190 research outputs found

    Resilience theory incorporated into urban wastewater systems management. State of the art

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Government bodies, utilities, practitioners, and researchers have growing interest in the incorporation of resilience into wastewater management. Since resilience is a multidisciplinary term, it is important to review what has been achieved in the wastewater sector, and describe the future research directions for the forthcoming years. This work presents a critical review of studies that deal with resilience in the wastewater treatment sector, with a special focus on understanding how they addressed the key elements for assessing resilience, such as stressors, system properties, metrics and interventions to increase resilience. The results showed that only 17 peer-reviewed papers and 6 relevant reports, a small subset of the work in wastewater research, directly addressed resilience. The lack of consensus in the definition of resilience, and the elements of a resilience assessment, is hindering the implementation of resilience in wastewater management. To date, no framework for resilience assessment is complete, comprehensive or directly applicable to practitioners; current examples are lacking key elements (e.g. a comprehensive study of stressors, properties and metrics, examples of cases study, ability to benchmark interventions or connectivity with broader frameworks). Furthermore, resilience is seen as an additional cost or extra effort, instead of a means to overcome project uncertainty that could unlock new opportunities for investment.The authors thank the consultancy team in Water Research, Strategic Advisory Services Research in Atkins UK, and Corinne Trommsdorff from IWA, for their constructive comments and support. Their contribution is highly appreciated. This work has been supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642904 - TreatRec ITN-EID project, and by the Ministry of Economy and competitiveness for the Ramon and Cajal grant from Lluís Corominas (RYC-2013-14595) and for the REaCH project (CTM2015-66892-R, MINECO/FEDER, EU). LEQUIA and ICRA were recognized as consolidated research groups by the Catalan Government with codes 2014-SGR-1168 and 2014-SGR-291, respectively. The second and fifth authors acknowledge support from the UK Engineering & Physical Sciences Research Council grant EP/K006924/1

    Phage inhibit pathogen dissemination by targeting bacterial migrants in a chronic infection model

    Get PDF
    The microbial communities inhabiting chronic infections are often composed of spatially organized micrometer-sized, highly dense aggregates. It has recently been hypothesized that aggregates are responsible for the high tolerance of chronic infections to host immune functions and antimicrobial therapies. Little is currently known regarding the mechanisms controlling aggregate formation and antimicrobial tolerance primarily because of the lack of robust, biologically relevant experimental systems that promote natural aggregate formation. Here, we developed an in vitro model based on chronic Pseudomonas aeruginosa infection of the cystic fibrosis (CF) lung. This model utilizes a synthetic sputum medium that readily promotes the formation of P. aeruginosa aggregates with sizes similar to those observed in human CF lung tissue. Using high-resolution imaging, we exploited this model to elucidate the life history of P. aeruginosa and the mechanisms that this bacterium utilizes to tolerate antimicrobials, specifically, bacteriophage. In the early stages of growth in synthetic sputum, planktonic cells form aggregates that increase in size over time by expansion. In later growth, migrant cells disperse from aggregates and colonize new areas, seeding new aggregates. When added simultaneously with phage, P. aeruginosa was readily killed and aggregates were unable to form. When added after initial aggregate formation, phage were unable to eliminate all of the aggregates because of exopolysaccharide production; however, seeding of new aggregates by dispersed migrants was inhibited. We propose a model in which aggregates provide a mechanism that allows P. aeruginosa to tolerate phage therapy during chronic infection without the need for genetic mutation

    The effect of soil type on yield and micronutrient content of pasture species

    Get PDF
    The use of multispecies swards on livestock farms is growing due to the wide range of benefits they bring, such as improved biomass yield and animal performance. Preferential uptake of micronutrients by some plant species means the inclusion of legumes and forbs in grass-dominated pasture swards could improve micronutrient provision to livestock via careful species selection. However, although soil properties affect plant micronutrient concentrations, it is unknown whether choosing ‘best-performing’ species, in terms of their micronutrient content, needs to be soil-specific or whether the recommendations can be more generic. To address this question, we carried out an experiment with 15 common grass, forb and legume species grown on four soils for five weeks in a controlled environment. The soils were chosen to have contrasting properties such as texture, organic matter content and micronutrient concentrations. The effect of soil pH was tested on two soils (pH 5.4 and 7.4) chosen to minimise other confounding variables. Yield was significantly affected by soil properties and there was a significant interaction with botanical group but not species within a botanical group (grass, forb or legume). There were differences between botanical groups and between species in both their micronutrient concentrations and total uptake. Micronutrient herbage concentrations often, but not always, reflected soil micronutrient concentrations. There were soil-botanical group interactions for micronutrient concentration and uptake by plants, but the interaction between plant species (within a botanical group) and soil was significant only for forbs, and predominantly occurred when considering micronutrient uptake rather than concentration. Generally, plants had higher yields and micronutrient contents at pH 5.4 than 7.4. Forbs tended to have higher concentrations of micronutrients than other botanical groups and the effect of soil on micronutrient uptake was only significant for forbs

    Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index

    Get PDF
    Droughts cause enormous ecological, economical and societal damage, and they are already undergoing changes due to anthropogenic climate change. The issue of defining and quantifying droughts has long been a substantial source of uncertainty in understanding observed and projected trends. Atmosphere-based drought indicators, such as the Standardised Precipitation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI), are often used to quantify drought characteristics and their changes, sometimes as the sole metric representing drought. This study presents a detailed systematic analysis of SPI- and SPEI-based drought projections and their differences for Great Britain (GB), derived from the most recent set of regional climate projections for the United Kingdom (UK). We show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought frequency, extent, duration and seasonality using scenarios that are 2 and 4 ∘C above pre-industrial levels. The projected increases in drought frequency and extent are far greater based on the SPEI than based on the SPI. Importantly, compared with droughts of all intensities, isolated extreme droughts are projected to increase far more with respect to frequency and extent and are also expected to show more pronounced changes in the distribution of their event durations. Further, projected intensification of the seasonal cycle is reflected in an increasing occurrence of years with (extremely) dry summers combined with wetter-than-average winters. Increasing summer droughts also form the main contribution to increases in annual droughts, especially using the SPEI. These results show that the choice of atmospheric drought index strongly influences the drought characteristics inferred from climate change projections, with a comparable impact to the uncertainty from the climate model parameters or the warming level; therefore, potential users of these indices should carefully consider the importance of potential evapotranspiration in their intended context. The stark differences between SPI- and SPEI-based projections highlight the need to better understand the interplay between increasing atmospheric evaporative demand, moisture availability and drought impacts under a changing climate. The region-dependent projected changes in drought characteristics by two warming levels have important implications for adaptation efforts in GB, and they further stress the need for rapid mitigation

    Hydrological controls on DOC: nitrate resource stoichiometry in a lowland, agricultural catchment, southern UK

    Get PDF
    The role that hydrology plays in governing the interactions between dissolved organic carbon (DOC) and nitrogen in rivers draining lowland, agricultural landscapes is currently poorly understood. In light of the potential changes to the production and delivery of DOC and nitrate to rivers arising from climate change and land use management, there is a pressing need to improve our understanding of hydrological controls on DOC and nitrate dynamics in such catchments. We measured DOC and nitrate concentrations in river water of six reaches of the lowland river Hampshire Avon (Wiltshire, southern UK) in order to quantify the relationship between BFI (BFI) and DOC : nitrate molar ratios across contrasting geologies (Chalk, Greensand, and clay). We found a significant positive relationship between nitrate and BFI (<i>p</i> &lt; 0. 0001), and a significant negative relationship between DOC and BFI (<i>p</i> &lt; 0. 0001), resulting in a non-linear negative correlation between DOC : nitrate molar ratio and BFI. In the Hampshire Avon, headwater reaches which are underlain by clay and characterized by a more flashy hydrological regime are associated with DOC : nitrate ratios  &gt;  5 throughout the year, whilst groundwater-dominated reaches underlain by Chalk, with a high BFI have DOC : nitrate ratios in surface waters that are an order of magnitude lower (&lt;  0.5). Our analysis also reveals significant seasonal variations in DOC : nitrate transport and highlights critical periods of nitrate export (e.g. winter in sub-catchments underlain by Chalk and Greensand, and autumn in drained, clay sub-catchments) when DOC : nitrate molar ratios are low, suggesting low potential for in-stream uptake of inorganic forms of nitrogen. Consequently, our study emphasizes the tight relationship between DOC and nitrate availability in agricultural catchments, and further reveals that this relationship is controlled to a great extent by the hydrological setting

