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1 Introduction

Introduced as generalizations of matrix models [1, 2] to study the discrete-to-continuum

transition for discretized path integrals in quantum gravity, tensor models [3–5] and their

further generalizations [6] were found to be tremendously more difficult to handle than the

theory of matrices. One the main sources of difficulties in the study of tensor models at

that time was the absence of an organizing principle for their partition function. Matrix

models are organized by the large N expansion [7] which sorts maps by their genus, and

typically a world-sheet ‘t Hooft coupling constant at fixed genus. After approximately two

decades, significant progress on tensor models emerged in a series of papers [8–13]. The

large N expansion for colored tensors was characterized in terms of sets of ribbon graphs

known as “jackets” and new double scaling limits involving “melons” were found. Since

then, many results on random tensors [14] have been achieved from statistical mechanics,

to quantum field theory but as well in combinatorics and probability theory (see [15–18]

and the reviews [19–21] and [22]). Recently, the large N expansion for tensors added

another twist in this already-remarkable story: the large N limit of the famous Sachdev-Ye-

Kitaev (SYK) condensed matter model [23–27] matches with the same limit of a quantum

mechanical model built with colored tensors without disorder [28, 29]. The SYK model is an

active topic of research, its connections being explored with black hole physics, AdS/CFT

correspondence, quantum gravity and condensed matter physics. The new connection

between tensor and SYK models has thus come to be of relevance to several areas of

theoretical physics (see for instance [30, 33–38] and references therein).

A better understanding of the combinatorics of tensor models will be crucial in identi-

fying and characterizing their holographic duals. There are two closely related aspects to

the combinatorics, in the first instance the enumeration of observables, in the second, the

understanding of the correlators. The former has immediate implications for thermody-

namic questions related to these models (for recent investigations focused on these aspects

see [39]), the spectrum of physical excitations in the holographic duals and since observ-

ables can be used to parametrize deformations of a given model, for the space of possible

holographic duals. The implications of the counting for the intricacy of the holographic

dual has been discussed in [30], see also [31, 32]. In the context of the AdS/CFT corre-

spondence, correlators in the gauge theory or matrix models provide refined information

about the holographic dual: interactions of gravitons, strings and branes. From a mathe-

matical point of view, they are related to a host of interesting algebraic structures, notably

integrability and hidden symmetries [40].
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In the paper [41], we developed a variety of counting formulae starting from the com-

plete set of invariant observables in tensor models with a complex tensor field having d

indices transforming in the fundamental of U(N)×d. The invariant observables are con-

structed from n copies of the complex field Φ as well as n copies of the conjugate field

Φ̄. They are in 1-1 correspondence with graphs with two types of vertices, one for the

Φ’s and one for the Φ̄’s, and colored edges, one for each type of index. The invariants are

constructed by contracting the indices in the fundamental of each U(N) with the indices

in the anti-fundamental. They are parametrized by a sequence of d permutations, each in

Sn, one for each factor in the unitary symmetry group. These permutations are subject

to equivalence relations, which characterize permutation sequences corresponding to the

same invariant operator. It was observed that the counting formulae can be expressed in

terms of topological field theory based on symmetric groups. The permutation description

was used to give formulae for “normal-ordered correlators” in Gaussian tensor models.

An important additional symmetry exists in these Gaussian models, and indeed in

a large class of interacting models. It is the group of all permutations of the d types of

indices, which form the symmetric group Sd. It had already been understood in the ten-

sor model literature that the counting of the above tensor invariants can be expressed as a

counting of colored graphs. It had also been understood that by taking advantage of the Sd
symmetry, it is useful to consider “color-symmetrized graphs” which are defined by addi-

tional equivalences generated by the Sd action of color-exchanges on the graphs. In [41] we

found counting formulae for the “color-symmetrized graphs” in terms of the permutation

tuples. These generated sequences of positive integers. Intriguingly the formulae we ob-

tained for the color symmetrized graphs were expressed as fractional sums of expressions,

which turned out to themselves be integers. These sequences were denoted by S
(d)
p (n):

specifying an integer d, along with a partition of d, we have a sequence of integers as n

ranges over positive integers. One of the results which follows from the detailed treatment

of color exchange symmetry in this paper is to explain the integrality of these additional

sequences, and give general expressions for them for any d and p ` d.

The permutation approach to counting and correlators has been used in a number of

papers in the context of AdS/CFT. It was used in the half-BPS sector in [42, 43] to find

orthogonal bases for operators, which are useful in identifying CFT duals of giant gravitons.

Following investigations of strings attached to giant gravitons in [44], orthogonal bases for

multi-matrix operators in CFT were found in [45–50]. The key idea is to parametrize gauge

invariants using permutations subject to equivalences, and to understand these equivalence

classes using Fourier transformation on symmetric groups based on representation theory,

to go from the equivalence classes of permutations to representation theoretic bases. A

short review is in [51]. It has been realized that an important role in understanding these

orthogonal bases is played by permutation centralizer algebras (PCAs) [52]. The basic

observation is that the once we have found a formulation of a counting of invariants in

terms of permutations subject to equivalences, it is useful to go to the group algebras of

permutations and consider their sub-algebras associated to the equivalence classes. These

algebras are semi-simple, i.e. they are associative and have a non-degenerate bilinear pair-

ing. These properties are inherited from the underlying permutation group algebras. As

– 2 –
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a result, from the Wedderburn-Artin (WA) theorem [53, 54] on the structure of these al-

gebras, we have a matrix decomposition of these algebras. The construction of orthogonal

bases is, in many cases studied so far, closely connected to the workings of the WA theorem.

This was studied in depth for the 2-matrix problem in [52] (closely related developments

from the perspective of open-closed topological field theory are in [55, 56]). In particular,

the important role of the centre of the PCA was noted, in identifying a sector of correla-

tors which are computable using characters, without requiring more refined representation

theoretic quantities. The appropriate PCA for tensor model counting was identified and a

basis in terms of Clebsch-Gordan coefficients of Sn was described. It was called K(n) and

its dimension was shown to be the sum of squares of Kronecker coefficients.

In this paper, we present a systematic study of K(n) and highlight the role of its

structure, particularly in connection with the WA theorem, in correlators and orthogonal

bases for tensor models. The role of color-exchange symmetry in the structure of K(n) is

another important theme, which leads to new results on the integer sequences, denoted

S
(d)
p (n), which arose among the counting of color-symmetrized invariants in [41]. A key

result of this paper is the formula for the dimension of the color-symmetrized sub-algebra

of K(n) as a sum of squares of representation-theoretic quantities.

The paper is organized as follows. In section 2, we introduce the tensor model we will

be discussing, based on complex tensors with d indices transforming under U(N)×d. We

review the permutation approach to tensor models from [41].

The algebras K(n) are defined in section 3. There are two equivalent descriptions of the

algebra. In one description, they are sub-algebras of the tensor products C(Sn) ⊗ C(Sn)

which commute with the diagonally embedded C(Sn). In equivalent terminology, K(n)

is the centralizer of the diagonal C(Sn) in the tensor product C(Sn) ⊗ C(Sn), hence the

name “permutation centralizer algebra” (PCA). Another type of PCA has been found

to underlie a variety of results on correlators for the 2-matrix problem [52]: they are thus

emerging as fundamental to the application of permutation group and representation theory

techniques to matrix/tensor correlators. In the other description, they are sub-algebras of

C(Sn) ⊗ C(Sn) ⊗ C(Sn) which are invariant under left and right diagonal actions. Both

descriptions are based on the fact that tensor invariants can be described by sequences

of permutations, subject to equivalences defined in terms of group multiplications in Sn.

The second description is an algebra structure on a space of double cosets, so that K(n)

is a double coset algebra. By partially gauge fixing the equivalences in the double coset

description, we arrive at the PCA description. K(n) is a semi-simple associative algebra. As

a result of the WA theorem, such algebras are isomorphic to direct sums of matrix algebras.

We describe this direct sum decomposition of K(n). We can think of K(n) as made of matrix

blocks. The terms in the sum are labelled by triples of Young diagrams with n boxes,

with non-vanishing Kronecker coefficient. These are triples R1, R2, R3 of representations

of Sn such that the tensor product R1 ⊗ R2 ⊗ R3 contains the trivial under the action

of the diagonal Sn. The algebra elements belonging to the matrix block labelled by the

ordered triple [R1, R2, R3], along with more refined data associated with the Kronecker

multiplicities, are constructed using Clebsch-Gordan coefficients of the symmetric group.

These are denoted QR1,R2,R3
τ1,τ2 . K(n) is a non-commutative algebra for generic n, so that
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the centre Z(K(n)) of K(n) is a proper subspace. Triples of Young diagrams label an

overcomplete basis for the centre and triples with non-vanishing Kronecker coefficient label

a basis.

K(n) also has an interpretation as a graph algebra. We explain this in section 4. The

identity of K(n) is the maximally disconnected melonic graph. For the lower orders n ≤ 4,

this algebra turns out to be commutative. We give illustrations of this algebra at n = 2

and n = 3 (multiplication tables). At n = 3, there are elements which could factorize in

different ways and this might lead to interesting properties.

Section 5 shows how the structure of K(n) described in section 3 organizes the proper-

ties of correlators in the Gaussian model. We consider two types of correlators: two-point

functions of normal-ordered invariants, and one-point functions without normal ordering.

We develop explicit formulae using known results on Kronecker coefficients for specific

Young diagrams. The discussion of correlators makes it natural to consider the PCAs

K(n) for all n at once, where n labels the number of Φ and Φ̄ in the invariant. Hence we

consider and discuss the algebra

K∞ =

∞⊕
n=0

K(n) (1.1)

using the convention that at n = 0, K(0) = C.

In section 6, we describe how tensor model correlators can be described by two-

dimensional topological field theory of permutations on 2-complexes. The permutation-

TFT2 description of counting and correlators for matrix theories is reviewed and applied

to general quiver gauge theories in [57]. Some results on the connection between counting

of tensor invariants and permutation-TFT2 were given in [41]. Here we consider correlators

of these invariants as amplitudes in permutation TFT2.

In section 7, we use the color-exchange symmetry S3 of the rank-3 tensor model in

order to give a refined description of K(n) in terms of irreducible representations (irreps)

of S3. We prove integrality of some sequences of numbers, which were observed in [41]

but not proved. The subspace invariant under color-exchange is a closed sub-algebra. We

give a formula for the dimension of this sub-algebra as a sum of squares which leads to the

understanding of the WA-decomposition of the algebra.

Section 8 gives a summary of our results and outlines interesting future directions

for research. Among those directions, we mention a new type of statistical models based

on Young diagrams, the quest for holographic duals of tensor models and an intriguing

connection between Computational Complexity Theory and correlators in matrix and ten-

sor models.

In the last part of the paper, we have four appendices: appendix A gathers basics

of representation theory of the symmetric group Sn which is used thoroughly in the text.

Appendix B consists in proofs of statements about PCAs, properties of their bases and

their centre. Appendix C provides an illustration of K(n = 3) as a graph algebra and gives

its multiplication table. Finally, in appendix D, we give a summary of the calculation of

Gaussian correlators (one-point and two-point functions).
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Note added. While this paper was being completed, a few papers with some overlap [38,

58, 59] appeared. We will be pointing out the specific overlaps in key points as they arise,

particularly in section 5. Representation theory and Young diagram combinatorics have

also been employed in an SYK context in [60].

2 Observables in tensor models using permutations

We start by giving a summary of the description of tensor model observables in terms of

permutations which was introduced in [41].

Consider {Vi}i=1,··· ,d, a family of complex vector spaces of respective dimensions N1,

N2, . . . , Nd. Let Φ be a rank d ≥ 2 covariant tensor with components Φi1,··· ,id , with

ia ∈ {1, . . . , Na}, a = 1, 2, . . . , d, transforming as ⊗da=1Va. No symmetry is assumed under

permutation of the indices of Φi1,··· ,id . The tensor Φ transforms under the action of the

tensor product of fundamental representations of unitary groups ⊗da=1U(Na) where each

U(Na) independently acts on a tensor index ia. The complex conjugate Φ̄i1i2...id of Φi1i2...id

is a contravariant tensor of the same rank d. The following transformation rule holds:

Φi1i2...id =
∑

j1,...,jd

U
(1)
i1j1

U
(2)
i2j2

. . . U
(d)
idjd

Φj1j2...jd

Φ̄i1i2...id =
∑

j1,...,jd

Ū
(1)
i1j1

Ū
(2)
i2j2

. . . Ū
(d)
idjd

Φ̄j1j2...jd (2.1)

where U (a) are unitary belonging to U(Na), a = 1, 2, . . . , d and may be all distinct. The

rank d = 2 will be referred to as matrix case and will be useful to make contact with known

results in matrix models. We will however focus in the rank d ≥ 3.

Unitary invariants with respect to the action (2.1) are built by contracting pairs of

indices of (covariant and contravariant) tensors. These contractions are in bijection with

regular bipartite d-colored graphs (see section 2.1 in [41], for illustrations).

The unitary invariants are called observables of tensor models. Take n covariant tensor

fields Φ and n contravariant tensor fields Φ̄. Invariants of the unitary group action built

from these are polynomial functions of the tensor variables which we will refer to as tensor

invariants of degree n. The observables are constructed by contracting indices from the n

copies of Φ and the n copies of Φ̄. The different contractions are labelled by d permutations,

σ1, σ2, . . . , σd ∈ Sn and the corresponding observables are denoted Oσ1,σ2,··· ,σd(Φ, Φ̄) (see

figure 1). There is an equivalence under right and left diagonal action of Sn on S×dn as [41]:

(σ1, σ2, · · · , σd) ∼ (µ1σ1µ2, µ1σ2µ2, · · · , µ1σdµ2) (2.2)

where µ1,2 ∈ Sn. Equivalent permutation tuples give rise to the same observable. Thus,

counting observables is counting points in the double coset

Diag(Sn)\(Sn × Sn × · · · × Sn)/Diag(Sn) (2.3)

– 5 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
2

c1

c2

c3 c1

c2

c3 c1

c2

c3

c1 c3

c2

c1 c3

c2

c1 c3

c2

σ3

σ1

σ2

Φ Φ Φ

Φ Φ Φ

Figure 1. Diagrammatic rank-3 tensor contraction defining (σ1, σ2, σ3).

