ T cells in this response. We 

also extend our findings to IA patients by comparing the levels of eosinophil activation 

markers in the bronchoalveolar lavage fluid (BALF) of patients treated with azole drugs with 

those that received a combination therapy that included caspofungin. Our results suggest a 

mechanism for caspofungin-mediated increases in fungal chitin and detrimental eosinophil 

recruitment in invasive aspergillosis.

Materials and Methods

Growth and handling of fungi

Aspergillus fumigatus (Af293) was purchased from the Fungal Genetics Stock Center. Fungi 

were cultured on malt extract agar (MEA). Conidia were isolated from culture plates kept at 

RT for 14 days by applying and gently shaking 1g of glass beads (0.5 mm, BioSpec 

Products), then placed in suspension by pouring the beads into a tube with sterile phosphate 

buffered saline (DPBS). For mouse aspiration, conidia were harvested using glass beads and 

resuspended in DPBS. The beads were then vortexed and the supernatant containing the 

conidia was removed, diluted and counted with a hemacytometer and used for aspiration. To 

determine the effect of capsofungin on conidial chitin exposure, the Af293 isolate was 

cultured on MEA plates containing 16ug/ml caspofungin diacetate (Sigma) and incubated at 

37°C for 4 days. For flow cytometric analysis of conidia, harvested conidia were swollen in 

RPMI for 4 hours at 37°C and subsequently fixed with 4% paraformaldehyde. Swollen and 
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fixed conidia were washed with ammonium chloride and DPBS and resuspended in DPBS 

for surface staining and flow cytometric analysis. For surface staining, swollen conidia was 

stained with carbohydrate binding lecithin, Wheat Germ Agglutinin (WGA; conjugated with 

APC) for surface chitin detection and analyzed on flow cytometry for quantification.

Mouse infection, sacrifice, histological staining, and collection of BALF

BALB/c or C57BL6/J mice were obtained from Envigo or Jackson Laboratory, while 

ΔdblGATA1, and TCRδ−/− mice aged 5 weeks were obtained from Jackson Laboratory. 

IL-4 GFP-reporter mice (4get) were previously obtained from Dr. Richard Locksley. Mice 

were allowed to rest 2–4 weeks prior to experiments. A subset of mice were bred at the 

IUSM-Terre Haute animal facility with offspring used in subsequent experiments at 7–10 

weeks of age.

To induce invasive pulmonary aspergillosis in mice, neutrophils were depleted by 

intraperitoneal injection of 0.25 mg α-Ly6G (1A8; BioXCell) 24 hours before and after 

infection. Neutropenic mice were infected with 5x106 condia of A. fumigatus isolates by 

involuntary aspiration. Caspofungin was prepared in sterile DPBS at 5mg/Kg (high dose) or 

1mg/Kg (low dose) (40) and was injected i.p. on a daily basis until mice were harvested. In 

some experiments, infected mice were monitored for survival or changes in disease using a 

five-point scale: 0) healthy 1) minimal disease (e.g. ruffled fur), 2) moderate disease (e.g. 

ungroomed, hunched), 3) severe disease (e.g. severely hunched, changes in eye color, low 

motility), and 4) moribund or deceased. Mice were sacrificed with sodium pentobarbitol, 

and lungs were perfused with 10ml phosphate buffered saline (PBS). Bronchoalveolar 

lavage fluid (BALF) was collected from the perfused lungs as previously described (41). For 

paraffin-embedded histological preparation, lungs were perfused with PBS followed by 

perfusion and inflation of the lungs with 10% buffered formalin phosphate (Fisher 

Scientific). To visualize lung infiltration by inflammatory cells, hematoxylin and eosin 

(H&E) stains were prepared and analyzed, and Gomori’s modified methanamine silver 

(GMS) stain was used for visualization of fungal germination in the lungs. Tissue 

processing, embedding, and staining was performed at Terre Haute Regional Hospital or at 

IUSM-TH. For frozen section preparation, lungs were perfused with 30% sucrose and 

inflated with 1:1 OCT (TissueTek) and immersed in 30% sucrose. After gradient freezing by 

embedding in OCT the tissue was kept frozen until sectioning. Lungs were cut in 5–10 μm 

using a cryostat (Avantik) and used for immunofluorescence microscopy. All animal 

procedures were approved by the Animal Care and Use Committee of Indiana State 

University, the host campus of IUSM-Terre Haute.

