124 research outputs found
Holding RIPK1 on the Ubiquitin Leash in TNFR1 Signaling
The kinase RIPK1 is an essential signaling node in various innate immune signaling pathways being most extensively studied in the TNFR1 signaling pathway. TNF signaling can result in different biological outcomes including gene activation and cell death induction in the form of apoptosis or necroptosis. RIPK1 is believed to be crucial for regulating the balance between these opposing outcomes. It is therefore not surprising that RIPK1 is highly regulated, most notably by phosphorylation, ubiquitination, and their respective reversals. In this review, we discuss the biological functions of RIPK1 within the context of TNFR1 signaling. Finally, we discuss recent advances in the knowledge on three ubiquitin E3 ligases that exert regulatory functions on RIPK1 signaling: cIAP1, cIAP2, and LUBAC
Poly-ubiquitination in TNFR1-mediated necroptosis
Tumor necrosis factor (TNF) is a master pro-inflammatory cytokine, and inappropriate TNF signaling is implicated in the pathology of many inflammatory diseases. Ligation of TNF to its receptor TNFR1 induces the transient formation of a primary membrane-bound signaling complex, known as complex I, that drives expression of pro-survival genes. Defective complex I activation results in induction of cell death, in the form of apoptosis or necroptosis. This switch occurs via internalization of complex I components and assembly and activation of secondary cytoplasmic death complexes, respectively known as complex II and necrosome. In this review, we discuss the crucial regulatory functions of ubiquitination-a post-translational protein modification consisting of the covalent attachment of ubiquitin, and multiples thereof, to target proteins-to the various steps of TNFR1 signaling leading to necroptosis
Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis.
The linear ubiquitin chain assembly complex (LUBAC) is essential for innate immunity in mice and humans, yet its role in adaptive immunity is unclear. Here we show that the LUBAC components HOIP, HOIL-1 and SHARPIN have essential roles in late thymocyte differentiation, FOXP3(+) regulatory T (Treg)-cell development and Treg cell homeostasis. LUBAC activity is not required to prevent TNF-induced apoptosis or necroptosis but is necessary for the transcriptional programme of the penultimate stage of thymocyte differentiation. Treg cell-specific ablation of HOIP causes severe Treg cell deficiency and lethal immune pathology, revealing an ongoing requirement of LUBAC activity for Treg cell homeostasis. These data reveal stage-specific requirements for LUBAC in coordinating the signals required for T-cell differentiation
The caspase-3-p120-RasGAP module generates a NF-κB repressor in response to cellular stress.
The nuclear factor κB (NF-κB) transcription factor is a master regulator of inflammation. Short-term NF-κB activation is generally beneficial. However, sustained NF-κB might be detrimental, directly causing apoptosis of cells or leading to a persistent damaging inflammatory response. NF-κB activity in stressed cells needs therefore to be controlled for homeostasis maintenance. In mildly stressed cells, caspase-3 cleaves p120 RasGAP, also known as RASA1, into an N-terminal fragment, which we call fragment N. We show here that this fragment is a potent NF-κB inhibitor. Fragment N decreases the transcriptional activity of NF-κB by promoting its export from the nucleus. Cells unable to generate fragment N displayed increased NF-κB activation upon stress. Knock-in mice expressing an uncleavable p120 RasGAP mutant showed exaggerated NF-κB activation when their epidermis was treated with anthralin, a drug used for the treatment of psoriasis. Our study provides biochemical and genetic evidence of the importance of the caspase-3-p120-RasGAP stress-sensing module in the control of stress-induced NF-κB activation
IAPs CARRY AN EVOLUTIONARILY CONSERVED UBIQUITIN-BINDING DOMAIN THAT IS INDISPENSABLE FOR NF-KB REGULATION AND CELL SURVIVAL.
An inactivating caspase 11 passenger mutation originating from the 129 murine strain in mice targeted for c-IAP1
A recent study revealed that ES (embryonic stem) cell lines derived from the 129 murine strain carry an inactivating mutation within the caspase 11 gene (Casp4) locus [Kayagaki, Warming, Lamkanfi, Vande Walle, Louie, Dong, Newton, Qu, Liu, Heldens, Zhang, Lee, Roose-Girma and Dixit (2011) Nature 479, 117–121]. Thus, if 129 ES cells are used to target genes closely linked to caspase 11, the resulting mice might also carry the caspase 11 deficiency as a passenger mutation. In the present study, we examined the genetic loci of mice targeted for the closely linked c-IAP (cellular inhibitor of apoptosis) genes, which were generated in 129 ES cells, and found that, despite extensive backcrossing into a C57BL/6 background, c-IAP1−/− animals are also deficient in caspase 11. Consequently, data obtained from these mice should be re-evaluated in this new context
LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation
