133 research outputs found

    Stability and relapse after orthodontic treatment of deep bite cases—a long-term follow-up study

    Get PDF
    The purpose of this long-term follow-up study was twofold—firstly, to assess prevalence of relapse after treatment of deep bite malocclusion and secondly, to identify risk factors that predispose patients with deep bite malocclusion to relapse. Sixty-one former patients with overbite more than 50% incisor overlap before treatment were successfully recalled. Clinical data, morphometrical measurements on plaster casts before treatment, after treatment and at long-term follow-up, as well as cephalometric measurements before and after treatment were collected. The median follow-up period was 11.9 years. Patients were treated by various treatment modalities, and the majority of patients received at least a lower fixed retainer and an upper removable bite plate during retention. Relapse was defined as increase in incisor overlap from below 50% after treatment to equal or more than 50% incisor overlap at long-term follow-up. Ten per cent of the patients showed relapse to equal or larger than 50% incisor overlap, and their amount of overbite increase was low. Among all cases with deep bite at follow-up, gingival contact and palatal impingement were more prevalent in partially corrected noncompliant cases than in relapse cases. In this sample, prevalence and amount of relapse were too low to identify risk factors of relaps

    Ultrafast sublattice pseudospin relaxation in graphene probed by polarization-resolved photoluminescence

    Get PDF
    Electronic pseudospin degrees of freedom in two-dimensional materials exhibit unique carrier-field interactions which allow for advanced control strategies. Here, we investigate ultrafast sublattice pseudospin relaxation in graphene by means of polarization-resolved photoluminescence spectroscopy. A comparison with microscopic Boltzmann simulations allows us to determine a lifetime of the optically aligned pseudospin distribution of 12±2fs. This experimental approach extends the toolbox of graphene pseudospintronics, providing additional means to investigate pseudospin dynamics in active devices or under external fields

    Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam

    Get PDF
    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams

    Publisher's Note: “Attosecond state-resolved carrier motion in quantum materials probed by soft x-ray XANES” [Appl. Phys Rev. 8, 011408 (2021)]

    Get PDF
    Recent developments in attosecond technology led to table-top x-ray spectroscopy in the soft x-ray range, thus uniting the element- and state-specificity of core-level x-ray absorption spectroscopy with the time resolution to follow electronic dynamics in real-time. We describe recent work in attosecond technology and investigations into materials such as Si, SiO2, GaN, Al2O3, Ti, and TiO2, enabled by the convergence of these two capabilities. We showcase the state-of-the-art on isolated attosecond soft x-ray pulses for x-ray absorption near-edge spectroscopy to observe the 3d-state dynamics of the semi-metal TiS2 with attosecond resolution at the Ti L-edge (460 eV). We describe how the element- and state-specificity at the transition metal L-edge of the quantum material allows us to unambiguously identify how and where the optical field influences charge carriers. This precision elucidates that the Ti:3d conduction band states are efficiently photo-doped to a density of 1.9 × 1021 cm−3. The light-field induces coherent motion of intra-band carriers across 38% of the first Brillouin zone. Lastly, we describe the prospects with such unambiguous real-time observation of carrier dynamics in specific bonding or anti-bonding states and speculate that such capability will bring unprecedented opportunities toward an engineered approach for designer materials with pre-defined properties and efficiency. Examples are composites of semiconductors and insulators like Si, Ge, SiO2, GaN, BN, and quantum materials like graphene, transition metal dichalcogens, or high-Tc superconductors like NbN or LaBaCuO. Exiting are prospects to scrutinize canonical questions in multi-body physics, such as whether the electrons or lattice trigger phase transitions