Flow cytometric analysis of bronchoalveolar lavage fluid and lung homogenates

BALF cell composition was determined by flow cytometric analysis of recovered lavage 

cells in suspension. BALF was centrifuged for 5 min at 1500 rpm, the supernatant removed, 

and the cell pellet resuspended and washed in 1ml of FACS buffer (Phosphate Buffered 

Saline, 5% fetal bovine serum, 0.05% sodium azide). The washed pellet was resuspended 

and stained in a solution containing FACS buffer with 10% rat serum, Fc-receptor blocking 

antibody (clone 24G2) and the following antibodies: rat-anti-mouse Ly-6G-FITC, rat-anti-

mouse Siglec-F-PE, pan-leukocyte rat-anti mouse CD45-PerCP, and rat-anti-mouse CD11c-
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APC. For γδ T cell staining the following antibodies were used; rat-anti-mouse CD3-PeCy7 

and TCRδ-PE (BD Biosciences). After staining, cells were washed and fixed with BD 

Cytofix, except for cells from 4get GFP reporter mice that were resuspended in FACS buffer 

and subsequently analyzed by flow cytometry. Flow cytometric data acquisition was 

performed on a Guava EasyCyte 8HT (EMD Millipore).

Immunofluorescence microscopy

6–8μm frozen sections of infected lungs were used for immunofluorescence staining. For 

fungal surface stain, calcofluor white (CFW; Sigma-Aldrich) was used to visualize surface 

chitin deposition in fungal hyphae. Rabbit anti-mouse CCR3 (Thermofisher) was used to 

visualize eosinophils with a goat anti-rabbit Dy-Light 488 (Abcam) secondary antibody. 

Briefly, sections were prepared by fixing the frozen sections in 4% paraformaldehyde at 

room temperature. Slides were stained with anti-CCR3 or CFW after blocking the sections 

with 10% goat serum for 1hr at 4°C followed by multiple washes with PBS and a 1 hour 

incubation with secondary antibody.

Total RNA processing and gene expression analysis

Lungs were removed and flash frozen in liquid nitrogen for RNA extraction. Total RNA was 

extracted from whole lungs homogenized in Trizol reagent (Invitrogen). Following the 

aqueous upper phase separation further RNA purification was performed using Qiagen 

RNEasy column with DNAse treatment per manufacturer’s recommendations. 2ug of total 

RNA was transcribed using High-capacity cDNA synthesis kit (Life Technologies) 

according to manufacturer’s protocol. For qPCR, Power-Up Sybr Green PCR Mastex Mix 

(Applied Biosystems) was used with Mxp3500 Real-time PCR system (Agilent). Select 

cytokine expression primers were obtained from SABiosciences.

Patient samples and ELISA

BALF was previously collected from lung transplant recipients at Royal Brompton and 

Harefiled NHS Foundation Trust (London, UK), with appropriate ethical approval (RBH/

AS1) (42). Along with BALF, information regarding clinical diagnoses and antifungal 

pharmacotherapy were obtained. For detection of eosinophil peroxidase (EPO) and human 

major basic protein (MBP) in BAL of transplant patients, human EPO and MBP ELISA kits 

were purchased from NovateinBio (Woburn MA) and used according to manufacturer’s 

protocol. All samples were run in duplicates. Patients with a clinical diagnosis of fungal 

infection were further divided into two groups, those with caspofungin therapy alone or in 

combination with other antifungal drugs and patients that only received azole therapy.

Data analysis methods

Analysis of mouse flow cytometric data was performed with FlowJo software (TreeStar). 

GraphPad Prism was used for generation of graphs and Figures and for statistical analyses 

(GraphPad Software). Unpaired t-tests were used to measure statistical significance when 

two groups were compared, and one or two-way analysis of variance (ANOVA) tests were 

used along with Tukey’s or Sidak’s post-tests for multiple comparisons, respectively. 