We denote the number of points in this double coset as Zd(n). Using the Burnside lemma,

we obtain the counting [41]:

Zd(n) =
1

(n!)2

∑
µi∈Sn

∑
σi∈Sn

d∏
i=1

δ(µ1σiµ2σ
−1
i ) (2.4)

which can be simplified to

Zd(n) =
∑
p`n

(Sym(p))d−2 , Sym(p) :=
n∏
i=1

(ipi)(pi!) (2.5)

where the sum is performed over partitions of n specified by p = {p1, p2, · · · , pn} where

the partition has p1 copies of 1, p2 copies of 2 etc. so that n =
∑

i ipi. A partition of p

of n, denoted p ` n, specifies a cycle structure of permutations σ ∈ Sn. A cycle structure

corresponds to a conjugacy class in Sn. The conjugacy class corresponding to p will be

denoted Tp. A permutation in Tp has a symmetry factor, which is the number of Sn
permutations leaving it unchanged under conjugation. This is denoted as Sym(σ) and is

the same for any permutation σ ∈ Tp, so we also denote this number as Sym(p).

An important feature of this paper is that we will extend the correspondence between

permutations in S×dn and observables

(σ1, · · · , σd)→ Oσ1,··· ,σd(Φ, Φ̄) (2.6)

to the group algebra (C(Sn))⊗d by linearity∑
σ1,··· ,σd

λσ1,··· ,σd(σ1 ⊗ · · · ⊗ σd)→
∑

σ1,··· ,σd

λσ1,··· ,σdOσ1,··· ,σd(Φ, Φ̄) (2.7)

We will consider sub-algebras of (C(Sn))⊗d defined by these equivalences (2.2). We will

describe special bases in these sub-algebras constructed using representation theory, which

reveal the matrix structure of these sub-algebras expected from the WA theorem.

We now introduce the second fundamental ingredient for our analysis, the measure

over the complex tensors

dµ(Φ, Φ̄) ≡
∏
ik

dΦi1i2...iddΦ̄i1i2...id e
−

∑
ik

Φi1i2...id Φ̄i1i2...id (2.8)

– 6 –
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which defines the Gaussian tensor models of interest. Expectation values of observables

Oσ1,σ2,··· ,σd(Φ, Φ̄) (which we will denote as Oσ1,σ2,··· ,σd for brevity) are defined as〈
Oσ1,σ2,··· ,σd

〉
=

∫
dµ(Φ, Φ̄)Oσ1,σ2,··· ,σd∫

dµ(Φ, Φ̄)
(2.9)

These correlators can be evaluated by summing over Wick contractions, which can be

parametrized by permutations γ ∈ Sn. Thus a graph configuration in the expansion of

〈Oσ1,σ2,··· ,σd〉, is determined by (γ, σ1, σ2, · · · , σd). Summing over all γ’s gives the full

correlator. Fixing Na = N , for all a = 1, . . . , d, after some algebra one gets (see appendix D

for a derivation of the following equality)〈
Oσ1,σ2,··· ,σd

〉
=
∑
γ∈Sn

Nc(γσ1)+c(γσ2)+···+c(γσd) (2.10)

where c(α) is the number of cycles of α. This formula reflects the fact that correlators

depend on the total number of cycles of compositions of the permutations γσi, i = 1, . . . , d.

The formula (2.10) has also been obtained in [58]. Another natural type of correlator

considered in [41] is the insertion of a product of observables in the integral, with the

prescription that we do not allow Wick contractions within the observable. These are

referred to as “normal ordered” correlators. They are discussed further in the appendix D

and section 5.

3 The permutation centralizer algebra K(n)

In this section we will show that the equivalence classes of permutations which define

tensor invariants of degree n in the rank d = 3 case form an associative algebra K(n). The

structure of the algebra K(n) is intimately related to Kronecker coefficients. Its dimension

is equal to the sum of squares of Kronecker coefficients. For higher d, we have analogous

algebras K(n, d) with dimensions equal to a sum of squares which can be expressed in terms

of higher order products of Kronecker coefficients. This is shown below in section 3.1. In

subsequent subsections, we will primarily focus the analysis to the rank d = 3 case and the

algebra K(n).

3.1 Counting observables and Kronecker coefficients

Consider the counting of tensor invariants of degree n. We rewrite the above count-

ing (2.5) as

Z3(n) =
∑
p`n

Sym(p) =
∑
p`n

Sym(p)

n!

∑
σ∈Tp

Sym(p) (3.1)

For each partition p of n, we are summing over all the permutations in that conjugacy class

σ ∈ Tp, and dividing by the size of the conjugacy class Tp, denoted |Tp|. We use the fact that

|Tp| =
n!

Sym(p)
(3.2)

– 7 –
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Using identities in appendix A.1, we write

Z3(n) =
∑
p`n

Sym(p)

n!

∑
σ∈Tp

Sym(p) =
1

n!

∑
σ∈Sn

Sym(σ)Sym(σ)

=
1

n!

∑
σ∈Sn

∑
γ1,γ2∈Sn

δ(γ1σγ
−1
1 σ−1)δ(γ2σγ

−1
2 σ−1)

=
1

n!

∑
σ∈Sn

∑
R1,R2`n

χR1(σ)χR1(σ)χR2(σ)χR2(σ)

=
1

(n!)2

∑
γ∈Sn

∑
σl∈Sn

∑
R1,R2`n

χR1(σ1)χR2(σ1)δ(σ1γσ2γ
−1)χR1(σ2)χR2(σ2)

=
1

(n!)2

∑
σl∈Sn

∑
R1,R2`n

χR1(σ1)χR2(σ1)

(∑
S`n

χS(σ1)χS(σ2)

)
χR1(σ2)χR2(σ2)

=
∑

R1,R2,S`n
(C(R1, R2, S))2 (3.3)

where the symbol

C(R1, R2, R3) =
1

n!

∑
σ∈Sn

χR1(σ)χR2(σ)χR3(σ) (3.4)

is the Kronecker coefficient or multiplicity of the irreducible representation (irrep) R3 in

the tensor product of the irreps R1 and R2. Equivalently it is the multiplicity of the one-

dimensional representation in the tensor product R1 ⊗ R2 ⊗ R3. Similar manipulations

show that the same counting is also equal to

Z3(n) =
∑

R1,R2,S`n
C(R1, R1, S)C(R2, R2, S) (3.5)

Hence, counting observables of tensor model of rank 3 coincides with a sum of squares (or

product) of Kronecker coefficients. That sum is also the dimension of an algebra K(n) that

we will discuss in the next section. The connection between the counting of tensors and

Kronecker coefficients has also been discussed in the physics literature in [38, 52, 59] and

in the mathematics literature in [61]. For future reference in this paper, a key point from

the above discussion is

dim(K(n)) =
∑

R1,R2,S`n
(C(R1, R2, S))2 (3.6)

Counting in rank-d tensors. The above counting generalizes quite naturally at any

rank as

Zd(n) =
∑
p`n

Sym(p)d−2

n!

∑
σ∈Tp

Sym(p) =
1

n!

∑
σ∈Sn

Sym(σ)d−1

=
1

n!

∑
σ∈Sn

∑
γ1,γ2,...,γd∈Sn

δ(γ1σγ
−1
1 σ−1)δ(γ2σγ

−1
2 σ−1) . . . δ(γd−1σγ

−1
d−1σ

−1)

=
1

n!

∑
σ∈Sn

d−1∏
i=1

[ ∑
Ri`n

χRi(σ)χRi(σ)

]
(3.7)
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where we used (A.21) of appendix A.1. Then we re-introduce delta-functions which couple

different permutations as:

Zd(n) =
1

(n!)2

∑
γ∈Sn

∑
σl∈Sn

∑
R1,R2`n

χR1(σ1)χR1(σ1)δ(σ1γσ2γ
−1)χR2(σ2)χR2(σ2)

×
d−1∏
i=3

[ ∑
Ri`n

χRi(σ2)χRi(σ2)

]

=
1

(n!)3

∑
σl∈Sn

∑
R1,R2`n

χR1(σ1)χR1(σ1)

( ∑
S1`n

χS1(σ1)χS1(σ2)

)
χR2(σ2)χR2(σ2)

×

[ ∑
S2`n

χS2(σ2)χS2(σ3)

]
χR3(σ3)χR3(σ3)

d−1∏
i=4

[ ∑
Ri`n

χRi(σ3)χRi(σ3)

]
=

∑
Ri,Si`n

C(R1, R1, S1)C4(R2, R2, S1, S2)C4(R3, R3, S2, S3) . . .

× C4(Rd−2, Rd−2, Sd−3, Sd−2)C(Rd−1, Rd−1, Sd−2)

=
∑

Ri,Si`n
C(R1, R1, S1)

[
d−2∏
i=2

C4(Ri, Ri, Si−1, Si)

]
C(Rd−1, Rd−1, Sd−2) (3.8)

where the symbol C4(·) stands for

C4(R1, R2, R3, R4) =
1

n!

∑
σ∈Sn

χR1(σ)χR2(σ)χR3(σ)χR4(σ)

=
1

(n!)2

∑
γ,σ1,σ2∈Sn

χR1(σ1)χR2(σ1)
(
δ(σ1γσ2γ

−1)
)
χR3(σ2)χR4(σ2)

=
1

(n!)2

∑
σ1,σ2∈Sn

χR1(σ1)χR2(σ1)

(∑
S`n

χS(σ1)χS(σ2)

)
χR3(σ2)χR4(σ2)

=
∑
S`n

C(R1, R2, S)C(S,R3, R4) (3.9)

Thus at any rank the counting of observables of tensor models maps to a sum of products

of Kronecker coefficients. For example, at rank d = 4, we obtain

Zd(4) =
∑

Ri,Si`n
C(S2, S1, S3)C(R1, R1, S1)C(R2, R2, S2)C(R3, R3, S3) (3.10)

To write a compact formula as a sum of squares, we introduce

Ck(R1, R2, · · · , Rk) =
1

n!

∑
σ∈Sn

χR1(σ)χR2(σ) · · ·χRk(σ) (3.11)

This counts the multiplicity of the one-dimensional Sn irrep in the tensor product of irreps

R1 ⊗ · · · ⊗ Rk. It can be expressed in terms of products of Kronecker coefficients. The

dimension of K(n, d) is

Zd(n) = dim(K(n, d)) =
∑

R1,··· ,Rd−1,S`n
(Cd(R1, R2, · · · , Rd−1, S))2 (3.12)
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3.2 K(n) as a centralizer algebra in C(Sn)⊗ C(Sn)

The permutation equivalence classes in Sn × Sn × Sn described earlier (2.2) have a gauge-

fixed formulation involving pairs of permutations. One way to see this [41] is by manipulat-

ing the symmetric group delta functions which implement the Burnside lemma counting.

For example, we can choose µ1 = σ−1
1 which maps the triple

(σ1, σ2, σ3)→ (1, σ−1
1 σ2, σ

−1
1 σ3) ≡ (1, τ1, τ2) (3.13)

The µ2 = µ equivalence now acts on (τ1, τ2) as

(τ1, τ2) ∼ (µτ1µ
−1, µτ2µ

−1) (3.14)

We will therefore define K(n) as the sub-algebra of group algebra C(Sn)⊗ C(Sn) which is

invariant under conjugation by the diagonally embedded Sn. In this section, we detail the

structure of this sub-algebra.

Consider the elements of C(Sn) ⊗ C(Sn) obtained by starting with a tensor product

σ1 ⊗ σ2 and summing all their conjugates by γ acting diagonally

σ1 ⊗ σ2 →
∑
γ∈Sn

γσ1γ
−1 ⊗ γσ2γ

−1 (3.15)

Now, K(n) ⊂ C(Sn) ⊗ C(Sn) is the vector space over C spanned by all
∑

γ∈Sn γσ1γ
−1 ⊗

γσ2γ
−1, σ1 and σ2 ∈ Sn:

K(n) = SpanC

{ ∑
γ∈Sn

γσ1γ
−1 ⊗ γσ2γ

−1, σ1, σ2 ∈ Sn

}
(3.16)

By construction, the elements of K(n) are invariants under the action of Diag(C(Sn)). To

verify this, we evaluate any element A ∈ K(n)

(τ ⊗ τ) ·A · (τ−1 ⊗ τ−1) =
∑

σ1,σ2,γ∈Sn

cσ1,σ2 τγσ1γ
−1τ−1 ⊗ τγσ2γ

−1τ−1 = A (3.17)

where we redefine γ → τγ.

Proposition 1. K(n) is an associative unital sub-algebra of C(Sn)⊗ C(Sn).

Proof. We verify that K(n) is a closed under multiplication. Take two elements of K(n),

A =
∑

σ1,σ2,γ1∈Sn cσ1,σ2γ1σ1γ
−1
1 ⊗ γ1σ2γ

−1
1 and B =

∑
τ1,τ2,γ2∈Sn c

′
τ1,τ2γ2τ1γ

−1
2 ⊗ γ2τ2γ

−1
2 ,

with coefficients cσ1,σ2 and c′τ1,τ2 ,

AB =
∑

σi,τi∈Sn

cσ1,σ2c
′
τ1,τ2

∑
γ1,γ2

γ1σ1γ
−1
1 γ2τ1γ

−1
2 ⊗ γ1σ2γ

−1
1 γ2τ2γ

−1
2

=
∑
γ

∑
σi,τi∈Sn

cσ1,σ2c
′
τ1,τ2

∑
γ1

γ1(σ1γτ1γ
−1)γ−1

1 ⊗ γ1(σ2γτ2γ
−1)γ−1

1 (3.18)

where we redefined γ = γ−1
1 γ2, γ

−1
2 = γ−1γ−1

1 . Clearly, the last line shows that AB belongs

to K(n) as a linear combination of basis elements.

