38 research outputs found

    Thermal issues at the SSC

    Get PDF
    A variety of heat transfer problems arise in the design of the Superconducting Super Collider (SSC). One class of problems is to minimize heat leak from the ambient to the SSC rings, since the rings contain superconducting magnets maintained at a temperature of 4 K. Another arises from the need to dump the beam of protrons (traveling around the SSC rings) on to absorbers during an abort of the collider. Yet another category of problems is the cooling of equipment to dissipate the heat generated during operation. An overview of these problems and sample heat transfer results are given in this paper

    Pathogenicity of an H5N1 avian influenza virus isolated in Vietnam in 2012 and reliability of conjunctival samples for diagnosis of infection

    Get PDF
    The continued spread of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 among poultry in Vietnam poses a potential threat to animals and public health. To evaluate the pathogenicity of a 2012 H5N1 HPAIV isolate and to assess the utility of conjunctival swabs for viral detection and isolation in surveillance, an experimental infection with HPAIV subtype H5N1 was carried out in domestic ducks. Ducks were infected with 10[superscript 7.2] TCID[subscript 50] of A/duck/Vietnam/QB1207/2012 (H5N1), which was isolated from a moribund domestic duck. In the infected ducks, clinical signs of disease, including neurological disorder, were observed. Ducks started to die at 3 days-post-infection (dpi), and the study mortality reached 67%. Viruses were recovered from oropharyngeal and conjunctival swabs until 7 dpi and from cloacal swabs until 4 dpi. In the ducks that died or were sacrificed on 3, 5, or 6 dpi, viruses were recovered from lung, brain, heart, pancreas and intestine, among which the highest virus titers were in the lung, brain or heart. Results of virus titration were confirmed by real-time RT-PCR. Genetic and phylogenetic analysis of the HA gene revealed that the isolate belongs to clade 2.3.2.1 similarly to the H5N1 viruses isolated in Vietnam in 2012. The present study demonstrated that this recent HPAI H5N1 virus of clade 2.3.2.1 could replicate efficiently in the systemic organs, including the brain, and cause severe disease with neurological symptoms in domestic ducks. Therefore, this HPAI H5N1 virus seems to retain the neurotrophic feature and has further developed properties of shedding virus from the oropharynx and conjunctiva in addition to the cloaca, potentially posing a higher risk of virus spread through cross-contact and/or environmental transmission. Continued surveillance and diagnostic programs using conjunctival swabs in the field would further verify the apparent reliability of conjunctival samples for the detection of AIV.Japan Society for the Promotion of Science (Grant-in-Aid for Bilateral Joint Projects)Heiwa Nakajima FoundationNational Institute of Allergy and Infectious Diseases (U.S.) (Contract HHSN2662007000010C

    Multichannel Photon Counting Lidar Measurements Using USB-based Digital Storage Oscilloscope

    Get PDF
    We present a simple method of making multichannel photon counting measurements of weak lidar signal from large ranges, using commonly available USB-based digital storage oscilloscopes. The single photon pulses from compact photomultiplier tubes are amplified and stretched so that the pulses are large and broad enough to be sampled efficiently by the USB oscilloscopes. A software interface written in Labview is then used to count the number of photon pulses in each of the prescribed time bins to form the histogram of LIDAR signal. This method presents a flexible alternative to the modular multichannel scalers and facilitate the development of sensitive lidar systems

    Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    Get PDF
    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes

    Transgenerational effects of cyanobacterial toxins on a tropical micro-crustacean Daphnia lumholtzi across three generations

    Get PDF
    International audienceClimate change and human activities induce an increased frequency and intensity of cyanobacterial blooms which could release toxins to aquatic ecosystems. Zooplankton communities belong to the first affected organisms, but in tropical freshwater ecosystems, this issue has yet been poorly investigated. We tested two questions (i) if the tropical Daphnia lumholtzi is capable to develop tolerance to an ecologically relevant concentration of purified microcystin-LR and microcystins from cyanobacterial extract transferable to F1 and F2 generations? And (ii) would F1 and F2 generations recover if reared in toxin-free medium? To answer these questions, we conducted two full factorial mutigenerational experiments, in which D. lumholtzi was exposed to MC-LR and cyanobacterial extract at the concentration of 1 μg L microcystin continuously for three generations. After each generation, each treatment was spit into two one reared in the control (toxin free) while the other continued in the respective exposure. Fitness-related traits including survival, maturity age, body length, and fecundity of each D. lumholtzi generation were quantified. Though there were only some weak negative effects of the toxins on the first generation (F0), we found strong direct, accumulated and carried-over impacts of the toxins on life history traits of D. lumholtzi on the F1 and F2, including reductions of survival, and reproduction. The maturity age and body length showed some inconsistent patterns between generations and need further investigations. The survival, maturity age (for extract), and body length (for MC-LR) were only recovered when offspring from toxin exposed mothers were raised in clean medium for two generations. Chronic exposure to long lasting blooms, even at low density, evidently reduces survival of D. lumholtzi in tropical lakes and reservoirs with ecological consequences

    Responses of a tropical micro-crustacean, Daphnia lumholtzi, upon exposures to dissolved toxins and living cells of cyanobacteria