The linear ubiquitin chain assembly complex (LUBAC), consisting of SHANK-associated RH-domain-interacting protein (SHARPIN), heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1), and HOIL-1-interacting protein (HOIP), is a critical regulator of inflammation and immunity. This is highlighted by the fact that patients with perturbed linear ubiquitination caused by mutations in the Hoip or Hoil-1 genes, resulting in knockouts of these proteins, may simultaneously suffer from immunodeficiency and autoinflammation. TLR3 plays a crucial, albeit controversial, role in viral infection and tissue damage. We identify a pivotal role of LUBAC in TLR3 signaling and discover a functional interaction between LUBAC components and TLR3 as crucial for immunity to influenza A virus infection. On the biochemical level, we identify LUBAC components as interacting with the TLR3-signaling complex (SC), thereby enabling TLR3-mediated gene activation. Absence of LUBAC components increases formation of a previously unrecognized TLR3-induced death-inducing SC, leading to enhanced cell death. Intriguingly, excessive TLR3-mediated cell death, induced by double-stranded RNA present in the skin of SHARPIN-deficient chronic proliferative dermatitis mice (cpdm), is a major contributor to their autoinflammatory skin phenotype, as genetic coablation of Tlr3 substantially ameliorated cpdm dermatitis. Thus, LUBAC components control TLR3-mediated innate immunity, thereby preventing development of immunodeficiency and autoinflammation.This work was funded by a Wellcome Trust Senior Investigator award (096831/Z/11/Z; and grant 090315 to H. Ren) and an European Research Council advanced grant (294880; H. Walczak). J. Zinngrebe received support from the Boehringer Ingelheim Fonds and N. Peltzer received funds from the Swiss National Science Foundation. B.J. Ferguson is supported by an Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge research grant. B. Dome received support from the Hungarian Scientific Research Fund (OTKA-K108465)
Molecular determinants of Smac mimetic induced degradation of cIAP1 and cIAP2
The inhibitors of apoptosis (IAP) proteins cIAP1 and cIAP2 have recently emerged as key ubiquitin-E3 ligases regulating innate immunity and cell survival. Much of our knowledge of these IAPs stems from studies using pharmacological inhibitors of IAPs, dubbed Smac mimetics (SMs). Although SMs stimulate auto-ubiquitylation and degradation of cIAPs, little is known about the molecular determinants through which SMs activate the E3 activities of cIAPs. In this study, we find that SM-induced rapid degradation of cIAPs requires binding to tumour necrosis factor (TNF) receptor-associated factor 2 (TRAF2). Moreover, our data reveal an unexpected difference between cIAP1 and cIAP2. Although SM-induced degradation of cIAP1 does not require cIAP2, degradation of cIAP2 critically depends on the presence of cIAP1. In addition, degradation of cIAP2 also requires the ability of the cIAP2 RING finger to dimerise and to bind to E2s. This has important implications because SM-mediated degradation of cIAP1 causes non-canonical activation of NF-κB, which results in the induction of cIAP2 gene expression. In the absence of cIAP1, de novo synthesised cIAP2 is resistant to the SM and suppresses TNFα killing. Furthermore, the cIAP2-MALT1 oncogene, which lacks cIAP2's RING, is resistant to SM treatment. The identification of mechanisms through which cancer cells resist SM treatment will help to improve combination therapies aimed at enhancing treatment response
LUBAC prevents lethal dermatitis by inhibiting cell death induced by TNF, TRAIL and CD95L
The linear ubiquitin chain assembly complex (LUBAC), composed of HOIP, HOIL-1 and SHARPIN, is required for optimal TNF-mediated gene activation and to prevent cell death induced by TNF. Here, we demonstrate that keratinocyte-specific deletion of HOIP or HOIL-1 (E-KO) results in severe dermatitis causing postnatal lethality. We provide genetic and pharmacological evidence that the postnatal lethal dermatitis in HoipE-KO and Hoil-1E-KO mice is caused by TNFR1-induced, caspase-8-mediated apoptosis that occurs independently of the kinase activity of RIPK1. In the absence of TNFR1, however, dermatitis develops in adulthood, triggered by RIPK1-kinase-activity-dependent apoptosis and necroptosis. Strikingly, TRAIL or CD95L can redundantly induce this disease-causing cell death, as combined loss of their respective receptors is required to prevent TNFR1-independent dermatitis. These findings may have implications for the treatment of patients with mutations that perturb linear ubiquitination and potentially also for patients with inflammation-associated disorders that are refractory to inhibition of TNF alone
Inhibitor of apoptosis proteins, NAIP, cIAP1 and cIAP2 expression during macrophage differentiation and M1/M2 polarization
Monocytes and macrophages constitute the first line of defense of the immune system
against external pathogens. Macrophages have a highly plastic phenotype depending on
environmental conditions; the extremes of this phenotypic spectrum are a pro-inflammatory
defensive role (M1 phenotype) and an anti-inflammatory tissue-repair one (M2 phenotype).
The Inhibitor of Apoptosis (IAP) proteins have important roles in the regulation of several cellular
processes, including innate and adaptive immunity. In this study we have analyzed the
differential expression of the IAPs, NAIP, cIAP1 and cIAP2, during macrophage differentiation
and polarization into M1 or M2. In polarized THP-1 cells and primary human macrophages,
NAIP is abundantly expressed in M2 macrophages, while cIAP1 and cIAP2 show
an inverse pattern of expression in polarized macrophages, with elevated expression levels
of cIAP1 in M2 and cIAP2 preferentially expressed in M1. Interestingly, treatment with the
IAP antagonist SMC-LCL161, induced the upregulation of NAIP in M2, the downregulation
of cIAP1 in M1 and M2 and an induction of cIAP2 in M1 macrophages.This work was supported by Universidad
de Granada, Plan Propio 2015;#P3B: FAM, VMC
(http://investigacion.ugr.es/pages/planpropio/2015/
resoluciones/p3b_def_28072015); Universidad
de Granada CEI BioTic;#CAEP2-84: VMC (http://
biotic.ugr.es/pages/resolucionprovisional
enseaanzapractica22demayo/!); and Canadian nstitutes of Health Research;#231421, #318176,
#361847: STB, ECL, RK (http://www.cihr-irsc.gc.
ca/e/193.html). The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript
- …