The unit of C(Sn)⊗2 is id ⊗ id which also belongs to K(n). One can also check that

K(n) is an associative algebra because C(Sn) is associative. Hence K(n) is a sub-algebra

of C(Sn)⊗ C(Sn).
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The dimension of K(n) is associated with the number of observables of tensor models.

Indeed, each colored tensor graph is associated with an equivalence relation (3.15) also

associated with one basis element of K(n). Thus dimCK(n) = Z3(n). In the following, the

elements of K(n) are then called as and identified with “graphs” and the basis (3.16) will

be called graph-basis.

A Fourier basis of invariants. The Fourier transform of the basis (3.15) of K(n)

determines another basis of invariants for K(n). The elements of this basis are labelled by

(R,S, T, τ1, τ2) and are of the form

QR,S,Tτ1,τ2 = κR,S
∑

σ1,σ2∈Sn

∑
i1,i2,i3,j1,j2

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;i3

DR
i1j1(σ1)DS

i2j2(σ2)σ1 ⊗ σ2 (3.19)

where κR,S = d(R)d(S)
(n!)2 , i1 and j1 (resp. i2 and j2) are positive integers bounded by the

dimension d(R) (resp. d(S)) of the representation of Sn, and i3 by d(T ). Meanwhile,

CR,S;T,τ1
i1,i2;i3

are Clebsch-Gordan coefficients involved in the tensor products of representations

of Sn, see appendix A.2 for a brief definition and properties that we will use hereafter; the

multiplicities τ1 and τ2 ∈ [[1,C(R,S, T )]]. We can check that, by acting by the diagonal

action, the basis elements are invariant (for the proof see (B.1) in appendix B.1):

(γ ⊗ γ) ·QR,S,Tτ1,τ2 · (γ
−1 ⊗ γ−1) = QR,S,Tτ1,τ2 (3.20)

The basis {QR,S,Tτ1,τ2 }, shortly called Q-basis in the following, makes explicit that the

dimension of the algebra K(n) is given by∑
R,S,T

C(R,S, T )2 (3.21)

An important property of the QR,S,Tτ1,τ2 ’s is that they are matrix bases of K(n). We have (the

proof of the following is detailed in (B.3) of appendix B.1):

QR,S,Tτ1,τ2 Q
R′,S′,T ′

τ ′2,τ3
= δRR′δSS′δTT ′δτ2τ ′2Q

R,S,T
τ1,τ3 (3.22)

Finally, noting that C(R,S, T ) is at most 1 for n ≤ 4, then the matrices QR,S,Tτ1,τ2 are 1 × 1

hence are commuting. Consequently, at lower order in n ≤ 4, K(n) is commutative.

Orthogonality of the Q-basis. Consider the bilinear pairing δ2 : C(Sn)⊗d×C(Sn)⊗d →
C, d ≥ 0,

δd(⊗di=1σi;⊗di=1σ
′
i) =

d∏
i=1

δ(σiσ
′−1
i ) (3.23)

which extends to linear combination with complex coefficients naturally:

δd

(∑
σl

c{σl} ⊗
d
l=1 σl;

∑
σ′l

c′{σ′l}
⊗dl=1 σ

′
l

)
=
∑
σl

c{σl}c
′
{σl} (3.24)

We can also consider an inner product, i.e. a sesquilinear pairing, where we would have

c̄{σl} on the r.h.s. above. The inner product will have the same non-degeneracy property

we discuss below for the bilinear form.
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The following proposition can be easily checked.

Proposition 2. δd is a non-degenerate pairing on C(Sn)⊗d ∀d ≥ 1.

Inspecting the pairing of basis elements of {
∑

γ γσ1γ
−1 ⊗ γσ2γ

−1} in K(n), we have

δ2

(∑
γ1

γ1σ1γ
−1
1 ⊗ γ1σ2γ

−1
1 ;
∑
γ2

γ2τ1γ
−1
2 ⊗ γ2τ2γ

−1
2

)
=
∑
γ1,γ2

δ(γ1σ1γ
−1
1 (γ2τ1γ

−1
2 )−1)δ(γ1σ2γ

−1
1 (γ2τ2γ

−1
2 )−1)

=
∑
γ1,γ2

δ(γ1σ1γ
−1
1 γ2τ

−1
1 γ−1

2 )δ(γ1σ2γ
−1
1 γ2τ

−1
2 γ−1

2 )

=
∑
γ1,γ2

δ(γ1σ1γ2τ
−1
1 (γ1γ2)−1)δ(γ1σ2γ2τ

−1
2 (γ1γ2)−1)

= n!
∑
γ

δ(σ1γτ
−1
1 γ−1)δ(σ2γτ

−1
2 γ−1) (3.25)

which is not vanishing whenever the σi’s are conjugate to τi’s, i = 1, 2. This is precisely

saying that the two basis elements and the corresponding graphs are in the same class.

The above sum over γ computes to the order of the automorphism group of the graph

associated with any of the basis element. Consider two colored tensor graphs Gσ1,σ2 and

Gσ′1,σ′2 associated with the basis elements
∑

γ γσ1γ
−1 ⊗ γσ2γ

−1 and
∑

γ γσ
′
1γ
−1 ⊗ γσ′2γ−1,

respectively, then we write

δ2

(∑
γ1

γ1σ1γ
−1
1 ⊗ γ1σ2γ

−1
1 ;
∑
γ2

γ2τ1γ
−1
2 ⊗ γ2τ2γ

−1
2

)
= n!δ(Gσ1,σ2 , Gσ′1,σ′2)|Aut(Gσ1,σ2)|

(3.26)

where δ(Gσ1,σ2 , Gσ′1,σ′2) = 1 if the graphs are equivalent and 0 otherwise, and |Aut(Gσ1,σ2)|
is the order the automorphism group Aut(Gσ1,σ2) of the graph Gσ1,σ2 . In the end, the

restriction of δ2 to K(n) is non degenerate and the basis of invariants is orthogonal with

respect to that product. The following statement is therefore obvious

Proposition 3. K(n) is an associative unital semi-simple algebra.

Semi-simple algebras and their isomorphism to a direct sum of matrix algebras (WA

theorem) are explained in [53, 54].

The Q-basis proves to be orthogonal with respect to the bilinear pairing δ2 (see (B.4)

of appendix B.1)

δ2

(
QR,S,T
τ1,τ ′1

;QR
′,S′,T ′

τ2,τ ′2

)
= κR,Sd(T ) δRR′δSS′δTT ′δτ1τ2δτ ′1τ ′2 (3.27)

Note that we could have changed the normalization κR,S of QR,S,Tτ1,τ2 to make that basis

orthonormal with respect to δ2. However, the previous choice of making as simple as

possible the matrix multiplication of the Q’s has fixed the normalization κRS . Another

option to make the bilinear pairing of Q’s normalized is to change the definition of the

pairing itself, but we will keep the present definition of δd for simplicity. The orthogonality
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relation (3.27) reveals that the basis {QR,S,Tτ,τ ′ } decomposes K(n) in orthogonal blocs labelled

by (R,S, T ) and for each such triple an orthogonal square bloc labelled by (τ, τ ′).

We can address the expansion of the graph-basis in terms of the Q-basis (inverse

transform):∑
γ

γσ1γ
−1 ⊗ γσ2γ

−1 =
∑

R,S,T,τ1,τ2

[∑
γ

δ2(QR,S,Tτ1,τ2 ; γσ1γ
−1 ⊗ γσ2γ

−1)

]
QR,S,Tτ1,τ2 (3.28)

where the coefficients calculate as∑
γ

δ2(QR,S,Tτ1,τ2 ; γσ1γ
−1 ⊗ γσ2γ

−1) =
∑
γ

δ2((γ ⊗ γ) ·QR,S,Tτ1,τ2 · (γ
−1 ⊗ γ−1);σ1 ⊗ σ2)

=
∑
γ

δ2(QR,S,Tτ1,τ2 ;σ1 ⊗ σ2) = n!κR,S
∑
il,jl

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;i3

DR
i1j1(σ1)DS

i2j2(σ2)

(3.29)

where used has been made of (3.20), namely the invariance of the Q-basis. The coeffi-

cient (3.29) can be interpreted as the projection of a graph onto the Q-basis.

3.3 The centre Z(K(n)) of K(n)

Using the basis elements QR,S,Tτ1,τ2 , we build elements of the centre Z(K(n)) of K(n) by taking

their trace at fixed (R,S, T ):

PR,S,T =
∑
τ

QR,S,Tτ,τ (3.30)

To prove that PR,S,T is in the centre Z(K(n)), it is sufficient to show that it is commuting

with the basis elements QR,S,Tτ1,τ2 of K(n):

QR
′,S′,T ′

τ1,τ2 ·PR,S,T =
∑
τ

QR
′,S′,T ′

τ1,τ2 QR,S,Tτ,τ =
∑
τ

δRR′δSS′δTT ′δτ2τQ
R,S,T
τ1,τ = δRR′δSS′δTT ′Q

R,S,T
τ1,τ2

=
∑
τ

δRR′δSS′δTT ′δττ1Q
R′,S′,T ′
τ,τ2 = PR,S,T ·QR′,S′,T ′τ1,τ2 (3.31)

The orthogonality of the P ’s follows from the orthogonality of the Q-basis (3.27):

δ2(PR,S,T ;PR
′,S′,T ′) =

∑
τ,τ ′

δ2(QR,S,Tτ,τ ;QR
′,S′,T ′

τ ′,τ ′ ) (3.32)

= κR,S d(T ) δRR′δSS′δTT ′
∑
τ,τ ′

δττ ′ = κR,S d(T )C(R,S, T )δRR′δSS′δTT ′

Proposition 4. The set {PR,S,T } is a basis of Z(K(n)) and

dimZ(K(n)) = number of non vanishing Kronecker coefficients (3.33)

Proof. K(n) decomposes in irreducible blocs labelled by (R,S, T ) and, associated with each

of the triples, a matrix QR,S,Tτ,τ ′ . In that vector space, for a given (R,S, T ), PR,S,T is the

sum of diagonal elements of QR,S,Tτ,τ ′ . Collecting all possible diagonals hence PR,S,T spans

the centre Z(K(n)).

The dimension of Z(K(n)) is given by the number of non vanishing Kronecker coef-

ficients: a triple (R,S, T ), such that C(R,S, T ) 6= 0 yields a non vanishing QR,S,Tτ,τ ′ and

contributes to a single PR,S,T . The result on the dimension of Z(K(n)) follows.
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An overcomplete basis of central elements. Here we will show how we can start

with a triple of irreps of C(Sn) and construct central elements of K(n) from them. These

will form an overcomplete basis of central elements, which will be demonstated by taking

the pairing with the basis PR,S,T described above.

First consider a partition R of n and the element zR =
∑

σ χ
R(σ)σ that is central in

C(Sn). Indeed for any R ` n, choose γ ∈ Sn any arbitrary basis element of C(Sn), and

calculate:

γ zR γ
−1 =

∑
σ

χR(σ)γσγ−1 =
∑
σ

χR(γσγ−1)σ = zR (3.34)

Let R1 and R2 be two partitions of n from which we introduce the central elements

zRi =
∑

σ χ
Ri(σ)σ, i = 1, 2, then build

zR1,R2 = zR1 ⊗ zR2 =
∑

σ1,σ2∈Sn

χR1(σ1)χR2(σ2)σ1 ⊗ σ2 (3.35)

that one can show to be central because is a tensor product of central elements (use (3.34)

twice on each sector).

Another possible element of the centre obtained from a single partition R ` n is

zR =
∑
σ∈Sn

χR(σ)σ ⊗ σ (3.36)

One can quickly verify that zR1,R2;R3 = zR1,R2 · zR3 ∈ K(n):

(γ ⊗ γ) · zR1,R2;R3 · (γ−1 ⊗ γ−1) =
∑
σi∈Sn

χR1(σ1)χR2(σ2)χR3(σ3) γσ1σ3γ
−1 ⊗ γσ2σ3γ

−1

=
∑
σi∈Sn

χR1(σ1)χR2(σ2)χR3(σ3) γσ1σ3γ
−1 ⊗ γσ2σ3γ

−1

=
∑
σi∈Sn

χR1(σ1)χR2(σ2)χR3(σ3)σ1σ3 ⊗ σ2σ3 = zR1,R2;R3

(3.37)

where we change variables γσi=1,2 → σ̃i=1,2γ, γσ3γ
−1 → σ̃3, and rename σ̃i=1,2,3 as σi=1,2,3.

We arrive at the following statement:

Proposition 5. The set {zR1,R2;R3}, with Ri ` n, is an overcomplete basis of the centre

Z(K(n)).

Proof. We project PR1,R2,R3 onto zR′1,R′2;R′3
and check that the coefficients are not vanishing

(see details in (B.17) in appendix B.1):

δ2(PR1,R2,R3 ; zR′1,R′2;R′3
) = n! δR1R′1

δR2R′2
δR3R′3

C(R1, R2, R3) (3.38)

Hence PR1,R2,R3 admits a decomposition in terms of zR′1,R′2;R′3
. The overcompleteness

follows from the number of elements of {zR′1,R′2;R′3
} is p(n)3 which is larger than the number

of non vanishing Kroneckers the dimension of Z(K(n)).