Survival curves were analyzed with Mantel-Cox log-rank tests. Patient data from this study 
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was analyzed by ANOVA using generalized estimating equation models, which allow the 

use of non-normal data by determining the best distribution of fit. Patient data were analyzed 

using SAS v9.4 (SAS Institute). Differences between experimental groups that resulted in a 

p-value of less than 0.05 were considered significant.

Results

Caspofungin increases fungal chitin exposure in vitro and in the lungs of mice with 
invasive aspergillosis

Previous studies have reported increased A. fumigatus chitin expression when β-1,3-glucan 

synthesis is inhibited by caspofungin (36, 37). To confirm if caspofungin increases chitin 

exposure in germinating conidia, we cultured and germinated the clinical isolate Af293 

(low/normal chitin expressing (43)) in the presence or absence of caspofungin and 

subsequently stained with the chitin-binding wheat germ agglutinin (WGA) for flow 

cytometric analysis. We observed that growth in the presence of caspofungin increased 

WGA staining on germinating conidia (Figs. 1A and 1B). To determine if caspofungin 

therapy in invasive infection is associated with increased fungal chitin exposure in vivo, we 

infected neutropenic BALB/c mice with Af293 conidia and compared lung tissue sections of 

caspofungin-treated and untreated mice at day 3 post-infection (model timeline in Fig. 1C). 

Compared to untreated mice, fungi in the lungs of caspofungin-treated (5mg/Kg) mice with 

IA displayed dysmorphic growth with short, thickened hyphae and swollen or burst hyphal 

tips (Fig. 1D). Fluorescence staining of the lung tissues with the chitin-binding calcofluor 

white resulted in an increased intensity of tissue-invading hyphae in mice treated with 

caspofungin when compared to controls (Fig. 1E and inset, bottom left). In addition, CCR3+ 

cells were observed within areas of hyphal growth in drug-treated and untreated mice (Fig. 

1E). These findings demonstrate that pharmacological targeting of β-1,3-glucan synthesis by 

caspofungin results in increased chitin exposure and/or deposition on the surface of A. 
fumigatus in vitro and in vivo.

Caspofungin treatment is associated with AMCase-sensitive eosinophil recruitment in 
mice with IA

Results of our previous work suggested that eosinophils are detrimental to protection in 

invasive aspergillosis in mice with Th2-skewed immunity (30). However, a high-chitin 

expressing isolate was used for exposures and infection that not only contained more chitin 

than commonly used clinical isolates such as Af293, but additionally displayed decreased 

virulence likely due to a decreased growth rate (43). We therefore aimed to determine if a 

pharmacologically mediated increase in chitin expression in the Af293 isolate in the lungs at 

the site of infection would result in a reciprocal increase in eosinophils in neutropenic 

BALB/c mice with IA. Seventy-two hours post-infection, we observed increased airway 

eosinophils in caspofungin-treated mice in comparison to untreated mice, while total 

leukocytes remained unchanged (Figs. 2A–C). Furthermore, airway eosinophil recruitment 

was partially decreased in caspofungin-treated mice that constitutively express acidic 

mammalian chitinase (AMCase; SPAM transgenic) when compared to non-transgenic 

littermates (Fig 2E). More specifically, a significant decrease was observed in the frequency 

of eosinophil in SPAM transgenic mice, while the total number of cells was not significant, 
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possibly due to modulation of the number of total leukocytes in SPAM mice (Figs 2D, 2E). 

When considered together, these results suggest that caspofungin enhances chitin-mediated 

lung eosinophil recruitment in mice with IA.

Detection of eosinophil activation in caspofungin-treated patients with fungal infection

In patients with allergic or hypereosinophilic diseases, serum levels of eosinophil granule 

proteins were significantly increased and were correlated with inflammation and disease 

severity (44–47). We therefore appropriated this strategy to compare levels of the eosinophil 

granule proteins major basic protein (MBP) and eosinophil peroxidase (EPX) in 

bronchoalveolar lavage fluid (BALF) samples from lung transplant patients with or without 

a clinical diagnosis of Aspergillus infection (42). We further grouped these samples based on 

the associated antifungal therapy: those infected patients that received azole therapy alone 

compared to those that received caspofungin (alone or in combination with azoles). Despite 

a large range of activation among patients, MBP and EPX proteins were more frequently 

detected in the BALF of individuals that received caspofungin therapy in comparison to 

azole-treated patients (Figs. 3A and 3B). Therefore, our results in patients and mice with 

aspergillosis suggest that caspofungin therapy is associated with increased lung eosinophil 

recruitment and activation.

