198 research outputs found

    Transition to turbulence in particulate pipe flow

    Get PDF
    We investigate experimentally the influence of suspended particles on the transition to turbulence. The particles are monodisperse and neutrally-buoyant with the liquid. The role of the particles on the transition depends both upon the pipe to particle diameter ratios and the concentration. For large pipe-to-particle diameter ratios the transition is delayed while it is lowered for small ratios. A scaling is proposed to collapse the departure from the critical Reynolds number for pure fluid as a function of concentration into a single master curve.Comment: 4 pages, 4 figure

    Travelling waves in pipe flow

    Full text link
    A family of three-dimensional travelling waves for flow through a pipe of circular cross section is identified. The travelling waves are dominated by pairs of downstream vortices and streaks. They originate in saddle-node bifurcations at Reynolds numbers as low as 1250. All states are immediately unstable. Their dynamical significance is that they provide a skeleton for the formation of a chaotic saddle that can explain the intermittent transition to turbulence and the sensitive dependence on initial conditions in this shear flow.Comment: 4 pages, 5 figure

    Fractal Stability Border in Plane Couette Flow

    Full text link
    We study the dynamics of localised perturbations in plane Couette flow with periodic lateral boundary conditions. For small Reynolds number and small amplitude of the initial state the perturbation decays on a viscous time scale tRet \propto Re. For Reynolds number larger than about 200, chaotic transients appear with life times longer than the viscous one. Depending on the type of the perturbation isolated initial conditions with infinite life time appear for Reynolds numbers larger than about 270--320. In this third regime, the life time as a function of Reynolds number and amplitude is fractal. These results suggest that in the transition region the turbulent dynamics is characterised by a chaotic repeller rather than an attractor.Comment: 4 pages, Latex, 4 eps-figures, submitted to Phys. Rev. Le

    How does flow in a pipe become turbulent?

    Full text link
    The transition to turbulence in pipe flow does not follow the scenario familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile is stable against infinitesimal perturbations for all Reynolds numbers. Moreover, even when the flow speed is high enough and the perturbation sufficiently strong such that turbulent flow is established, it can return to the laminar state without any indication of the imminent decay. In this parameter range, the lifetimes of perturbations show a sensitive dependence on initial conditions and an exponential distribution. The turbulence seems to be supported by three-dimensional travelling waves which appear transiently in the flow field. The boundary between laminar and turbulent dynamics is formed by the stable manifold of an invariant chaotic state. We will also discuss the relation between observations in short, periodically continued domains, and the dynamics in fully extended puffs.Comment: for the proceedings of statphys 2

    The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry

    Get PDF
    New crystallization temperatures for four eruptions from the Northern Volcanic Zone of Iceland are determined using olivine-spinel aluminum exchange thermometry. Differences in the olivine crystallization temperatures between these eruptions are consistent with variable extents of cooling during fractional crystallization. However, the crystallization temperatures for Iceland are systematically offset to higher temperatures than equivalent olivine-spinel aluminum exchange crystallization temperatures published for MORB, an effect that cannot be explained by fractional crystallization. The highest observed crystallization temperature in Iceland is 1399 ± 20°C. In order to convert crystallization temperatures to mantle potential temperature, we developed a model of multilithology mantle melting that tracks the thermal evolution of the mantle during isentropic decompression melting. With this model, we explore the controls on the temperature at which primary melts begin to crystallize, as a function of source composition and the depth from which the magmas are derived. Large differences (200°C) in crystallization temperature can be generated by variations in mantle lithology, a magma's inferred depth of origin, and its thermal history. Combining this model with independent constraints on the magma volume flux and the effect of lithological heterogeneity on melt production, restricted regions of potential temperature-lithology space can be identified as consistent with the observed crystallization temperatures. Mantle potential temperature is constrained to be 1480−30+37 °C for Iceland and 1318−32+44 °C for MORB.O.S. was supported by a Title A Fellowship from Trinity College Cambridge and a Geology Option Postdoctoral Fellowship at Caltech

    Public involvement in the governance of population-level biomedical research: unresolved questions and future directions

    Get PDF
    Population-level biomedical research offers new opportunities to improve population health, but also raises new challenges to traditional systems of research governance and ethical oversight. Partly in response to these challenges, various models of public involvement in research are being introduced. Yet, the ways in which public involvement should meet governance challenges are not well understood. We conducted a qualitative study with 36 experts and stakeholders using the World Café method to identify key governance challenges and explore how public involvement can meet these challenges. This brief report discusses four cross-cutting themes from the study: the need to move beyond individual consent; issues in benefit and data sharing; the challenge of delineating and understanding publics; and the goal of clarifying justifications for public involvement. The report aims to provide a starting point for making sense of the relationship between public involvement and the governance of population-level biomedical research, showing connections, potential solutions and issues arising at their intersection. We suggest that, in population-level biomedical research, there is a pressing need for a shift away from conventional governance frameworks focused on the individual and towards a focus on collectives, as well as to foreground ethical issues around social justice and develop ways to address cultural diversity, value pluralism and competing stakeholder interests. There are many unresolved questions around how this shift could be realised, but these unresolved questions should form the basis for developing justificatory accounts and frameworks for suitable collective models of public involvement in population-level biomedical research governance. [Abstract copyright: © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ.

    Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation

    Get PDF
    Background-In the general population, raised levels of inflammatory markers are stronger predictors of fatal than nonfatal cardiovascular disease (CVD) events. People with HIV have elevated levels of interleukin-6 (IL-6), high-sensitivity C-reactive protein (hsCRP), and D-dimer; HIV-induced activation of inflammatory and coagulation pathways may be responsible for their greater risk of CVD. Whether the enhanced inflammation and coagulation associated with HIV is associated with more fatal CVD events has not been investigated. Methods and Results-Biomarkers were measured at baseline for 9764 patients with HIV and no history of CVD. Of these patients, we focus on the 288 that experienced either a fatal (n=74) or nonfatal (n=214) CVD event over a median of 5 years. Odds ratios (ORs) (fatal versus nonfatal CVD) (95% confidence intervals [CIs]) associated with a doubling of IL-6, D-dimer, hsCRP, and a 1-unit increase in an IL-6 and D-dimer score, measured a median of 2.6 years before the event, were 1.39 (1.07 to 1.79), 1.40 (1.10 to 1.78), 1.09 (0.93 to 1.28), and 1.51 (1.15 to 1.97), respectively. Of the 214 patients with nonfatal CVD, 23 died during follow-up. Hazard ratios (95% CI) for all-cause mortality were 1.72 (1.28 to 2.31), 1.73 (1.27 to 2.36), 1.44 (1.15 to 1.80), and 1.88 (1.39 to 2.55), respectively, for IL-6, D-dimer, hsCRP, and the IL-6 and D-dimer score. Conclusions-Higher IL-6 and D-dimer levels reflecting enhanced inflammation and coagulation associated with HIV are associated with a greater risk of fatal CVD and a greater risk of death after a nonfatal CVD even

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF
    Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-
    corecore