A general study of central elements in algebras constructed as subgroup-centralizers

in a group algebra is given in [62].
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3.4 Double coset algebra

The algebra K(n) introduced in the previous sections as a sub-algebra of C(Sn) ⊗ C(Sn)

has another description as a sub-algebra of C(Sn)⊗C(Sn)⊗C(Sn). As we will see shortly,

in this latter description, we have an algebra of double cosets. The former description as

a centralizer algebra is a gauge-fixed version. Hence the double coset description is an

un-gauge-fixed version. For this reason, we will refer to the double coset algebra in this

section as Kun(n) and establish its isomorphism with K(n). In the rest of the paper, we

will use K(n) for either description of the algebra, and it will be clear from the context

whether we are working with the gauge-fixed (centralizer algebra) or un-gauge-fixed (double

coset) description. While the centralizer algebra is a more economical description, being

embedded in a smaller algebra, Kun(n) arises more immediately from inspection of the

permutation equivalences relevant to tensor models, as reviewed in section 2.

Kun(n) as a double coset algebra in C(Sn)⊗3. Consider elements σ1 ⊗ σ2 ⊗ σ3 ∈
C(Sn)⊗3 and the left and right actions of Diag(C(Sn)) on these triples as:

σ1 ⊗ σ2 ⊗ σ3 →
∑

γ1,γ2∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2 (3.39)

Kun(n) is the vector space and sub-algebra of C(Sn) ⊗ C(Sn) ⊗ C(Sn) which is invariant

under left and right actions by the diagonal Diag(C(Sn)):

Kun(n) = SpanC

{ ∑
γ1,γ2∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2, σ1, σ2, σ3 ∈ Sn

}
(3.40)

The equivalence classes defining Kun(n) are the double cosets

Diag(Sn)\(Sn × Sn × Sn)/Diag(Sn) (3.41)

It is simple to check that Kun(n) is stable under multiplication. The identity of Kun(n) is

id⊗ id⊗ id. The rest of required properties to make Kun(n) a sub-algebra of C(Sn)⊗3 can

be easily verified.

Proposition 6. Kun(n) is an associative unital sub-algebra of C(Sn)⊗3.

In fact, one shows that the two algebras K(n) and Kun(n) have the same dimension.

The isomorphism between the basis elements stems from a change or variable: γ1→γ−1
2 σ−1

1 ,

and then renaming σ−1
1 σi as σi, i = 2, 3, and γ2 → γ. Under this change of variable we

obtain ∑
γ1,γ2∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2 =
∑
γ∈Sn

id⊗ γσ2γ
−1 ⊗ γσ3γ

−1 (3.42)

and the r.h.s. is clearly associated with the basis element
∑

γ∈Sn γσ2γ
−1⊗γσ3γ

−1 of K(n).

It is direct to get dimKun(n) = dimK(n) = Z3(n). Finally, we will keep the name of

“graphs” as elements of Kun(n).
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Fourier basis Qun. In this formulation in terms of triples of permutations, the basis of

invariants of Kun(n) is given by

QR,S,Tun;τ1,τ2 = κR,S,T
∑
σl∈Sn

∑
il,jl

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;j3

DR
i1,j1(σ1)DS

i2,j2(σ2)DT
i3,j3(σ3)σ1 ⊗ σ2 ⊗ σ3

(3.43)

with κR,S,T = d(R)d(S)d(T )
(n!)3 . The basis {QR,S,Tun;τ1,τ2} is called Qun-basis. Its elements are invari-

ant under left and right diagonal actions (see (B.5) for an intermediate step, appendix B.1):

(γ⊗3
1 ) ·QR,S,Tun;τ1,τ2 · (γ

⊗3
2 ) = QR,S,Tun;τ1,τ2 (3.44)

and multiply like matrices (for a few details, see (B.6) in appendix B.1):

QR,S,Tun;τ1,τ2Q
R′,S′,T ′
un;τ2,τ3 = κR,S,T δR,R′δS,S′δT,T ′

×
∑
σl∈Sn

∑
il,jl

∑
σ′l∈Sn

∑
al

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ3
a1,a2;a3

DR
i1,a1

(σ1)DS
i2,a2

(σ2)DT
i3,a3

(σ3)σ1 ⊗ σ2 ⊗ σ3

×
∑
jl

CR,S;T,τ2
j1,j2;j3

CR,S;T,τ2
j1,j2;j3

= δR,R′δS,S′δT,T ′ Q
R,S,T
un;τ1,τ3 (3.45)

Computing the pairing of two Qun’s yields (for details see (B.7) in appendix B.1)

δ3

(
QR,S,Tun;τ1,τ2 ;QR

′,S′,T ′

un;τ ′1,τ
′
2

)
= κR,S,T d(T )2 δRR′δSS′δTT ′δτ1τ ′1δτ2τ ′2 (3.46)

we infer that the basis Qun is orthogonal. Same comments about making Qun orthonormal

by appropriately tuning the κR,S,T normalization factor can be made at this stage.

The centre Z(Kun(n)). We now investigate the centre Z(Kun(n)) of Kun(n). Using

the same strategy as in section 3.3, we construct now the basis of the centre by taking the

trace of the matrices Qun’s

PR,S,Tun =
∑
τ

QR,S,Tun;τ,τ (3.47)

We show that PR,S,Tun is commuting with any QR
′,S′,T ′

un;τ1,τ2 :

PR,S,Tun ·QR′,S′,T ′un;τ1,τ2 =
∑
τ

QR,S,Tun;τ,τQ
R′,S′,T ′
un;τ1,τ2

= δR,R′δS,S′δT,T ′
∑
τ

δτ,τ1Q
R,S,T
un;τ,τ2 = δR,R′δS,S′δT,T ′Q

R,S,T
un;τ1,τ2

QR
′,S′,T ′

un;τ1,τ2 · P
R,S,T
un = δR,R′δS,S′δT,T ′

∑
τ

δτ,τ2Q
R,S,T
un;τ1,τ = PR,S,Tun ·QR′,S′,T ′un;τ1,τ2 (3.48)

Hence PR,S,Tun is in the centre of Kun(n). Adapting the arguments of the proof of Proposi-

tion 4 in the present context, the next result can be deduced without difficulties.
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Proposition 7. {PR,S,Tun } is a basis of Z(Kun(n)).

The pairing of two Pun’s gives

δ3(PR,S,Tun ;PR
′,S′,T ′

un ) =
∑
τ,τ ′

δ3(QR,S,Tun;τ,τ ;QR
′,S′,T ′

un;τ ′,τ ′ )

= κR,S,Td(T )2δRR′δSS′δTT ′
∑
τ,τ ′

δττ ′

= κR,S,T d(T )2C(R,S, T )δRR′δSS′δTT ′ (3.49)

Overcomplete bases of Z(Kun(n)). Given three Young diagrams Ri, i = 1, 2, 3, and

the central element zRi =
∑

σ χ
Ri(σ)σ of C(Sn), we are interested by the element

zR1,R2,R3
un = zR1 ⊗ zR2 ⊗ zR2 =

∑
σi∈Sn

χR1(σ1)χR2(σ2)χR3(σ3)σ1 ⊗ σ2 ⊗ σ3 (3.50)

that proves to belong to the centre of C(Sn)⊗3. It is sufficient to prove this claim for any

basis element as

γ1 ⊗ γ2 ⊗ γ3 · zR1,R2,R3
un =

∑
σi∈Sn

χR1(σ1)χR2(σ2)χR3(σ3)γ1σ1 ⊗ γ2σ2 ⊗ γ3σ3

=
∑
σi∈Sn

χR1(γ−1
1 σ1)χR2(γ−1

2 σ2)χR3(γ−1
3 σ3)σ1 ⊗ σ2 ⊗ σ3

=
∑
σi∈Sn

χR1(σ1γ
−1
1 )χR2(σ2γ

−1
2 )χR3(σ3γ

−1
3 )σ1 ⊗ σ2 ⊗ σ3

=
∑
σi∈Sn

χR1(σ1)χR2(σ2)χR3(σ3)σ1γ1 ⊗ σ2γ2 ⊗ σ3γ3

= zR1,R2,R3
un · γ1 ⊗ γ2 ⊗ γ3 (3.51)

we used a change of variable σi → γ−1
i .

The following statement holds.

Proposition 8. {zR1,R2,R3
un } forms an overcomplete basis of the centre Z(Kun(n)).

Proof. We want to find an expansion

PR1,R2,R3
un =

∑
R′1,R

′
2,R
′
3

δ3(z
R′1,R

′
2,R
′
3

un ;PR1,R2,R3
un ) z

R′1,R
′
2,R
′
3

un (3.52)

with the coefficient δ3(z
R′1,R

′
2,R
′
3

un ;PR1,R2,R3
un ). That quantity has been computed in (B.19)

of appendix B.2 and one finds it as

δ3(z
R′1,R

′
2,R
′
3

un ;PR1,R2,R3
un ) = d(R3)C(R1, R2, R3)δR1R′1

δR2R′2
δR3R′3

(3.53)

Now, for a given triple (R1, R2, R3) for which PR1,R2,R3
un is not vanishing, then the coefficient

δ3(z
R′1,R

′
2,R
′
3

un ;PR1,R2,R3
un ) is not vanishing. Therefore PR1,R2,R3

un has an expansion in terms

of the zR1,R2,R3
un ’s. The cardinality of {zR1,R2,R3

un } is p(n)3, cube of the number of partitions

of n, is larger than the number of nonvanishing Kroneckers C(R1, R2, R3). The basis

{zR1,R2,R3
un } is therefore overcomplete.

– 17 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
2

4 K(n) as a graph algebra

As already mentioned, to each element of Kun(n) of the form
∑

γ1,γ2∈Sn γ1σ1γ2⊗ γ1σ2γ2⊗
γ1σ3γ2, we associate a tensor observable, determined by the triple of permutations

(σ1, σ2, σ3) subjected to the equivalence (σ1, σ2, σ3) ∼ γ1 · (σ1, σ2, σ3) · γ2. We now in-

vestigate the algebra inherited on colored bipartite graphs induced from the multiplication

law of Kun(n). As observed in [41] and discussed earlier in this paper, the gauge-fixed

formulation involves permutation pairs subject to simultaneous conjugation equivalence.

These naturally correspond to ordinary bi-partite graphs (edges are not colored). A differ-

ent algebra structure on the space of bi-partite graphs has been considered in [63].

First, given the normalized graph elements of Kun(n), labelled by σi ∈ Sn,

Aσ1,σ2,σ3 =
1

(n!)2

∑
γ1,γ2∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2 (4.1)

we write a product of two of these elements in Kun(n) as

Aσ1,σ2,σ3Aσ4,σ5,σ6 =
1

(n!)4

∑
γ1,γ2,τ1,τ2∈Sn

γ1σ1γ2τ1σ4τ2 ⊗ γ1σ2γ2τ1σ5τ2 ⊗ γ1σ3γ2τ1σ6τ2 (4.2)

A change of variables γ2τ1 → τ1, and renaming of τ2 as γ2 and τ1 as τ , allow us to get

Aσ1,σ2,σ3Aσ4,σ5,σ6 =
1

n!

∑
τ∈Sn

[
1

(n!)2

∑
γ1,γ2∈Sn

γ1(σ1τσ4)γ2 ⊗ γ1(σ2τσ5)γ2 ⊗ γ1(σ3τσ6)γ2

]

=
1

n!

∑
τ∈Sn

Aσ1τσ4, σ2τσ5, σ3τσ6 (4.3)

Thus, the product of two graphs can be written as a sum of graphs. There is a particular

element such that

Aσ1,σ2,σ3Aid,id,id =
1

n!

∑
τ∈Sn

[
1

(n!)2

∑
γ1,γ2∈Sn

γ1(σ1τ)γ2 ⊗ γ1(σ2τ)γ2 ⊗ γ1(σ3τ)γ2

]

=
1

(n!)2

∑
γ1,γ2∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2 = Aσ1,σ2,σ3 (4.4)

and similarly Aid,id,idAσ1,σ2,σ3 = Aσ1,σ2,σ3 . This shows that Aid,id,id = E is a unit element

of the graph algebra.

In the gauge-fixed formulation, the graph multiplication takes the form:

Bσ1,σ2Bσ3,σ4 =
∑
γ1,γ2

γ1σ1γ
−1
1 γ2σ3γ

−1
2 ⊗ γ1σ2γ

−1
1 γ2σ4γ

−1
2

=
∑
τ,γ2

γ2τ
−1σ1τσ3γ

−1
2 ⊗ γ2τ

−1σ2τσ4γ
−1
2

=
∑
τ

Bτ−1σ1τσ3,τ−1σ2τσ4
(4.5)
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where we used a change of variables γ1 → γ2τ
−1 and omit normalization factor, for sim-

plicity. This relation can be also obtained from (4.3) after some proper gauge fixing.

Coming back to the formula (4.3), we can illustrate this in diagram

σ1

σ2

σ3

σ4

σ5

σ6

σ1

σ2

σ3

σ4

σ5

σ6

τ
τ
τ

∑
τ

(4.6)

Algebra Kun(n = 1). Let us illustrate the formula (4.3) at n = 1. There is no choice

here, we obtain E2 = E. This is the unique invariant made by contraction of two tensors,

that is
∑

n1,n2,n3
Tn1,n2,n3 T̄n1,n2,n3 = E. We consider E as an idempotent or unit element

of an 1 dimensional algebra {E}.

Algebra Kun(n = 2). We now examine n = 2. There are 4 possible diagrams, see (4.7).