    No full text
    International audienceThe mass development and expansion of cyanobacteria release cyanotoxins in the aquatic environment and cause serious problems for grazers such as micro-zooplankton. In contrast to aquatic ecosystems in temperate regions, impacts of cyanobacteria and their toxins on tropical micro-crustaceans are relatively understudied. In this study, acute and chronic effects of pure microcystin-LR (MC-LR), a crude extract of water bloom sample with a dominance of Microcystis aeruginosa containing microcystins (MCE) and living cells of Cylindrospermopsis curvispora were tested on a tropical micro-crustacean, Daphnia lumholtzi. The 24 h- and 48 h-LC50 values for MC-LR ranged from 247–299, and 331–409 μg MCE L−1, respectively. Exposures to 1–25 μg MCE L−1 decreased survival, fecundity, and reproduction of D. lumholtzi. The impacts of C. curvispora cells on life-history traits of D. lumholtzi were density-dependent and more severe than the impacts of dissolved microcystins. It could be that the adverse effects of C. curvispora on D. lumholtzi are linked to a combination of potential toxic metabolites, mal-nutrients, feeding and swimming interference. Daphnia lumholtzi used in this study is more sensitive to microcystins compared to Daphnia species from temperate regions. Therefore, we highly suggest using D. lumholtzi as a model species for toxicity testing and monitoring on water quality, particularly in tropical countries

    Recent land deformation detected by Sentinel-1A InSAR data (2016–2020) over Hanoi, Vietnam, and the relationship with groundwater level change

    No full text
    Interferometric synthetic aperture radar (InSAR), one of the most commonly used remote sensing methods for observing and monitoring land subsidence, has been applied in Hanoi, Vietnam in several studies with results showing deformation up to 2014. However, freely accessible Sentinel-1 InSAR data have not been investigated thoroughly to date. Here, we investigate the most recent land surface deformation in Hanoi for the period 2016 - 2020 using Sentinel-1A SAR data. The analysis is conducted on 114 SAR scenes with both the Persistent Scatterer InSAR (PSInSAR) and Small BAseline Subset (SBAS) methods. The GPS-based deformation time series are used to verify InSAR results and borehole groundwater level measurements are employed to evaluate the relationship between groundwater depletion and surface subsidence. The results show that observed deformation from SBAS and PSInSAR is consistent in both spatial patterns and statistics, in which two high-rate subsiding bowls were detected in Dan Phuong/Hoai Duc and Ha Dong/Thanh Tri districts with the mean subsiding rates of ∼5 mm per year. GPS and InSAR deformation generally agree well except for the comparison at the JNAV station after 2017, which can be attributable to the local deformation detected by GPS and the average movement of a 100-m radius area captured by InSAR. An agreement in the drawdown trend between borehole groundwater and InSAR-derived deformation was found at four wells located within or in proximity to the two bowls. The declining rates of groundwater level at about 0.31 m per year were found at the two wells Q57a and Q58a located within the Dan Phuong/Hoai Duc bowl, corresponding to the surface subsidence rates found at 6–8 mm per year. The Q68a well was found to experience groundwater level declining at the highest rate of ∼0.9 m per year corresponding to the subsidence rate of ∼7 mm per year found by InSAR

    Neutralized Micro-Droplet Generated by On-Chip Electrohydrodynamic

    No full text
    A new conceptual design of electrospray has been developed to generate neutralized micro-droplet using on-chip electro-hydrodynamic. A prototype of a bipolar electrostatic atomization with chambered nozzle tips has been carried out to demonstrate the capability of spaying viable, safe, neutral and alternative droplets which can be applied in micro/nano-encapsulation, bio-scaffold production and also the polymeric micro/nanoparticle fabrication over conventional fabrication techniques as well as the direct current electro-spraying/electrospinning. Several initially experimental results as presented through this work have shown the potential application of the present device in drug delivery

    Sensitivity of a tropical micro-crustacean (Daphnia lumholtzi) to trace metals tested in natural water of the Mekong River

    No full text
    International audienceMetal contamination is one of the major issues to the environment worldwide, yet it is poorly known how exposure to metals affects tropical species. We assessed the sensitivity of a tropical micro-crustacean Daphnia lumholtzi to three trace metals: copper (Cu), zinc (Zn) and nickel (Ni). Both, acute and chronic toxicity tests were conducted with metals dissolved in in situ water collected from two sites in the lower part of the Mekong River. In the acute toxicity test, D. lumholtzi neonates were exposed to Cu (3-30 mu g L-1), Zn (50-540 mu g L-1) or Ni (46-2356 mu g L-1) for 48 h. The values of median lethal concentrations (48 h-LC50) were 11.57-16.67 mu g Cu L-1, 179.3-280.9 mu g Zn L-1, and 1026-1516 mu g Ni L-1. In the chronic toxicity test, animals were exposed to Cu (3 and 4 mu g L-1), Zn (50 and 56 mu g L-1), and Ni (six concentrations from 5 to 302 mu g L-1) for 21 days. The concentrations of 4 mu g Cu L-1 and 6 mu g Ni L-1 enhanced the body length of D. lumholtzi but 46 mu g Ni L-1 and 50 mu g Zn L-1 resulted in a strong mortality, reduced the body length, postponed the maturation, and lowered the fecundity. The results tentatively suggest that D. lumholtzi showed a higher sensitivity to metals than related species in the temperate region. The results underscore the importance of including the local species in ecological risk assessment in important tropical ecosystems such as the Mekong River to arrive at a better conservational and management plan and regulatory policy to protect freshwater biodiversity from metal contamination. (C) 2016 Elsevier B.V. All rights reserved
    corecore