Lack of effective caspofungin-mediated fungal clearance in invasive aspergillosis is 
reversed in eosinophil-deficient mice

We next wanted to determine if eosinophils increased pathology and inhibited fungal 

clearance in caspofungin-treated mice with IA. By five days post-infection, all wild-type, 

caspofungin-treated BALB/c mice with IA had succumbed to infection, whereas half of 

caspofungin-treated eosinophil-deficient (ΔdblGATA1) mice survived to eight days (Fig. 

4A). Similarly, disease severity was markedly increased in wild-type mice treated with 

caspofungin in comparison to untreated wild-type and eosinophil−/− mice, while significant 

improvement was observed with caspofungin in the absence of eosinophils (Fig. 4B). 

Furthermore, eosinophil-deficient mice exhibited improved fungal clearance with 

caspofungin treatment, while wild-type mice did not (Figs. 4C, D), and this phenotype was 

further confirmed with the observation and quantification of fungal staining in GMS 

histological sections that showed significant fungal clearance only in capsofungin-treated, 

eosinophil-deficient BALB/c mice (Figs. 4E, F). Decreased fungal burden was also observed 

in C57BL/6-background eosinophil-deficient ΔdblGATA1 mice when compared to wild-type 

B6 mice (Supplemental Fig. S1C), although total leukocyte and eosinophil recruitment were 

not significantly increased in B6 mice as in their BALB/c counterparts (Figs. S1A and S1B). 

A decrease in fungal burden or eosinophil recruitment was not evident in dectin-1-deficient 

mice (B6 background) treated with caspofungin, suggesting that β-glucan recognition does 

not play a major role in paradoxical caspofungin activity in neutropenic mice with IA 

(Supplemental Figs. S1D–F). Furthermore, BALB/c mice treated with a lower dose 

(1mg/Kg) of caspofungin did not exhibit increased eosinophil recruitment or increased 

fungal burden (Figs S1G–H). These results indicate that the increased disease severity and 

fungal burden in caspofungin-treated mice is dependent on antifungal dose and the presence 

of eosinophils.
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Caspofungin-increased eosinophil recruitment requires RAG1 expression

Innate lung eosinophil recruitment in response to instillation of chitin particles was not 

dependent antigen receptor-rearranged lymphocytes that require expression of the 

recombinase activating gene 1 (RAG1) for development (31). Since we observed increased 

fungal chitin and eosinophil-mediated pathology in caspofungin-treated mice with IA, we 

aimed to determine if this phenotype in our model was also independent of RAG1 

expression. In infected RAG1−/− (BALB/c background) mice, we observed no difference in 

disease severity or fungal burden between control and caspofungin-treated mice (Figs. 5A, 

5B). Furthermore, airway eosinophil recruitment was not increased by caspofungin 

treatment (Fig. 5C). Thus, in contrast to results with chitin particles, RAG1 expression is 

required for the observed increase in eosinophil recruitment in response to A. fumigatus 
infection.

Modulation of CD3+TCRδ+ cells in caspofungin-treated mice with IA

The requirement for RAG1 expression for eosinophil-mediated pathology suggests a role for 

γδ T cells, iNKT cells, or conventional αβ T cells that are absent in RAG1-deficient mice. 

Of these subsets, γδ T cells were activated by inhalation of chitin particles and are capable 

of initiating early type 2 immune responses and eosinophil recruitment via secretion of IL-4 

(34, 48, 49). Therefore, we wanted to determine if lung γδ T cells were increased in 

caspofungin-treated mice with IA or exhibited increased IL-4 activation at 48 hours post-

infection when compared to infected, untreated mice. Unexpectedly, CD3+TCRδ+ cells 

were decreased in the lungs of infected mice that received caspofungin treatment (Figs. 6A 

and 6B). Furthermore, very few IL-4/GFP+ reporter activated (“4get” (50)) γδ T cells were 

detected regardless of caspofungin treatment (Fig. 6C and data not shown). These results 

suggest that γδ T cells are either decreased or decrease their surface TCR/CD3 expression, 

and do not display increased IL-4 gene activation in caspofungin-treated mice with IA.