E ∼ (σ1 = id, σ2 = id, σ3 = id) =

Aid,id,(12) = A ∼ (σ1 = id, σ2 = id, σ3 = (12)) =
3

Aid,(12),id = B ∼ (σ1 = id, σ2 = (12), σ3 = id) =
2

A(12),id,id = D ∼ (σ1 = (12), σ2 = id, σ3 = id) =
1

(4.7)

where the labels 3, 2, 1 denote a particular colored edge which can be used as a label of the

invariant. Note that due to the equivalence under left and right diagonal action, any other

choice reduces to one of the above. For example σ1 = id, s2 = (12), s3 = (12) ∼ (12) · (σ1 =

id, s2 = (12), s3 = (12)) · (12) = (σ1 = (12), σ2 = id, σ3 = id). We then compute some
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products (note that they are normalized by 1/(2!)2 and we use (4.3)):

A · E =
1

2
(Aid,id,(12) +A(12),(12),id) = Aid,id,(12) = A

3
=

3

A ·A =
1

2
(E +A(12),(12),(12)) = E

3 3
=

A ·B =
1

2
(Aid,(12),(12) +D) = D

3 2
=

1

A ·D =
1

2
(A(12),id,(12) +B) = B

3 1
=

2

B ·D =
1

2
(A(12),(12),id +A) = A

2 1
=

3
(4.8)

Other products behave like, in loose notations, BE = B, DE = D, B2 = E,D2 =

E,AB = BA = D,AD = DA = B,BD = DB = A. Thus E is the unit element of

the multiplication law. Furthermore, it is simple to check that the law its associative

(AB)D = D2 = E = A2 = A(BD), (AB)B = DB = A = (AE) = A(B2), commutative

and any element of the graph basis is its own inverse. As expected K(2) = C(S2)⊗C(S2):

the diagonal conjugation action which defines K(2) leaves the permutation pairs invariant.

Algebra Kun(n = 3). The number of invariants is Z3(3) = 11 and this makes the

multiplication table more complicated. We have listed the products in appendix C. In fact,

21 products involving the unit E = are known.

From the multiplication table, we see that Kun(3) is commutative, that some basis

elements can be factorized. We illustrate the product for a non trivial situation obtained

by taking the product of the following elements A(12),(123),id and A(123),(123),(12) depicted as:

A(12),(123),id =

1

A(123),(123),(12) =
3

(4.9)
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Then we get:

1

·
3

=
2

3

2

+
1

3

2

=
3

·

1

(4.10)

5 PCAs and correlators

In this section, we undertake the analysis of correlators of Gaussian tensor models, building

on the permutation description for tensor model observables introduced in [41] and reviewed

earlier. We start with one-point functions of tensor model observables corresponding to

central elements in K(n). These observables are labelled by triples of Young diagrams

and are sums of permutation basis operators weighted by characters. As explained in

section 3 such sums of permutations weighted by characters lead to an overcomplete basis

for the centre in K(n). Correlators parametrized by Young diagrams using characters

have also been highlighted in [58, 59]. Analogous correlators at higher d are expressed in

terms of sums of products of Kronecker coefficients. In section 5.2, we use known results

on Kronecker coefficients to give explicit formulae for several families of correlators. In

section 5.3 we consider normal ordered 2-point correlators, which we have briefly discussed

in [41]. We show that the tensor model observables corresponding to the WA basis for

K(n) discussed in section 3 provide an orthogonal basis for these 2-point functions. This

orthogonality property has also been considered in [38, 59].

5.1 Correlators for central observables

We start our analysis with correlators of general observables at d = 3, parametrised by

permutations, corresponding to general elements of K(n). We then specialize to central

observables labelled by triples of Young diagrams: as we saw in section 3 triples of projectors

labelled by Young diagrams lead to an overcomplete basis for the centre Z(K(n)). We

extend the discussion to any d.

Rank d = 3 correlator. In rank d = 3 tensor models, consider a general observable

Oσ1,σ2,σ3 defined by three permutations σi, i = 1, 2, 3. The expectation value 〈Oσ1,σ2,σ3〉
evaluates in the Gaussian measure, using appendix D. We write:

〈Oσ1,σ2,σ3〉 =
∑
γ

Nc(γσ1)+c(γσ2)+c(γσ3) (5.1)

=
∑
γ

∑
α1,α2,α3

Nc(α1)+c(α2)+c(α3)δ(γσ1α1)δ(γσ2α2)δ(γσ3α3)

=
∑
γ

∑
αl

∑
Rl

d(R1)d(R2)d(R3)

(n!)3
Nc(α1)+c(α2)+c(α3)χR1(γσ1α1)χR2(γσ2α2)χR3(γσ3α3)

where we expand the δ’s over Sn using characters as in (A.16) of appendix A.1. Now we

use three facts: (1)
∑

αN
cαα is a central element in C(Sn), since c(gαγ−1) = c(α), (2)

if B is a central element, characters factorize as χ(AB) = 1
d(R)χ

R(A)χR(B), see (A.20),
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appendix A.1, and (3) that characters extend by linearity over C(Sn), χR(
∑

γ cγγ) =∑
γ cγχ

R(γ), to write (5.1) as

〈Oσ1,σ2,σ3〉 =
∑
γ

∑
Rl

1

(n!)3
d(R1)d(R2)d(R3)

× χR1

(
γσ1

(∑
α1

Nc(α1)α1

))
χR2

(
γσ2

(∑
α2

Nc(α2)α2

))
χR3

(
γσ3

(∑
α3

Nc(α3)α3

))

=
∑
γ

∑
Rl

1

(n!)3
χR1(γσ1)χR2(γσ2)χR3(γσ3)

∑
αl

Nc(α1)+c(α2)+c(α3)χR1(α1)χR2(α2)χR3(α3)

=
∑
γ

∑
Rl

[
3∏
l=1

DimN (Rl)

]
χR1(γσ1)χR2(γσ2)χR3(γσ3) (5.2)

where, in the last stage, we use (A.23) of appendix A.1. DimN (R) is the dimension of the

representation of the unitary group U(N) determined by the Young tableau R. Consider

sums of Oσ1,σ2,σ3 weighted by characters with Young diagrams Sl ` n, l = 1, 2, 3, and define

the function

〈OS1,S2,S3〉 =
1

(n!)3

∑
σl∈Sn

χS1(σ1)χS2(σ2)χS3(σ3)〈Oσ1,σ2,σ3〉 (5.3)

These observables correspond to central elements in K(n) by the map (2.7). We can use

character orthogonality (see (A.18) and (A.1))∑
σ

χS(σ)χR(σγ) =
n!

d(R)
δR,SχR(γ) (5.4)

to write

〈OS1,S2,S3〉 =

[
3∏
l=1

DimN (Sl)

d(Sl)

]∑
γ

χS1(γ)χS2(γ)χS3(γ) = n!

[
3∏
l=1

DimN (Sl)

d(Sl)

]
C(S1, S2, S3)

=
1

(n!)2

[
3∏
l=1

fN (Sl)

]
C(S1, S2, S3) (5.5)

Thus the correlators 〈OS1,S2,S3〉 are proportional to the Kronecker coefficients. The factors

fN (Si) are products of box weights of the Young diagrams (A.2). In a large N limit where

we are considering tensor invariants of degree n, hence Young diagrams with n boxes,

where n is kept fixed and N is taken to infinity, the f -factors behave like Nn at leading

order. The relative magnitudes of the correlators in this limit is determined purely by the

Kronecker coefficients. At finite N , since we are dealing with a theory where the tensor

indices are taking N possible values, the Young diagrams are cut-off to have no more than

N rows.

Rank d correlator. The above formula (5.2) can be generalized at any rank d. Rank

d Gaussian correlators of a generic observables Oσ1,σ2,...,σd labelled by d permutations σl,
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l = 1, 2, . . . , d. We will sketch the above analysis for Oσ1,σ2,...,σd :

〈Oσ1,σ2,...,σd〉 =
∑
γ

Nc(γσ1)+c(γσ2)+···+c(γσd)

=
∑
γ

∑
Rl

1

(n!)d

[
d∏
l=1

d(Rl)χ
Rl

(
γσl

∑
αl

Nc(αl)αl

)]
(5.6)

Then, using the same technique, we arrive at

〈Oσ1,σ2,...,σd〉 =
∑
γ

∑
Rl

[
d∏
l=1

DimN (Rl)χ
Rl(γσl)

]
(5.7)

We calculate the Fourier transform of Oσ1,σ2,...,σd weighted by characters. Let Sl,

l = 1, . . . , d, partitions of n,

〈OS1,S2,...,Sd〉 =
∑

σ1,σ2,...,σd

1

(n!)d
χS1(σ1)χS2(σ2) . . . χSd(σd)〈Oσ1,σ2,...,σd〉

=

[
d∏
l=1

DimN (Sl)

d(Sl)

]∑
γ

[
d∏
l=1

χSl(γ)

]
(5.8)

Introducing Cd(S1, S2, . . . , Sd) = 1
n!

∑
γ

[∏d
l=1 χ

Sl(γ)
]
, the number of invariants in S1 ⊗

S2 ⊗ · · · ⊗ Sd, we can write

〈OS1,S2,...,Sd〉 = n!

[
d∏
l=1

DimN (Sl)

d(Sl)

]
Cd(S1, S2, . . . , Sd) (5.9)

As an illustration, restricting to rank d = 4, and using the relation (3.9), that is

C4(S1, S2, S3, S4) =
∑

S C(S1, S2, S)C(S, S3, S4) counting the number of invariants in S1 ⊗
S2 ⊗ S3 ⊗ S4, we have

〈OS1,S2,S3,S4〉 = n!

[
4∏
l=1

DimN (Sl)

d(Sl)

]∑
S

C(S1, S2, S)C(S, S3, S4) (5.10)

Note that Cd(S1, . . . , Sd) can be decomposed as a sum of Kronecker coefficients convoluted

in one of their indices. A possible sequence of such a convolution could be
∑

S̄l
C(S1, S2, S̄1)

C(S̄1, S3, S̄2)C(S̄2, S4, S̄3)C(S̄3, S5, S̄4) . . . . Any permutation over Si’s giving a different se-

quence should give the same answer Cd(S1, . . . , Sd). Then, we observe that there is graph-

ical way to encode the expansion of 〈OS1,S2,...,Sd〉 as a convoluted sum of Kronecker coeffi-

cient C(Sa, Sb, Sc). Reminiscent of Feynman rules, we associate C(Sa, Sb, Sc) with a triva-

lent graph vertices and half edges labelled by Sa, Sb and Sc, each symbol S summed over

between two Kroneckers C(Sa, Sb, S) and C(S, Sb′ , Sc′) is associated with an edge between

the vertices C(Sa, Sb, S) and C(S, Sb′ , Sc′). It is not hard to realize that the corresponding

graph is always a tree graph with vertex set with vertices of degree 3 and d half-edges.

Therefore, each correlator 〈OS1,S2,...,Sd〉 is associated with a decomposition in several tree
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A B1 B2

Figure 2. Order 5 unlabelled tree configurations.

graphs the half edges of which are labelled by S1, . . . , Sd. Any of these tree graphs to which

we finally give a weight n!
[∏d

l=1
DimN (Sl)
d(Sl)

]
is a valid representative of 〈OS1,S2,...,Sd〉. For

example, the correlator (5.10) is associated with any of the following trees:

S

S1

S2 S3

S4

S

S1

S3 S2

S4

S

S1

S4 S2

S3

(5.11)

At order 5, there is a unique unlabelled tree configuration (see figure 2 A) yielding 15

different tree labellings of half edges (or leaves) and, at order 6, there are 2 unlabelled tree

configurations (see, figure 2 B1 and B2) giving 120 different tree labellings of half edges

(B1 yields 90, and B2, 30). The counting of that type of trees is the counting of 3-regular

(or binary) trees with d leaves and d− 2 vertices (and so 2d− 3 edges). This will involve a

mixture of a counting of the so-called binary beanstalk (A and B1) but also more general

terms. For d = 3, 4, 5, 6, we have the sequence

1, 3, 15, 120, (5.12)

respectively, which should be completed at any d.

5.2 Correlators and Kronecker coefficients: explicit examples

To illustrate the above formula (5.5), we evaluate correlators of rank 3 tensor models as a

function of N > 1, and n ≥ 0, for some particular Young diagrams.

For any S2 and S3, and for S1 = [n] = . . .︸ ︷︷ ︸
n−boxes

, then C(S1, S2, S3) = 1 and

so 〈OS1,S2,S3〉 = [
∏3
l=1 fN (Sl)]/(n!)2, from (5.5). That computes to

〈OS1,S2,S3〉 = (N − 2)(N − 3) . . . (N − 1− n)
fN (S2)fN (S3)

(n!)2
(5.13)

Note that, in the following, we consider that N is large enough compared to n. Specifying

S2 and S3 to give a more precise formula for the correlator. For all n, consider the Young

diagrams defined by

Sl = [n] = . . .︸ ︷︷ ︸
n−boxes

, l = 1, 2, 3, (5.14)

such that from (5.13), one gets

〈OS1,S2,S3〉 =
[(N − 2)(N − 3) . . . (N − 1− n)]3

(n!)2
=

[(N − 2)!]3

(n!)2[(N − 2− n)!]3
(5.15)

Varying the order of the symmetric group, that is varying n = 1, 2, 3, . . . , 10 gives table 1.
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n=1 n=2 n=3 n=4 n= 5

N = 2 0 0 - - -

N = 3 1 0 0 - -

N = 4 8 2 0 0 -

N = 5 27 54 6 0 0

N = 6 64 432 384 24 0

N = 7 125 2000 6000 3000 120

N = 8 216 6750 48000 81000 25920

N = 9 343 18522 257250 1029000 1111320

N = 10 512 43904 1053696 8232000 21073920

Table 1. Evaluation of 〈O[n],[n],[n]〉.

Let us introduce the notation [n − k, 1, . . . , 1] = [n − k, 1k], where k is the number

of 1 appearing in the dots. For all n, C([n], [n − k, 1k], [n − k, 1k]) = 1. Hence, for k ∈
{0, 1, · · · , n− 1},

S1 = [n] = . . .︸ ︷︷ ︸
n−boxes

, S2 = S3 = [n− k, 1k] =

n−k−boxes︷ ︸︸ ︷
...
...

. . . (5.16)

where the dots in the 1st vertical column refers to k-times a block of size 1. Hence for this

class of Young diagrams, the correlator calculation can be easily made.

