72 research outputs found
Exosomal cell-to-cell transmission of alpha synuclein oligomers
Background: Aggregation of alpha-synuclein (αsyn) and resulting cytotoxicity is a hallmark of sporadic and familial Parkinsonâs disease (PD) as well as dementia with Lewy bodies, with recent evidence implicating oligomeric and pre-fibrillar forms of αsyn as the pathogenic species. Recent in vitro studies support the idea of transcellular spread of extracellular, secreted αsyn across membranes. The aim of this study is to characterize the transcellular spread of αsyn oligomers and determine their extracellular location. Results: Using a novel protein fragment complementation assay where αsyn is fused to non-bioluminescent amino-or carboxy-terminus fragments of humanized Gaussia Luciferase we demonstrate here that αsyn oligomers can be found in at least two extracellular fractions: either associated with exosomes or free. Exosome-associated αsyn oligomers are more likely to be taken up by recipient cells and can induce more toxicity compared to free αsyn oligomers. Specifically, we determine that αsyn oligomers are present on both the outside as well as inside of exosomes. Notably, the pathway of secretion of αsyn oligomers is strongly influenced by autophagic activity. Conclusions: Our data suggest that αsyn may be secreted via different secretory pathways. We hypothesize that exosome-mediated release of αsyn oligomers is a mechanism whereby cells clear toxic αsyn oligomers when autophagic mechanisms fail to be sufficient. Preventing the early events in αsyn exosomal release and uptake by inducing autophagy may be a novel approach to halt disease spreading in PD and other synucleinopathies
Systematic comparison of the effects of Alpha-synuclein mutations on its oligomerization and aggregation
Copyright: © 2014 Låzaro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Aggregation of alpha-synuclein (ASYN) in Lewy bodies and Lewy neurites is the typical pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Furthermore, mutations in the gene encoding for ASYN are associated with familial and sporadic forms of PD, suggesting this protein plays a central role in the disease. However, the precise contribution of ASYN to neuronal dysfunction and death is unclear. There is intense debate about the nature of the toxic species of ASYN and little is known about the molecular determinants of oligomerization and aggregation of ASYN in the cell. In order to clarify the effects of different mutations on the propensity of ASYN to oligomerize and aggregate, we assembled a panel of 19 ASYN variants and compared their behaviour. We found that familial mutants linked to PD (A30P, E46K, H50Q, G51D and A53T) exhibited identical propensities to oligomerize in living cells, but had distinct abilities to form inclusions. While the A30P mutant reduced the percentage of cells with inclusions, the E46K mutant had the opposite effect. Interestingly, artificial proline mutants designed to interfere with the helical structure of the N-terminal domain, showed increased propensity to form oligomeric species rather than inclusions. Moreover, lysine substitution mutants increased oligomerization and altered the pattern of aggregation. Altogether, our data shed light into the molecular effects of ASYN mutations in a cellular context, and established a common ground for the study of genetic and pharmacological modulators of the aggregation process, opening new perspectives for therapeutic intervention in PD and other synucleinopathies.This work was supported by the DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).info:eu-repo/semantics/publishedVersio
Extracellular vesicle sorting of α-Synuclein is regulated by sumoylation
Extracellular α-Synuclein has been implicated in interneuronal propagation of disease pathology in Parkinsonâs Disease. How α-Synuclein is released into the extracellular space is still unclear. Here, we show that α-Synuclein is present in extracellular vesicles in the central nervous system. We find that sorting of α-Synuclein in extracellular vesicles is regulated by sumoylation and that sumoylation acts as a sorting factor for targeting of both, cytosolic and transmembrane proteins, to extracellular vesicles. We provide evidence that the SUMO-dependent sorting utilizes the endosomal sorting complex required for transport (ESCRT) by interaction with phosphoinositols. Ubiquitination of cargo proteins is so far the only known determinant for ESCRT-dependent sorting into the extracellular vesicle pathway. Our study reveals a function of SUMO protein modification as a Ubiquitin-independent ESCRT sorting signal, regulating the extracellular vesicle release of α-Synuclein. We deciphered in detail the molecular mechanism which directs α-Synuclein into extracellular vesicles which is of highest relevance for the understanding of Parkinsonâs disease pathogenesis and progression at the molecular level. We furthermore propose that sumo-dependent sorting constitutes a mechanism with more general implications for cell biology.Instituto de Investigaciones BioquĂmicas de La Plat
α-Synuclein in parkinson's disease: pathogenic function and translation into animal models
Parkinson's disease is a common neurodegenerative disease characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of α-synuclein aggregates found in Lewy bodies throughout the brain. Several α-synuclein transgenic mouse models have been generated, as well as viral-mediated overexpression of wild-type and mutated α-synuclein to mimic the disease and to delineate the pathogenic pathway of α-synuclein-mediated toxicity and neurodegeneration. In this review, we will recapitulate what we have learned about the function of α-synuclein and α-synuclein-mediated toxicity through studies of transgenic animal models, inducible animal models and viral-based models. ïżœ In Copyright http://rightsstatements.org/vocab/InC/1.0/ © In Copyright http://rightsstatements.org/vocab/InC/1.0