Eosinophil recruitment and fungal burden are decreased by caspofungin treatment in γδ T 
cell-deficient mice with invasive aspergillosis

Although we detected fewer CD3+TCRδ+ cells in the lungs of caspofungin-treated mice, 

this result does not preclude an involvement of γδ T cells in caspofungin-driven eosinophil 

pathology of IA, as T cells are known to decrease surface expression of the TCR/CD3 

complex upon activation in order to prevent overstimulation (51–53). We therefore 

determined if γδ T cells were required for airway eosinophil recruitment during invasive 

infection. Interestingly, caspofungin-treated γδ T cell-deficient mice exhibited a marked 

increase in survival and decrease in fungal burden as measured by quantitative PCR of 

fungal DNA or quantification of fungal staining on histological sections in comparison to 

untreated mice (Figs. 7A–7C, with inset). Furthermore, in contrast to wild-type C57BL/6 

and dectin-1 deficient mice (Figs. S1 A, B, D, and E), airway eosinophils were decreased in 

γδ T cell deficient mice that received caspofungin treatment, while the total number of 

airway cells remained unchanged (Figs 7D and 7E). These results suggest that γδ T cells act 

as regulators of eosinophil recruitment and pathology in invasive aspergillosis.
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Effects of caspofungin treatment and requirement for γδ T cells in lung expression of 
immunomodulatory genes in mice with IA

Our results demonstrate a role for γδ T cells in eosinophil recruitment and pathology of A. 
fumigatus infection. How γδ T cells promote IA pathology remains less clear. In an 

experimental model of allergy, IL-4 secretion by γδ T cells promoted eosinophil recruitment 

(48). However, our results with IL-4 reporter mice indicated very few IL-4+ γδ T cells in the 

lungs of mice with IA (Fig. 6C). Using quantitative RT-PCR on lung tissue, we aimed to 

determine if expression of other genes associated with type 2 immune, γδ T cell activation, 

or chitin responses were modulated in response to caspofungin treatment in the presence or 

absence of γδ T cells at 48 hours post-infection. In response to caspofungin treatment, wild-

type mice with IA did not significantly modulate transcription of the cytokines/chemokines 

IL-4, IL-5, IL-17A, IL-22, CCL11, or CCL22 (Fig. 8A). Likewise, expression of the 

alternate activation marker of macrophages, Arginase-1, the chitinases AMCase and 

chitrosiadase (Chit1), and the chitinase-like proteins BRP39 and Ym1 were not significantly 

altered. Of the genes we examined, expression of the chitinase-like protein (CLP) Ym2 

(Chitinase 3-like 4) was significantly increased in response to caspofungin. In contrast, none 

of the genes we examined in wild-type caspofungin-treated mice displayed significant 

changes in expression in the absence of γδ T cells (Fig. 8B). Therefore, caspofungin 

treatment and γδ T cells may influence eosinophil recruitment and pathology by an 

undescribed, novel pathway.

Discussion

This study is the first to demonstrate a link between caspofungin-mediated increases in 

chitin exposure and detrimental eosinophil activation in mice and humans with aspergillosis. 

Previous studies detailed the in vitro “paradoxical effect” of fungal growth in the presence of 

high levels of caspofungin (20, 54), and a recent study demonstrated increased chitin 

synthase activity and fungal stress response activation in response to caspofungin that 

permits A. fumigatus growth despite the presence of drug-mediated cell wall remodeling 

(55). These in vitro results are supported by in vivo evidence from Moretti et al that 

demonstrated decreased caspofungin efficacy in mice with IA (20, 40). Similar to our 

results, they reported mouse strain-dependent differences in fungal burden, with BALB/c 

mice most susceptible to infection at any dose of caspofungin, and C57BL/6 mice exhibiting 

a drug dose-dependent response. In our study, only BALB/c mice displayed both increased 

fungal burden and eosinophil recruitment in response to caspofungin (Figs. 2 and 4). 