〈O[n],[n−k,1k],[n−k,1k]〉 = (N − 2)(N − 3) . . . (N − 1− n)

× [(N − 2)(N − 3)2 . . . (N − 1− k)2(N − k − 2)2(N − k − 3) . . . (N − 1− (n− k))]2

(n!)2

=
[(N − 2)(N − 3) . . . (N − 1− (n− k))]3

(n!)2

× (N − 3)2(N − 4)2 . . . (N − 2− k)2(N − n+ k − 2)(N − n+ k − 3) . . . (N − 1− n)

=
[(N − 2)!]3

[∏k
l=1(N − 2− l)2

][∏k
l=1(N − n+ k − 1− l)

]
(n!)2[(N − n+ k − 2)!]3

(5.17)

It turns out that 〈O[n],[n−k,1k],[n−k,1k]〉 is not necessarily an integer for any values of k. One

can check this by direct evaluation for instance using N = 7, n = 3, 〈O[3],[2,1],[2,1]〉 = 32000
3 .

In any case, we further restrict to the case k = 1 and give 〈O[n],[n−1,1],[n−1,1]〉 for different

values of N and n ≥ 2, in table 2.

Next, we relax the assumption that S1 is the symmetric representation. Avoiding

trivial cases, consider n ≥ 2 and k ≤ n
2 , then we consider the following

S1 = S2 = S3 = [n− k, k] =

n−k−boxes︷ ︸︸ ︷
. . .

. . . (5.18)

where of course the second row has k boxes.
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n=2 n=3 n=4 n=5 n= 6

N = 2 0 - - - -

N = 3 0 0 - - -

N = 4 2 0 0 - -

N = 5 54 24 0 0 -

N = 6 432 864 216 0 0

N = 7 2000 32000
3 12000 1920 0

N = 8 6750 75000 225000 162000 18000

Table 2. Evaluation of 〈O[n],[n−1,1],[n−1,1]〉.

n=2 n=3 n=4 n=5 n= 6

N = 2 0 - - - -

N = 3 0 0 - - -

N = 4 2 2
9 0 - -

N = 5 54 48 3 0 -

N = 6 432 1296 648 648
25 0

N = 7 2000 128000
9 24000 7680 640

3

N = 8 6750 93750 375000 405000 90000

N = 9 18522 444528 3472875 8890560 6667920

Table 3. Evaluation of 〈O[n−1,1],[n−1,1],[n−1,1]〉.

According to a computation using SAGE mathematical software up to order n = 25,

for all n ≥ 3k, the Kronecker coefficient of the two-row Young diagrams is given by

C([n− k, k], [n− k, k], [n− k, k]) =
⌊k

2

⌋
+ 1 (5.19)

where b·c denotes the floor function. Therefore, from (5.5), we have

〈O[n−k,k],[n−k,k],[n−k,k]〉 =

[(∏n−k
l=1 (N−1−l)

)(∏k
l=1(N−2−l)

)]3

(n!)2

(⌊k
2

⌋
+1

)
(5.20)

for n ≤ 25 and k ≤ n
3 : while we have checked for n ≤ 25, we expect this will hold for higher

n as well. General stability properties of Kronecker coefficients are described in [64, 65].

This correlator (5.20) is not integral in general. We obtain table 3 listing some values of

〈O[n−1,1],[n−1,1],[n−1,1]〉 (at k = 1). Note that for this table, the column n = 2 coincides with

the column n = 2 of table 2 as expected from the correlator formulas (5.20) and (5.17) at

n = 2 and k = 1.

Finally, let us consider three Young diagrams with rectangular shape. Consider n to

be divisible such that n = jk, with j and k integers:

S1 = S2 = S3 = [kj ] =

k−boxes︷ ︸︸ ︷
. . .

... . . .

... . . .

. . .

(5.21)
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n=2 n=4 n=6 n =8

N = 2 - - 0 -

N = 3 0 - 0 -

N = 4 2 0 0 -

N = 5 54 3 0 -

N = 6 432 648 0 -

N = 7 2000 24000 0 -

N = 8 6750 375000 0 2430000
49

N = 9 18522 3472875 0 17010000

n=3 n=6

N = 2 - -

N = 3 - -

N = 4 2
9 -

N = 5 6 -

N = 6 48 -

N = 7 2000
9

80
3

N = 8 750 1250
3

N = 9 2058 15435
4

Table 4. Evaluation of 〈O[k2],[k2],[k2]〉, for n = 2k (left) and of 〈O[k3],[k3],[k3]〉, with n = 3k (right).

For simplicity, let us assume that j ≤ k < N − 1,

〈O[kj ],[kj ],[kj ]〉 =
1

(n!)2

[
k∏
l=1

(N − 1− l)!
(N − j − 1− l)!

]3

C([kj ], [kj ], [kj ]) (5.22)

which can be again computed. We will restrict to the lowest orders in k:

– If the number of rows is j = 2, such that Sl = [k2], for k even, we have

C([k2], [k2], [k2]) = 1 and for k odd, C([k2], [k2], [k2]) = 0. In this case, the corre-

lator values coincide with columns n = 2 and 4 of table 3 but, at order n = 8, they

start to differ. In this case the correlator is also not an integer. We obtain the l.h.s.

of table 4.

– If the number of rows is j = 3, such that Sl = [k3], we have, for k ≤ 30 and for k

even, C([k3], [k3], [k3]) = k/2 and for k odd, C([k3], [k3], [k3]) = bk/2c+ 1. We obtain

the r.h.s. of table 4.

5.3 Orthogonality of two-point functions and WA basis for K(n)

If we consider correlators of normal-ordered operators (see appendix D), then we can write

them in terms of the product in K(n) and the delta function

〈Oσ1,σ2,σ3Oτ1,τ2,τ3〉 =
∑
γ1,γ2

N3nδ3[(σ1⊗σ2⊗σ3)γ⊗3
1 (τ1⊗ τ2⊗ τ3)γ⊗3

2 (Ω1⊗Ω2⊗Ω3)] (5.23)

with Ωi =
∑

αi∈Sn N
c(αi)−nαi. An important property of the Ωi’s is that they are central

elements of C(Sn). Indeed, using c(γαγ−1) = c(α), one finds that γΩiγ
−1 = Ωi. The

tensor product of Ω factors defines a central element in K(n), hence the product in (5.23)

involves the triples of permutations defining the two observables and the central elements

defined by the Ω-factors. The above equation (5.23) was derived as eq. (42) in [41] (or

(102) of the arXiv version)). There is a mistake in a following equation ((105) of the arXiv)

which should be

〈Oσ1,σ2,σ3Oτ1,τ2,τ3〉 = n!
∑
µ∈Sn

δ2[(β−1
2 µ−1α2µΩ2)⊗ (β−1

3 µ−1α3µΩ3)∆(Ω1)] (5.24)
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where α2 = σ−1
1 σ2, α3 = σ−1

1 σ3, β2 = τ−1
1 τ2, β3 = τ−1

1 τ3, and

∆(Ω) =
∑
α

Nc(α)α⊗ α (5.25)

The Fourier basis (or representation basis ) of operators is defined by

OR,S,Tτ1,τ2 =
∑

σ1,σ2,σ3

δ3(QR,S,Tun;τ1,τ2σ
−1
1 ⊗ σ

−1
2 ⊗ σ

−1
3 )Oσ1,σ2,σ3 (5.26)

= κR,S,T
∑
σl

∑
il,jl

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;j3

DR
i1j1(σ1)DS

i2j2(σ2)DS
i3j3(σ3)Oσ1,σ2,σ3

The conjugate operator is

OR,S,Tτ1,τ2 = κR,S,T
∑
σl

∑
il,jl

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;j3

DR
i1j1(σ1)DS

i2j2(σ2)DS
i3j3(σ3)Oσ1,σ2,σ3

= κR,S,T
∑
σl

∑
il,jl

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;j3

DR
i1j1(σ1)DS

i2j2(σ2)DS
i3j3(σ3)Oσ−1

1 ,σ−1
2 ,σ−1

3

= κR,S,T
∑
σl

∑
il,jl

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;j3

DR
j1i1(σ1)DS

j2i2(σ2)DS
j3i3(σ3)Oσ1,σ2,σ3

= OR,S,Tτ2,τ1 (5.27)

where in the last stage of the equality, we simply rename il → jl and vice-versa.

The two-point correlator evaluates as:

〈OR1,S1,T1

τ1,τ ′1
OR2,S2,T2

τ2,τ ′2
〉 =

∑
γ1,γ2

N3nδ3

[
QR1,S1,T1

un;τ1,τ ′1
γ⊗3

1 QR2,S2,T2

un;τ ′2,τ2
γ⊗3

2 (Ω1 ⊗ Ω2 ⊗ Ω3)
]

(5.28)

This shows that the inner product on tensor model observables, given by the Gaussian

integral (with a normal ordering prescription which excludes Wick contractions within the

observable), is proportional to the group theoretic inner product on K(n) with the insertion

of the Ω1 ⊗ Ω2 ⊗ Ω3 factor. The invariance property of the Qun-operators (3.44) gives

〈OR1,S1,T1

τ1,τ ′1
OR2,S2,T2

τ2,τ ′2
〉 = (n!)2N3nδ3

(
QR1,S1,T1

un;τ1,τ ′1
QR2,S2,T2

un;τ ′2,τ2
Ω1 ⊗ Ω2 ⊗ Ω3

)
(5.29)

Use the matrix-multiplication property of the Qun-operators from (3.45) to write:

〈OR1,S1,T1

τ1,τ ′1
OR2,S2,T2

τ2,τ ′2
〉 = (n!)2N3nδR1,R2δS1,S2δT1,T2δτ ′1,τ ′2δ3(QR1,S1,T1

un;τ1,τ2 Ω1 ⊗ Ω2 ⊗ Ω3) (5.30)

Since Ωi are central elements in C(Sn), we have

QR1,R2,R3
un;τ1,τ2 Ω1 ⊗ Ω2 ⊗ Ω3 =

χR1(Ω1)

d(R1)

χR2(Ω2)

d(R2)

χR3(Ω3)

d(R3)
QR1,R2,R3

un;τ1,τ2

= N−3nDimN (R1)DimN (R2)DimN (R3)QR1,R2,R3
τ1,τ2 (5.31)

where, recalling the form of χR(Ω) =
∑

αN
c(α)−nχR(α), we then use (A.25) in

appendix A.1.

– 28 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
2

We also have (as we prove shortly)

δ3(QR,S,Tun;τ1,τ2) = κR,S,T
∑
il,jl

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;j3

δi1,j1δi2,j2δi3,j3 = κR,S,Td(T )δτ1,τ2 (5.32)

The Q’s behave like elementary matrices of a matrix algebra. The δ3 behaves like the trace.

Using (5.30) and the above, the correlator becomes

〈OR1,S1,T1

τ1,τ ′1
OR2,S2,T2

τ2,τ ′2
〉

= δR1,R2δS1,S2δT1,T2δτ1,τ2δτ ′1,τ ′2κR1,S1,T1d(T1)DimN (R1)DimN (S1)DimN (T1) (5.33)

and this shows that {OR,S,Tτ,τ ′ } forms an orthogonal basis for Gaussian correlators (with

normal ordered prescription) arising directly from the QR,S,Tun;τ,τ ′ , which are the representation

theoretic WA basis of K(n), via the map (2.7).

5.4 K∞ and correlators

We have emphasized, in the bulk of the paper, the role of the algebra K(n) in organiz-

ing several aspects of correlators. Similar algebras arise in the context of matrix theory

problems. For the half-BPS sector, we have the centre of C(Sn), denoted by Z(C(Sn)).

A basis at fixed n is labelled by partitions, which in turn can be used to organize multi-

trace holomorphic functions of a single matrix of degree n (i.e. a multi-trace containing

n copies of the matrix Z). The multiplication of two multi-traces of degrees n1 and n2

produces a multi-trace of degree n1 + n2. Using the map to central elements of Z(C(Sn)),

this corresponds to an outer product which takes central elements T1 ∈ Z(C(Sn1)) and

T2 ∈ Z(C(Sn1)) to get something in Z(C(Sn1+n2)) followed by a projection to the centre.

The direct sum

∞⊕
n=0

Z(C(Sn)) (5.34)

provides a natural setting for correlators.

For the 2-matrix problem, relevant to the quarter BPS sector of N = 4 SYM, there is

a PCA A(m,n) corresponding to multi-traces with m copies of X and n copies of Y . In

this case too, it is natural to consider a direct sum over all m,n ≥ 0.

For the problem which is our present main focus, rank-3 complex tensors, the analogous

infinite dimensional associative algebra is

K∞ =

∞⊕
n=0

K(n) (5.35)

There are in fact two associative products on this vector space. The product at fixed n

has been the main subject of this paper. The WA decomposition at fixed n is related to

the formula for K(n) as a sum of squares of C(R,S, T ). There is also an outer product on
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K∞ which we now decribe. Given two permutation pairs in K(n1) and K(n2) respectively,

(σ1, σ2) =
∑

γ1∈Sn1

(γ1σ1γ
−1
1 , γ1σ2γ

−1
1 )

(τ1, τ2) =
∑

γ2∈Sn2

(γ2τ1γ
−1
2 , γ2τ2γ

−1
2 ) (5.36)

we have an outer product

◦ : K(n1)⊗K(n2)→ K(n1 + n2)

(σ1, σ2) ◦ (τ1, τ2) =
∑

γ∈Sn1+n2

(γ(σ1 ◦ τ1)γ−1, γ(σ2 ◦ τ2)γ−1) (5.37)

This outer product to the multiplication of the gauge-invariant functions of Φ, Φ̄ of degrees

n1 and n2 to give a function of degree n1 + n2. This outer product is related to the ring

structure which has been described in detail, using the representation basis in [38].