    The Mineral Composition of Wild Type and Cultivated Varieties of Pasture Species

    Get PDF
    Mineral deficiencies in livestock are often prevented by using prophylactic supplementation, which is imprecise and inefficient. Instead, the trend for increased species diversity in swards is an opportunity to improve mineral concentrations in the basal diet. Currently there are limited data on the mineral concentrations of different species and botanical groups, particularly for I and Se, which are among the most deficient minerals in livestock diets. We grew 21 pasture species, including some cultivar/wild type comparisons, of grasses, legumes and forbs, as single species stands in a pot study in a standard growth medium. Herbage concentrations of Co, Cu, I, Mn, Se, Zn, S, Mo and Fe showed no consistent differences between the wild and cultivated types. There were significant differences between botanical groups for many minerals tested. Forbs were highest in I and Se, grasses in Mn, and legumes in Cu, Co, Zn and Fe. Comparing species concentrations to recommended livestock intakes, the forbs Achillea millefolium, Cichorium intybus and Plantago lanceolate, and the legumes Medicago lupulina, Trifolium hybridum, and Lotus corniculatus, appear good sources of Co, Cu, I, Se and Zn. Further work is required to ensure these results are consistent in multispecies mixtures, in different soil types, and in field trials

    Microbial memories: sex-dependent impact of the gut microbiome on hippocampal plasticity

    Get PDF
    Germ-free rodents, raised in the absence of a measurable gut microbiome, have been a key model to study the microbiome-gut-brain axis. Germ-free mice exhibit marked behavioural and neurochemical differences to their conventionally raised counterparts. It is as yet unclear how these neurochemical differences lead to the behavioural differences. Here, we test the electrophysiological properties of hippocampal plasticity in adult germ-free mice and compare them to conventionally raised counterparts. Whilst basal synaptic efficacy and pre-synaptic short-term plasticity appear normal, we find a striking alteration of hippocampal long-term potentiation specifically in male germ-free slices. However, the spike output of these neurons remains normal along with altered input-output coupling, potentially indicating homeostatic compensatory mechanisms, or an altered excitation/inhibition balance. To our knowledge this is the first time the electrophysiological properties of the hippocampus have been assessed in a microbiome deficient animal. Our data indicate that the absence of a microbiome alters integration of dendritic signalling in the CA1 region in mice

    Response of soil health indicators to dung, urine and mineral fertilizer application in temperate pastures

    Get PDF
    Healthy soils are key to sustainability and food security. In temperate grasslands, not many studies have focused on soil health comparisons between contrasting pasture systems under different management strategies and treatment applications (e.g. manures and inorganic fertilisers). The aim of this study was to assess the responses of soil health indicators to dung, urine and inorganic N fertiliser in three temperate swards: permanent pasture not ploughed for at least 20 years (PP), high sugar ryegrass with white clover targeted at 30% coverage reseeded in 2013 (WC), and high sugar ryegrass reseeded in 2014 (HG). This study was conducted on the North Wyke Farm Platform (UK) from April 2017 to October 2017. Soil health indicators including soil organic carbon (SOC, measured by loss of ignition and elemental analyser), dissolved organic carbon (DOC), total nitrogen (TN), C:N ratio, soil C and N bulk isotopes, pH, bulk density (BD), aggregate stability, ergosterol concentration (as a proxy for fungi biomass), and earthworms (abundance, mass and density) were measured and analysed before and after application of dung and N fertilizer, urine and N fertiliser, and only N fertiliser. The highest SOC, TN, DOC, ergosterol concentration and earthworms as well as the lowest BD were found in PP, likely due to the lack of ploughing. Differences among treatments were observed due to the application of dung, resulting in an improvement in chemical indicators of soil health after 50 days of its application. Ergosterol concentration was significantly higher before treatment applications than at the end of the experiment. No changes were detected in BD and aggregate stability after treatment applications. We conclude that not enough time had passed for the soil to recover after the ploughing and reseeding of the permanent pasture, independently of the sward composition (HG or WC). Our results highlight the strong influence of the soil management legacy in temperate pasture and the positive effects of dung application on soil health over the short term. In addition, we point out the relevance of using standardised methods to report soil health indicators and some methodological limitations

    Cooperative secretions facilitate host range expansion in bacteria

    Get PDF
    The majority of emergent human pathogens are zoonotic in origin, that is, they can transmit to humans from other animals. Understanding the factors underlying the evolution of pathogen host range is therefore of critical importance in protecting human health. There are two main evolutionary routes to generalism: organisms can tolerate multiple environments or they can modify their environments to forms to which they are adapted. Here we use a combination of theory and a phylogenetic comparative analysis of 191 pathogenic bacterial species to show that bacteria use cooperative secretions that modify their environment to extend their host range and infect multiple host species. Our results suggest that cooperative secretions are key determinants of host range in bacteria, and that monitoring for the acquisition of secreted proteins by horizontal gene transfer can help predict emerging zoonoses
    corecore