However, eosinophil-deficient mice from either background exhibited decreased fungal 

burden in response to caspofungin (Figs. 4 and S1). Therefore, despite differences in 

recruitment, eosinophils were detrimental to effective fungal clearance in caspofungin-

treated BALB/c or C57BL/6 mice. Future studies will require consideration of these 

differences as mice with specific gene-targeted deficiencies are used from either background 

in order to elucidate mechanistic pathways of eosinophil-mediated pathology.

In addition to reporting increased mouse fungal burden in IA after caspofungin therapy, 

Moretti et al also provided mechanistic data that demonstrated a requirement for TLR2, 

TLR9, and Dectin-1 (40). Interestingly, TLR2 and TLR9 expression were required for 
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macrophage secretion of IL-17A and IL-10 in response to purified chitin particles (56, 57). 

Other studies have shown roles for NOD2, mannose receptor, and FIBCD1 in chitin binding 

or chitin-mediated responses (56–58). In contrast to Moretti et al, our results did not show a 

significant decrease in fungal burden with high-dose (5 mg/Kg) caspofungin in dectin-1−/− 

mice (Supplemental Figs. S1D–F). Interestingly, Moretti et al reported increased neutrophils 

in the lungs of high-dose caspofungin-treated animals with IA (40), and these cells are 

known to express high levels of dectin-1 (59). However, in contrast to the cyclophosphamide 

induced immune suppression used in that study, we depleted neutrophils prior to and during 

infection. It is thus possible that neutrophils and dectin-1 recognition contribute to 

paradoxical caspofungin activity when present in mice with IA. We chose the neutropenic 

model of IA because it is considered one of the best methods to increase host susceptibility 

to IA while still preserving the ability to determine the contributions of specific cell 

populations (e.g. eosinophils) that may otherwise be affected by broad immune suppressants 

such as cyclophosphamide (60–63). It is therefore likely that co-recognition of β-glucan and 

chitin in paradoxical caspofungin activity and eosinophil pathology is a complex 

multivariate process that will require considerable resources to delineate, and will remain an 

active and important area of future investigation.

Although we observed that caspofungin-mediated airway eosinophil recruitment and 

pathology in IA was partly dependent on γδ T cells, the mechanism driving this phenotype 

remains unknown. The role of γδ T cells in lung eosinophil recruitment in our model is in 

contrast to the immune response to purified chitin particles that was mediated by type 2 

innate lymphoid cell (ILC2) production of IL-4 and IL-13 (64). As noted in our discussion 

of pattern recognition receptors, it is possible that composite recognition of multiple fungal 

PAMPS also results in an increased role for γδ T cells in lung eosinophil recruitment and 

that these pathways are not sufficiently activated in response to chitin alone in the presence 

of ILC2s. Surprisingly, detection of lung γδ T cells was decreased in caspofungin-treated 

mice with IA when compared to untreated mice (Figs. 6A and 6B). It is possible that both 

CD3 and TCR levels were decreased to levels that rendered activated γδ T cells 

undetectable by flow cytometry (51–53). We did not detect any significant shift in median 

fluorescence intensity in lung γδ T cells in either the CD3 or TCRδ channels with 

caspofungin treatment (data not shown), although it is still possible that these cells remain 

despite a lack of detection. Furthermore, our results did not indicate a change in IL-4 

activation in lung γδ T cells with caspofungin treatment, and no significant changes among 

a panel of effector cytokines, chitinases, and other markers of type 2 immunity (Figs. 6 and 

8A). Rather, the chitinase 3-like 1/Ym2 was the only gene in our panel with increased 

expression with caspofungin therapy, and this pattern may be altered in the absence of γδ T 

cells (Fig. 8). Ym2 is a chitin binding protein that lacks chitinase activity and is thought to 

promote lung type 2 immunity (65). However, the understanding of the roles of this 

molecule in human infection and disease is preliminary. Future studies will require isolation 

of γδ T cells in untreated and caspofungin-treated mice with IA to compare changes in 

expression of these and other immune effectors, with the role of those identified pathways 

validated with knockout mice and adoptive transfer experiments.