As a generalization of normal ordered two-point functions,

〈N (Oσ1,σ2)N (Oτ1,τ2)〉 (5.38)

which is expressed using the product in K(n), we may consider

〈N (Oσ1,σ2Oτ1,τ2)N (Oσ3,σ4)〉 (5.39)

Here σ3, σ4 are in Sn1+n2 and the correlator can be expressed in terms of

((σ1, σ2) ◦ (τ1, τ2)) · (σ3, σ4) (5.40)

which involves the commutative outer product followed by the non-commutative product

within K(n1 + n2). This interplay between the two products in the context of correlators

of one and two-matrix models has been described in [52].

Infinite dimensional algebras constructed as direct sums of the above kind, with more

than one associative product, in some cases with a co-product and Hopf algebra struc-

ture, have been studied in the subject of combinatorial Hopf algebras, with applications

in diverse areas of combinatorics (see e.g. [66]). It would be interesting to explore the

application of such combinatorial Hopf algebras in providing a mathematical framework

for the computation of correlators in matrix/tensor models.

6 Correlators, permutation-TFT2 and covers of 2-complexes

In this section, we will show how correlators in tensor models can be expressed as observ-

ables in topological field theory of Sn flat connections on appropriate 2-complexes. This Sn
description is closely related to covering spaces of the 2-complexes. The powers of N are

shown to be related to the Euler character of the cover. This generalizes to tensor mod-

els analogous results obtained for single-matrix models and quiver matrix models [57, 67].

Unlike the case of matrix models, where the 2-complexes are cell-decompositions of smooth
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2-manifolds (possibly with boundaries and possibly equipped with line defects), here the

2-complexes do not discretize smooth 2-dimensional spaces.

Consider (5.6) that we re-express:

〈Oσ1,σ2,··· ,σd〉 =
∑

γ,α1,α2,··· ,αd∈Sn

δ(α−1
1 γσ1)δ(α−1

2 γσ2) · · · δ(α−1
d γσd)N

c(α1)+c(α2)+···+c(αd)

=
∑

α1,α2,··· ,αd

δ(α2α1σ
−1
1 σ2)δ(α3α1σ

−1
1 σ3) · · · δ(αdα1σ

−1
1 σd) (6.1)

In the last line, we did the sum over γ by using the first delta function. Defining τ1 = σ−1
1 σ2,

τ2 = σ−1
1 σ3, · · · τd−1 = σ−1

1 σ2, we have

〈Oσ1,σ2,··· ,σd) = 〈O1,τ1,τ2,··· ,τd−1
〉

=
∑
αl

δ(α2α1τ1)δ(α3α1τ2) · · · δ(αdα1τd−1)Nc(α1)+c(α2)+···+c(αd) (6.2)

It is instructive to normalize the observables by including factors

d−1∏
i=1

N (c(τi)−3n) = N−2n(d−1)
d−1∏
i=1

N (c(τi)−n) (6.3)

so that the normalized observable takes the form

Õ1,τ1,τ2,··· ,τd−1
=

(
N−2n(d−1)

d−1∏
i=1

N (c(τi)−n)

)
O1,τ1,τ2,··· ,τd−1

(6.4)

We then write the above normalized correlator as

〈Õ1,τ1,τ2,··· ,τd−1
〉

=
∑
αl

N−n(d−1)+
∑d−1
i=1 (c(τi)−n)+

∑d
i=1(c(αi)−n)δ(α2α1τ1)δ(α3α1τ2) · · · δ(αdα1τd−1) (6.5)

These sums over delta functions can be interpreted as partition functions of two-

dimensional Sn 2D-topological field theory (TFT2) on 2-complexes. These Sn TFT2 are

lattice gauge theories with a simple topological plaquette action consisting of delta func-

tions for the product of permutations along the edges of the 2-cell. For a review of these

TFT2 and their applications to correlators in quiver gauge theories and Feynman graph

combinatorics see [57, 68].

Sn TFT2 are also closely related to branched covers, a fact which has applications

in the string theory of 2dYM [69, 70]. It is interesting that it is possible to choose the

normalizations of the operators and an overall normalization in terms of powers of N ,

such that the amplitude has a power of N which is exactly equal to the Euler character

of the covering 2-complex. The appropriate 2-complexes have a single vertex and loops

corresponding to the permutations, and 2-cells (plaquettes) corresponding to the delta

functions. Figure 3 shows the appropriate 2-cells for the cases d = 3, 4. The vertices,

labelled A are all identified to a single point. The αi as well as the τi therefore correspond
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Figure 3. 2-cell for Sn TFT2 interpretation of correlator at d = 3 (left) and d = 4 (right). The

2-cells in the 2-complexes are (α1τlαl), l = 2, 3, 4.

to closed loops. The triangles are the 2-cells. In the covering space interpretation, there

is an n-fold cover of the 2-complex. The permutations αi describe the monodromy of the

sheets of the covering as the different cycles are traverses from A back to A. The terms

(c(σ)− n) is the contribution to the Euler character of a 2-surface whose boundary covers

a circle on the target space with monodromy σ (see for example the review on branched

covers in [70, 71]). Hence we have these factors for each of the α’s and τ ’s. The 2-complex

has one vertex, 2(d − 1) + 1 = 2d − 1 edges, and (d − 1) faces. The Euler characteristic

V −E+F = −d+1. According to the correlator formula above, when the permutations are

all equal to the identity, the power is −n(d − 1), which is the correct Euler characteristic

of the trivial n-fold cover.

The weight Nχ is expected from a string theory where gst = N−1. The above formula

for the correlators, as a sum over coverings of a 2-complex by a 2-complex, suggests an

interpretation where the covering 2-complex is viewed as a “string worldsheet” and the

target 2-complex as a target space for the string. Interestingly the 2-complexes for general

d have d−1 2-cells joined at the vertical edge. So these 2-complexes are not cell decomposi-

tions of smooth two-dimensional surfaces. They can be 2-skeletons for cell decompositions

of 3-manifolds.

This raises a number of fascinating questions for the future. Is there some form of

higher dimensional topological invariance in this string counting, associated with higher

dimensional manifolds? Can we use this combinatoric string theory interpretation to de-

velop a topological string action with these higher dimensional manifolds as target spaces?

This logic of identifying the stringy geometry in the combinatorics of the large N expan-

sion proved useful as a stepping stone for developing the string theory in the case of 2d

Yang Mills theory [70, 72] — for a proposal connecting this string theory to AdS dynamics,

see [73]. The recent focus on tensor models, through their connection to SYK models, is

directed towards the emergence of conformal symmetry and holographic duality involving

AdS spaces (see the references mentioned in the introduction). The story of gauge-string

duality (see e.g. the review [2]) involving low dimensional non-critical string backgrounds

formulated as c ≤ 1 matter coupled to Liouville theory, co-existing with alternative formu-

lations in terms of topological strings, intersection theory on moduli spaces, or collective

field theory may conceivably have a counterpart for tensor models. The unifying role of

algebras related to permutations, and permutation topological field theories, in organizing

physical correlators for matrix as well as tensor models suggests that such a scenario is not
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unrealistic and worth exploring. The key role of the Wedderburn-Artin decomposition of

algebras, which finds an interpretation in open-closed topological string theory [55, 56, 75]

— with open strings associated to generic elements of the algebra and central elements

associated with closed strings — suggests that finding an interpretation of these open-

closed relations in the alternative holographic formulations of the string theory would be

an interesting goal.

The Sn-TFT2 picture also gives a geometrical picture for correlators in the Fourier

basis. Take for example the correlator (5.5) that is:

〈OR1,R2,R3〉 = n!C(R1, R2, R3)

3∏
i=1

DimN (Ri)

d(Ri)
(6.6)

Consider the partition function of Sn TFT2 on the 2-complex shown in figure 4

Z(σ1, σ2, σ3) =
∑

σ0,γ1,γ2,γ3∈Sn

δ(σ0γ1σ1γ
−1
1 )δ(σ0γ2σ2γ

−1
2 )δ(σ0γ3σ3γ

−1
3 )

= n!
∑

σ1,σ2,σ3,γ1,γ2

δ(σ1γ1σ2γ
−1
1 )δ(σ1γ2σ3γ

−1
2 ) (6.7)

Considering the central correlators in the Fourier basis

Z(PR1 , PR2 , PR3) = n!C(R1, R2, R3) (6.8)

Inserting the central elements Ω =
∑

σ∈Sn N
c(σ)σ we have

Z(
Nn

n!
ΩPR1 ,

Nn

n!
ΩPR2 ,

Nn

n!
ΩPR3) = n!

DimN (R1)

d(R1)

DimN (R2)

d(R2)

DimN (R3)

d(R3)
C(R1, R2, R3)

(6.9)

Similarly, for d = 4,

Z(PR1 , PR2 , PR3 , PR4) = n!C(R1, R2, R3, R4) (6.10)

and

Z

(
Nn

n!
ΩPR1 ,

Nn

n!
ΩPR2 ,

Nn

n!
ΩPR3 ,

Nn

n!
ΩPR4

)
= n!

DimN (R1)

d(R1)

DimN (R2)

d(R2)

DimN (R3)

d(R3)

DimN (R4)

d(R4)
C(R1, R2, R3, R4) (6.11)

The 2-cellular complexes associated with the counting at d = 3 and at d = 4 have been

given in figure 5.

The different ways of factorizing this 4-point function corresponds to the different

topologically equivalent ways of resolving the 4 copies of incident circles into successive

3-fold incidences. This is illustrated in figure 6.
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σ3

σ2
σ1

σ3

σ2
σ1

1

2

3

Figure 4. Sn TFT2 for Kronecker coefficients: permutation basis.

R3

R2

R1

~ C(R1,R2,R3)

R3

R2

R1

R4

~ C(R1,R2,R3,R4)

Figure 5. Sn TFT2 for Kronecker coefficients: central in rep basis in d = 3 (left) and d = 4 (right).

R3

R2

R1

R4
R4

R3

R2

R1
S

R4

R2

R3

R1
T

~ ~

Figure 6. Sn TFT2 for Kronecker coefficients: factorization equation (3.9) or (5.10).

7 S3-color exchange symmetry

The standard Gaussian integral over tensor fields is symmetric under exchange of the d

colors, and as such is expected to provide selection rules for correlators. This is also

expected in any interacting model, which is obtained by adding to a Gaussian term an

interaction which is invariant under color-exchange. It is therefore natural to consider the

implications of the Sd permutation group symmetry for the correlators of the tensor model

and for the algebra K(n), which has been shown to be intimately related to correlators

in previous sections. Colored symmetric tensor model observables have been enumerated

in [41] using group algebra techniques. Color-symmetric interactions have also played a

distinguished role as interactions in renormalizable tensor field theories [16–21].

The counting of color-symmetric observables in [41] was done in terms of sums over

the conjugacy classes of Sd. For each conjugacy class p in Sd, we had expressions S
(d)
p

which were sums over partitions of Sn. These were themselves observed to have integrality
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properties. Explicit formulae for S
(d)
p were given for d up to 4, and they have been computed

to high orders in OEIS [76].

In this section, we will give formulae in terms of character sums for S
(d)
p (n) for general

d and p ` d. We will consider the decomposition of K(n, d) in terms of symmetry types

of Sd, labelled by Young diagrams Y of Sd. The integrality of these will be used to prove

that the integrality of S
(d)
p (n). The completely symmetric Young diagram Y = [d] ≡ Y0

corresponds to the counting of color-symmetrized graphs.

Focusing on the case d = 3, where we have 3 colors, we describe selection rules for

the multiplication in K(n) which follow from color-exchange symmetry. We observe that

the subspace KY0(n) forms a sub-algebra of K(n). Like K(n) it inherits a non-degenerate

pairing from C(Sn)⊗C(Sn). The WA theorem implies therefore that it has a decomposition

as a direct sum of matrix algebras. This in turn implies that we should be able to write

a formula for the dimension of KY0(n) as a sum of squares. We find such a formula and

explain how to construct a basis for KY0(n) which matches the counting. We give group

theoretic formulae for the dimensions of the other S3 invariant subspaces of K(n), namely

KY1(n),KY2(n) where Y1 = [2, 1], Y2 = [3] are the Young diagrams for mixed symmetry and

for the antisymmetric representation of S3.

7.1 Counting observables in the rank d = 3 case

Color-symmetrised graphs are defined [41] by imposing an equivalence under S3 permuta-

tions of the permutation triples describing the graph

(σ1, σ2, σ3) ∼ (σ2, σ1, σ3) ∼ (σ1, σ3, σ2) ∼ . . . (7.1)

These S3 permutations commute with the diagonal left Sn action and the diagonal right

multiplication, which are used to get colored graphs from the permutation triples. Elements

of (C(Sn))⊗3 invariant under this S3 action are

[σ1σ2σ3] :=
∑
α∈S3

σα(1) ⊗ σα(2) ⊗ σα(3) ∈ C(Sn)⊗3 (7.2)

The left and right Sn equivalences are imposed on these S3 symmetric triples

[σ1σ2σ3] ∼ [γ⊗3
1 ][σ1σ2σ3][γ⊗3

2 ] =
∑
α∈S3

γ1σα(1)γ2 ⊗ γ1σα(2)γ2 ⊗ γ1σα(3)γ2 (7.3)

The color-symmetric subspace of K(n), denoted KY0(n) has a dimension given by

dim(KY0(n)) =
1

6n!

∑
γ∈Sn

∑
σ2,σ3∈Sn

δ(γ−1 σ2γ σ
−1
2 )δ(γ−1 σ3γ σ

−1
3 )

+
1

2n!

∑
γ∈Sn

∑
σ∈Sn

δ(γ2σγ−2σ−1) +
1

3n!

∑
γ,σ∈Sn

δ(γ3σ3)

=
1

6n!

∑
p`n

Sym(p) +
1

2n!