    Conducting Online Expert panels: a feasibility and experimental replicability study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper has two goals. First, we explore the feasibility of conducting online expert panels to facilitate consensus finding among a large number of geographically distributed stakeholders. Second, we test the replicability of panel findings across four panels of different size.</p> <p>Method</p> <p>We engaged 119 panelists in an iterative process to identify definitional features of Continuous Quality Improvement (CQI). We conducted four parallel online panels of different size through three one-week phases by using the RAND's ExpertLens process. In Phase I, participants rated potentially definitional CQI features. In Phase II, they discussed rating results online, using asynchronous, anonymous discussion boards. In Phase III, panelists re-rated Phase I features and reported on their experiences as participants.</p> <p>Results</p> <p>66% of invited experts participated in all three phases. 62% of Phase I participants contributed to Phase II discussions and 87% of them completed Phase III. Panel disagreement, measured by the mean absolute deviation from the median (MAD-M), decreased after group feedback and discussion in 36 out of 43 judgments about CQI features. Agreement between the four panels after Phase III was fair (four-way kappa = 0.36); they agreed on the status of five out of eleven CQI features. Results of the post-completion survey suggest that participants were generally satisfied with the online process. Compared to participants in smaller panels, those in larger panels were more likely to agree that they had debated each others' view points.</p> <p>Conclusion</p> <p>It is feasible to conduct online expert panels intended to facilitate consensus finding among geographically distributed participants. The online approach may be practical for engaging large and diverse groups of stakeholders around a range of health services research topics and can help conduct multiple parallel panels to test for the reproducibility of panel conclusions.</p

    The Critical Project in Schelling, Tillich and Goodchild

    Get PDF
    2 Altizer and Tillich repeat a Cartesian trope that lies at the kernel of modernity: beginnings must be destructive; they ... The Critical Project in Schelling, Tillich, and Goodchild Daniel Whistler Radical Apologetics: Paul Tillich and Radical&nbsp;..

    Matter in Strong Magnetic Fields

    Full text link
    The properties of matter are significantly modified by strong magnetic fields, B>>2.35×109B>>2.35\times 10^9 Gauss (1G=104Tesla1 G =10^{-4} Tesla), as are typically found on the surfaces of neutron stars. In such strong magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the magnetic force. The strong field condition can also be mimicked in laboratory semiconductors. Because of the strong magnetic confinement of electrons perpendicular to the field, atoms attain a much greater binding energy compared to the zero-field case, and various other bound states become possible, including molecular chains and three-dimensional condensed matter. This article reviews the electronic structure of atoms, molecules and bulk matter, as well as the thermodynamic properties of dense plasma, in strong magnetic fields, 109G<<B<1016G10^9G << B < 10^{16}G. The focus is on the basic physical pictures and approximate scaling relations, although various theoretical approaches and numerical results are also discussed. For the neutron star surface composed of light elements such as hydrogen or helium, the outermost layer constitutes a nondegenerate, partially ionized Coulomb plasma if B<<1014GB<<10^{14}G, and may be in the form of a condensed liquid if the magnetic field is stronger (and temperature <106<10^6 K). For the iron surface, the outermost layer of the neutron star can be in a gaseous or a condensed phase depending on the cohesive property of the iron condensate.Comment: 45 pages with 9 figures. Many small additions/changes. Accepted for publication in Rev. Mod. Phy

    Resveratrol Inhibits Inflammatory Responses via the Mammalian Target of Rapamycin Signaling Pathway in Cultured LPS-Stimulated Microglial Cells

    Get PDF
    Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells.BV-2 cells were treated with resveratrol (25, 50, and 100 µM) and/or LPS (1 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10), Akt, mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP-responsive element-binding protein (CREB) were measured by western blot. Resveratrol significantly attenuated the LPS-induced expression of NO, PGE2, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor-κB (NF-κB) in BV-2 cells. Resveratrol increased PTEN, Akt and mTOR phosphorylation in a dose-dependent manner or a time-dependent manner. Rapamycin (10 nM), a specific mTOR inhibitor, blocked the effects of resveratrol on LPS-induced microglial activation. In addition, mTOR inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK).This study indicates that resveratrol inhibited LPS-induced proinflammatory enzymes and proinflammatory cytokines via down-regulation phosphorylation of NF-κB, CREB and MAPKs family in a mTOR-dependent manner. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of resveratrol
    corecore