Eosinophils have long been described as end-stage effector cells that secrete an array of 

cyototoxic proteins and lipid mediators that promote inflammation and collateral destruction 

Amarsaikhan et al. Page 10

J Immunol. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of surrounding tissues. However, more recent studies have elucidated homeostatic and 

immunoregulatory roles for eosinophils (66, 67). It is unclear which role is most relevant in 

our caspofungin-increased pathology model or in patients with IA. Our analysis of 

eosinophil granule proteins in patients treated with caspofungin was limited by relatively 

low numbers of caspofungin-treated patients in the lung transplant cohort (n=6) and the 

large range and non-normal distribution of values of eosinophil activation markers in each 

group. These patients had a variety of disparate underlying conditions that necessitated lung 

transplant, the most common being cystic fibrosis and chronic obstructive pulmonary disease 

(COPD), two diseases with very distinct etiologies that develop at different stages of life. In 

addition, many of these patients were treated with multiple immune suppressive and 

antimicrobial drugs and/or may have exhibited sequelae of atopy or other infections that 

could influence levels of eosinophil activation independent of caspofungin. Despite 

potentially confounding factors inherent in human samples, we observed an increased 

detection of MBP and EPX in the BALF of fungal-infected patients that received 

caspofungin therapy when compared to those that received azoles. Future studies with paired 

samples (pre/post caspofungin treatment) will be necessary to determine the full contribution 

of these factors to eosinophil activation as well as the association of this activation with 

severity of disease in patients with IA or in other cohorts with marked eosinophil activation, 

such as allergic bronchopulmonary aspergillosis (ABPA) patients.

Since our results highlight the possibility that antifungal cell wall modulation could promote 

detrimental immunity in some patients, we encourage others to consider this potential host-

pathogen relationship in studies that examine antimicrobial mechanisms of protection in 

susceptible hosts. It is likely that some combinations may prove complimentary. For 

example, caspofungin therapy could be combined with the chitin-synthesis inhibiting 

antifungal nikkomycin z to counteract increased chitin and detrimental eosinophilia induced 

by increased caspofungin (36, 68). However, in the absence of more specific clinical data, 

we do not believe that any risk of eosinophil pathology in caspofungin-treated patients 

currently outweighs the potential benefits of prophylactic or salvage therapy with 

echinocandins. The continued investigation of the potential of therapies that target 

eosinophil recruitment and activation along with fungal growth and dissemination in patients 

with fungal infection thus remains an important endeavor.
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FIGURE 1. 
Caspofungin increases surface chitin exposure in A. fumigatus in vitro and in the lungs of 

mice with IA. (A and B) Af293 conidia were cultured and germinated (4h at 37°C) in the 

presence of caspofungin or control conditions, then fixed prior to WGA-APC staining. (A) 

Representative histogram overlay from 3 experiments. (B) Summary of median fluorescence 

intensity of WGA staining from 3 experiments (n=3/group). (C) Infection timeline. BALB/c 

mice were depleted of neutrophils and infected with 5x106 Af293 conidia, with a subset of 

mice treated with i.p. caspofungin daily until harvest at 72h post-infection. (D) 

Representative fungal morphology in GMS-stained control lung and caspofungin-treated 

mice. Red arrows highlight swollen or burst hyphal tips, blue arrows highlight short, 

thickened hyphae. Panels are representative of sections from 3 mice/group. (E) 
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Representative immune fluorescence staining of d3 frozen lung sections from caspofungin 

treated or untreated mice with IA, stained for CCR3+ cells (green) and calcofluor white 

(red) to identify fungal chitin (n=3/group). Scale bars (D, E) are equivalent to 20 μm. 

****p<0.0001.
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FIGURE 2. 
Airway eosinophil accumulation is increased with caspofungin treatment in mice with IA. 