AMPAâreceptorâmediated excitatory synaptic transmission is enhanced by ironâinduced αâsynuclein oligomers
Aggregated α-synuclein (α-syn) is a characteristic pathological finding in Parkinson's disease and related disorders, such as dementia with Lewy bodies. Recent evidence suggests that α-syn oligomers represent the principal neurotoxic species; however, the pathophysiological mechanisms are still not well understood. Here, we studied the neurophysiological effects of various biophysically-characterized preparations of α-syn aggregates on excitatory synaptic transmission in autaptic neuronal cultures. Nanomolar concentrations of large α-syn oligomers, generated by incubation with organic solvent and Fe 3+ ions, were found to selectivity enhance evoked α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor, but not NMDA-receptor, mediated synaptic transmission within minutes. Moreover, the analysis of spontaneous AMPA-receptor-mediated miniature synaptic currents revealed an augmented frequency. These results collectively indicate that large α-syn oligomers alter both pre- and post-synaptic mechanisms of AMPA-receptor-mediated synaptic transmission. The augmented excitatory synaptic transmission may directly contribute to nerve cell death in synucleinopathies. Indeed, already low micromolar glutamate concentrations were found to be toxic in primary cultured neurons incubated with large α-syn oligomers. In conclusion, large α-syn oligomers enhance both pre- and post-synaptic AMPA-receptor-mediated synaptic transmission, thereby aggravating intracellular calcium dyshomeostasis and contributing to excitotoxic nerve cell death in synucleinopathies.This work was supported by the DFG (SFB 596) as well as the
German Federal Ministry of Education and Research (Boundesministerium
fur Bildung und Forschung), 01EW1006, ImageNinND to
J.H.; Research Grant (R09-31-309) from the University of Malta to
N.V.peer-reviewe
T-cell dysregulation is associated with disease severity in Parkinsonâs Disease
The dysregulation of peripheral immunity in Parkinson's Disease (PD) includes changes in both the relative numbers and gene expression of T cells. The presence of peripheral T-cell abnormalities in PD is well-documented, but less is known about their association to clinical parameters, such as age, age of onset, progression rate or severity of the disease. We took a detailed look at T-cell numbers, gene expression and activation in cross-sectional cohorts of PD patients and age-matched healthy controls by means of flow cytometry and NanoString gene expression assay. We show that the well-pronounced decrease in relative T-cell numbers in PD blood is mostly driven by a decrease of CD
Chronic treatment with novel small molecule Hsp90 inhibitors rescues striatal dopamine levels but not α-synuclein-induced neuronal cell loss.
Hsp90 inhibitors such as geldanamycin potently induce Hsp70 and reduce cytotoxicity due to α-synuclein expression, although their use has been limited due to toxicity, brain permeability, and drug design. We recently described the effects of a novel class of potent, small molecule Hsp90 inhibitors in cells overexpressing α-synuclein. Screening yielded several candidate compounds that significantly reduced α-synuclein oligomer formation and cytotoxicity associated with Hsp70 induction. In this study we examined whether chronic treatment with candidate Hsp90 inhibitors could protect against α-synuclein toxicity in a rat model of parkinsonism. Rats were injected unilaterally in the substantia nigra with AAV8 expressing human α-synuclein and then treated with drug for approximately 8 weeks by oral gavage. Chronic treatment with SNX-0723 or the more potent, SNX-9114 failed to reduce dopaminergic toxicity in the substantia nigra compared to vehicle. However, SNX-9114 significantly increased striatal dopamine content suggesting a positive neuromodulatory effect on striatal terminals. Treatment was generally well tolerated, but higher dose SNX-0723 (6-10 mg/kg) resulted in systemic toxicity, weight loss, and early death. Although still limited by potential toxicity, Hsp90 inhibitors tested herein demonstrate oral efficacy and possible beneficial effects on dopamine production in a vertebrate model of parkinsonism that warrant further study
Impaired ATF3 signaling involves SNAP25 in SOD1 mutant ALS patients
Abstract Epigenetic remodeling is emerging as a critical process for several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Genetics alone fails to explain the etiology of ALS, the investigation of the epigenome might therefore provide novel insights into the molecular mechanisms of the disease. In this study, we interrogated the epigenetic landscape in peripheral blood mononuclear cells (PBMCs) of familial ALS (fALS) patients with either chromosome 9 open reading frame 72 (C9orf72) or superoxide dismutase 1 (SOD1) mutation and aimed to identify key epigenetic footprints of the disease. To this end, we used an integrative approach that combines chromatin immunoprecipitation targeting H3K27me3 (ChIP-Seq) with the matching gene expression data to gain new insights into the likely impact of blood-specific chromatin remodeling on ALS-related molecular mechanisms. We demonstrated that one of the hub molecules that modulates changes in PBMC transcriptome in SOD1-mutant ALS patients is ATF3, which has been previously reported in an SOD1 G93A mouse model. We also identified potential suppression of SNAP25, with impaired ATF3 signaling in SOD1-mutant ALS blood. Together, our study shed light on the mechanistic underpinnings of SOD1 mutations in ALS
- âŠ