A, B, and C, BALB/c mice were neutrophil-depleted, infected, and treated or untreated with 

caspofungin as described for Fig. 1 (timeline in Fig. 1C). BALF was analyzed for eosinophil 

recruitment as described in Materials and Methods. D and E, analysis of BALF from 

caspofungin-treated mice with IA that constititively express lung AMCase (SPAM+) 

compared to transgene-negative littermates (SPAM-). A, representative flow plots depicting 

gating of BALF CD45hiLy6G−SiglecF+CD11c− eosinophils (Eos) and 

CD45hiLy6G−SiglecF+CD11c+ alveolar macrophages (AM). B and D, total cells. C and E, 

frequency (left) and total number (right) of eosinophils. Data shown are a summary of 2–3 

experiments. *p<0.05. **p<0.01.
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FIGURE 3. 
Increased detection of eosinophil granule proteins in aspergillosis patients treated with 

caspofungin. Major basic protein (A) and eosinophil peroxidase (B) in the BALF of lung 

transplant patients with or without aspergillosis quantified by ELISA. Patients were further 

subdivided by antifungal therapy: those that received azoles (Infected) or those that received 

caspofungin alone or in combination with azoles (Inf+Caspo). Statistical analysis was 

performed as described in Materials and Methods.
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FIGURE 4. 
Increased disease severity and lack of fungal clearance in caspofungin-treated mice is 

eosinophil-dependent. Wild-type BALB/c or eosinophil-deficient (ΔdblGATA1) mice were 

infected and treated or left untreated with caspofungin as described for Fig. 1. (A) Survival. 

(B) Disease Score. (C) Fungal DNA (burden) (15–30 mice/group, summary of 3–6 

experiments). (A–C) n=15–30 mice/group, data are a summary of 3–6 experiments. (D) 

Change in fungal DNA burden with caspofungin treatment calculated from results shown in 

Fig. 4A. (E) Fungal burden as measured by quantification of GMS staining of histological 

sections (n=3–4 mice/group). (F) Representative GMS staining of histological sections from 

wild-type (top) or eosinophil−/− mice (bottom). Scale bar is equivalent to 100 μm. *p<0.05. 

**p<0.01. ****p<0.0001.
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FIGURE 5. 
Disease severity, fungal burden, and eosinophil recruitment are not increased in 

caspofungin-treated RAG1−/− mice. Mice deficient in RAG1 (BALB/c background) were 

infected with A. fumigatus as described for Fig. 1. (A) Disease severity and (B) Fungal 

burden (n=8). (C) Frequency (left) and total BALF eosinophils (right). Data shown are a 

summary of two experiments.
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FIGURE 6. 
Modulation of CD3+TCRδ+ cells in caspofungin-treated mice with IA. Neutropenic mice 

were infected and harvested at 48 hours post-infection, with cell suspensions derived from 

lung homogenates analyzed by flow cytometry for expression of γδ T cell markers. A) 

Representative dot plots from two experiments. B) Frequency (left) and total numbers (right) 

of lung CD3+TCRδ+ cells. C) Representative histogram from two experiments depicting 

GFP fluorescence of CD3+TCRδ+ cells from IL4-GFP-reporter mice (4get). *p<0.05.
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FIGURE 7. 
Caspofungin-mediated eosinophil recruitment and pathology require γδ T cells. γδ T cell-

deficient mice were infected with Af293, monitored and harvested as described for Fig. 1. 

(A) Survival (n=9–10, summary of two experiments). (B) Display of fungal burden 

determined by PCR quantification of fungal DNA (7–8mice/group, summary of two 

experiments). (C) Representative GMS staining of lung sections from γδ T cell-deficient 

mice with the indicated treatment. Scale bar is equivalent to 100 μM. X. Inset, bottom left of 

right panel, determination of fungal burden by quantification of GMS staining in treated and 

untreated mice. (D, E) BALF cell populations as determined by flow cytometry. (E) 

Frequency (left) and total number (right) of airway eosinophils in the indicated experimental 

groups. Data shown are a summary of two experiments. *p<0.05. **p<0.01. ***p<0.001.

Amarsaikhan et al. Page 23

J Immunol. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 8. 
Effects of caspofungin treatment and requirement for γδ T cells in lung expression of 

immunomodulatory genes in mice with IA. Neutropenic C57BL/6 (B6) wild-type or γδ T 

cell-deficient mice were infected with A. fumigatus, treated or untreated with caspofungin, 

and harvested for qRT-PCR analysis of the indicated genes in lung homogenate extracts at 

48 hours post-infection. A) Wild-type B6 mice treated or untreated with caspofungin. B) 

Wild-type or TCRδ−/− mice infected and treated with caspofungin. *p<0.05.
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