∑
γ∈Sn

∑
σ∈Sn

δ(γ2σγ−2σ−1) +
1

3n!

∑
γ,σ∈Sn

δ(γ3σ3)

=
1

6
S

(3)
[13]

(n) +
1

2
S

(3)
[2,1](n) +

1

3
S

(3)
[3] (n) (7.4)
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This was denoted Z3; cs(n) in [41]. Since the actions of S3 commutes with Sn × Sn, we in

fact have an action of S3×Sn×Sn and we can equally first apply the Sn×Sn equivalence

in C(Sn)⊗C(Sn)⊗C(Sn) to get K(n) and subsequently project to the invariants of the S3

action. Following the steps in [41] (see equation (59) and following there) we see that the

three terms can be written as

S
(3)
[13]

= trK(n)((1)(2)(3)) , S
(3)
[2,1] = trK(n)((12)) , S

(3)
[3] = trK(n)((123)) (7.5)

where trK(n)(·) is a trace over the vector space K(n). We thus have

dim(KY0(n)) =
1

6
trK(n)((1)(2)(3)) +

1

3
trK(n)((12)) +

1

2
trK(n)((123)) (7.6)

The Burnside lemma calculation in [41] can be regarded as the application of the normalized

projector for Sn × Sn × S3 acting on C(Sn)⊗C(Sn)⊗C(Sn) followed by taking the trace.

This is because under inner product on C(Sn) given by the delta function, the permutations

form an orthonormal basis.

7.2 The algebra KY0(n)

We define the algebra KY0(n) the left and right invariant and colored symmetric sub-algebra

of C(Sn)⊗3 as

Kcs(n) = SpanC

{ ∑
γ1,γ2,γ3∈Sn,τ∈S3

γ1στ(1)γ2⊗γ1στ(2)γ2⊗γ1στ(3)γ2 , σ1, σ2, σ3 ∈ Sn

}
(7.7)

It can be checked that the product of two basis elements of Kcs(n), A =
∑

τ∈S3,γi∈Sn
(γ1στ(1)γ2⊗γ1στ(2)γ2⊗γ1στ(3)γ2) and B =

∑
τ ′∈S3,γ′i∈Sn

γ′1στ ′(1)γ
′
2⊗γ′1στ ′(2)γ

′
2⊗γ′1στ ′(3)γ

′
2

belongs to Kcs(n). We have

AB (7.8)

=
∑

τ,τ ′∈S3

∑
γi,γ′i∈Sn

(γ1στ(1)γ2 ⊗ γ1στ(2)γ2 ⊗ γ1στ(3)γ2)(γ′1στ ′(1)γ
′
2 ⊗ γ′1στ ′(2)γ

′
2 ⊗ γ′1στ ′(3)γ

′
2)

= n!
∑

τ ′,γ2∈S3

{ ∑
τ∈S3

∑
γ1,γ′2∈Sn

γ1(στ(1)γ2στ ′(1))γ
′
2 ⊗ γ1(στ(2)γ2στ ′(2))γ

′
2 ⊗ γ1(στ(3)γ2στ ′(3))γ

′
2

}

where we successively used γ2γ
′
1 → γ2, τ ′ → τ ′τ−1. Then, the product AB is a sum of

basis elements of Kcs(n) hence belongs to Kcs(n).

7.3 Decomposition of K(n) into representations of S3

The group algebra C(Sn)⊗C(Sn)⊗C(Sn) is a representation of Sn×Sn×S3. One Sn acts

on the diagonally on the left, the other acts diagonally on the right, and the S3 permutes

the three factors. These three actions commute. Once we have projected to the invariant

subspace of Sn × Sn to get K(n) we still have an S3 action. We can decompose K(n) into
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subspaces which transform as irreducible representations of S3. We have a decomposition

of K(n) into

K(n) = KY0(n)⊕KY1(n)⊕KY2(n) (7.9)

Y0 = [3] is the one-dimensional trivial rep of S3, corresponding to a Young diagram with

a single row of length 3. Y1 = [2, 1] is the two-dimensional irrep of S3. Y2 = [13] is

the anti-symmetric irrep of S3. In other words the vector space of 3-colored graphs is a

representation of S3. This space can be decomposed into a direct sum of the trivial along

with the [2, 1] and [13] representations, which will all appear, generically with multiplicities.

Using the standard formula for the projector PY in the group algebra of Sd

PY =
d(Y )

d!

∑
α∈Sd

χY (α) α (7.10)

and specializing to d = 3, we can write

dim((KYi(n))) =
1

6

∑
α∈S3

d(Yi)χ
Yi(α) trK(n)(α) , i = 0, 1, 2 (7.11)

We have

dim(KY0(n)) =
1

6
S

(3)
[13]

(n) +
1

2
S

(3)
[2,1](n) +

1

3
S

(3)
[3] (n) (7.12)

and

dim(KY1(n)) =
2

3
S

(3)
[13]

(n)− 2

3
S

(3)
[3] (n)

dim(KY2(n)) =
1

6
S

(3)
[13]

(n)− 1

2
S

(3)
[2,1](n) +

1

3
S

(3)
[3] (n) (7.13)

Taking a(0), a(1), a(2) to belong to subspaces of K(n) labelled by the three Young diagrams

Y0 = {3}, Y1 = {2, 1}, Y2 = {1, 1, 1} of S3, we will have the following selection rules

a(0).a(i) ∈ KYi(n)

a(1).a(1) ∈ KY0(n)⊕KY1(n)⊕KY2(n)

a(1).a(2) ∈ KY1(n)

a(2).a(2) ∈ KY0(n) (7.14)

These follow from the corresponding tensor product decompositions of S3 representations.

From these equations we see that KY0(n) is a sub-algebra of K(n). KY1(n) and KY2(n) are

modules for the algebra KY0(n). KY0 ⊕KY2 is also a closed sub-algebra of K(n).

An interesting consequence of the above decomposition of K(n) is that we can use it

to prove the integrality of the separate terms S
(3)
[13]
, S

(3)
[2,1], S

(3)
[3] . A similar argument can be

made when we have d colors instead of 3. We will in fact present the argument in this

generality. Take a vector space V , which is a representation of Sd. The multiplicity of an

irrep labelled by Young diagram Y (partition of d) is given by

mY
V =

1

d!

∑
p`d
|Tp| χY (σp) trV (σp) =

∑
p`d

1

|Sym(p)|
χY (σp) trV (σp) = trV

(
PY
d(Y )

)
(7.15)
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σp is a permutation with cycle decomposition given by the partition p, i.e. some fixed

permutation in the conjugacy class Tp. We will use T̂p to denote the sum of all the permu-

tations in the conjugacy class Tp. The subspace of V transforming in the irrep Y , denoted

VY , has dimension

dimVY = trV (PY ) = mY
V d(Y ) (7.16)

These mY
V are natural numbers (zero or positive integers). The quantities we called S

(d)
p

in [41] are

S(d)
p = trV (σp) =

1

|Tp|
trV (T̂p) (7.17)

for the case where V = K(n).

T̂p is a central element in the group algebra of Sn and has an expansion in projectors

T̂p =
∑
Y

χY (T̂p)

d(Y )
PY (7.18)

This can be seen by writing

T̂p =
∑
Y ′

aY ′PY ′ (7.19)

and then taking the trace in irrep Y to find

χY (T̂p) = aY d(Y ) , aY =
χY (T̂p)

d(Y )
(7.20)

Now write

trV (T̂p) =
∑
R

χY (T̂p)

d(Y )
trV (PY ) =

∑
R

χY (T̂p)

d(Y )
d(Y )mY

V =
∑
R

χY (T̂p)m
Y
V (7.21)

and observe

1

|Tp|
trV (T̂p) =

∑
Y

χY (T̂p)

|Tp|
mY
V =

∑
R

χY (T̂p)

|Tp|
trV

(
PY
d(Y )

)
(7.22)

It turns out that, for symmetric groups, we know that the characters
χY (T̂p)
|Tp| = χY (σp) are

integers (this follows for example from the Murnaghan-Nakayama lemma for computing

the characters). This proves that the S
(d)
p — for all d and p — in our previous paper are

integers. From the above equation it is not clear they are positive, but we also know from

before that they are sums of delta functions. Combining these two facts, we conclude that

they are indeed positive integers — as we found to high orders in [41] and in [76].

As a consistency check of the above (7.13) we can construct the sequence for the Y1

sector 1
d(Y1) dim(KY1(n)) = (S

(3)
[13]
− S(3)

[3] )/3 — using the S
(3)
p are found to be

0, 1, 3, 13, 52, 296, 1850, 14386, 126082, 1247479 (7.23)

so indeed integral. Also for dim(KY2(n)), we find

0, 0, 0, 2, 13, 110, 810, 6796, 61693, 618880 (7.24)

Again these are indeed integral as expected.

– 38 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
2

7.4 Color symmetrisation using Fourier basis

We can better understand the connection between the QR1,R2,R3
τ1,τ2 and the S3 invariant

subspaces, KY (n) by doing the color symmetrisation directly in the Fourier basis for C(Sn)⊗
C(Sn)⊗ C(Sn)

QR1
i1,j1
⊗QR2

i2,j2
⊗QR3

i3,j3
(7.25)

Important properties (see appendix B.1) are

QRij =

√
d(R)

n!

∑
σ∈Sn

DR
ij(σ)σ , τQRij =

∑
p

DR
pi(τ)QRpj , QRijτ =

∑
q

QRiqD
R
jq(τ) (7.26)

and the orthonormality property

δ(QRij , Q
S
kl) = δR,Sδikδjl (7.27)

In order to project (7.25) to KY (n) we apply the normalized projectors

P (S3)P
(Sn)
L P

(Sn)
R =

1

6(n!)2

∑
σ1∈Sn

∑
σ2∈Sn

∑
α∈S3

αρL(σ1)ρR(σ2) (7.28)

where ρL(σ1) indicates the left diagonal action, ρR(σ2) is the right diagonal action and α

acts by swapping the tensor slots. We will calculate

dim(KY0(n)) = trC(Sn)⊗3(P (S3)P
(Sn)
L P

(Sn)
R ) = trK(n)(P

(S3)) (7.29)

We have ∑
σ1∈Sn

∑
σ2∈Sn

∑
α∈S3

αρL(σ1)ρR(σ2) QR1
i1,j1
⊗QR2

i2,j2
⊗QR3

i3,j3

=
∑
σ1∈Sn

∑
σ2∈Sn

∑
α∈S3

∑
pl,ql

DR1
p1i1

(σ1)DR2
p2i2

(σ1)DR3
p3i3

(σ1)

DR1
j1q1

(σ2)DR2
j2q2

(σ2)DR3
j3q3

(σ2)

Q
Rα(1)
pα(1),qα(1)

⊗QRα(2)
pα(2),qα(2)

⊗QRα(3)
pα(3),qα(3)

(7.30)

To compute the trace, pair this with QR1
i1,j1
⊗QR2

i2,j2
⊗QR3

i3,j3
and sum over Rl, il, jl giving∑

Rl

∑
σl∈Sn

∑
α∈S3

∑
il,jl,pl,ql

DR1
p1i1

(σ1)DR2
p2i2

(σ1)DR3
p3i3

(σ1)

DR1
j1q1

(σ2)DR2
j2q2

(σ2)DR3
j3q3

(σ2)

δR1,Rα(1)δi1,pα(1)
δj1,qα(1)

δR2,Rα(2)δi2,pα(2)
δj2,qα(2)

δR3,Rα(3)δi3,pα(3)
δj3,qα(3)

=
∑

R1,R2,R3

∑
σ1∈Sn

∑
σ2∈Sn

∑
α∈S3

∑
il,jl

DR1
iα(1)i1

(σ1)DR2
iα(2)i2

(σ1)DR3
iα(3)i3

(σ1)

DR1
j1jα(1)

(σ2)DR2
j2jα(2)

(σ2)DR3
j3jα(3)

(σ2)δR1,Rα(1)δR2,Rα(2)δR3,Rα(3) (7.31)
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There are three types of terms. If α is the identity then we have

1

6(n!)2

∑
σ1,σ2

χR1(σ1)χR2(σ1)χR3(σ1)χR1(σ2)χR2(σ2)χR3(σ2)δR1,Rα(1)δR2,Rα(2)δR3,Rα(3)

=
1

6

∑
R1,R2,R3

(C(R1, R2, R3))2 (7.32)

When α = (1, 2) we get

1

6(n!)2

∑
R1,R3

∑
σ1,σ2

χR1(σ2
1)χR3(σ1)χR1(σ2

2)χR3(σ2)

=
1

6(n!)2

∑
R1

∑
σ1,σ2

χR1(σ2
1)χR1(σ2

2)
∑
γ

δ(σ1γσ
−1
2 γ−1)

=
1

6(n!)

∑
R1

∑
σ1

χR1(σ2
1)χR1(σ2

1) (7.33)

The other permutations in the same conjugacy class give the same factor. So we get

1

2(n!)

∑
R

∑
σ

χR(σ2)χR(σ2) (7.34)

If α has cycle structure [3], then we have

1

3(n!)2

∑
R

∑
σ1,σ2

χR(σ3
1)χR(σ3

2) (7.35)

So we recover the counting we previously had, from working with the delta functions over

the group algebra.

These three expressions above

S
(3)
p=[13]

(n) =
∑

R1,R2,R3

(C(R1, R2, R3))2

S
(3)
p=[2,1](n) =

1

n!

∑
R

∑
σ

χR(σ2)χR(σ2)

S
(3)
p=[3](n) =

1

(n!)2

∑
R

∑
σ1,σ2

χR(σ3
1)χR(σ3

2) (7.36)

are directly related to the delta functions derived in [41] by starting from Burnside lemma.

The advantage of the present method is that the generalization to general S
(d)
p (n) is easily

done. We will describe this generalization in section 7.6 of these formulae in terms of

character sums.

7.4.1 Subspace of K(n) with R1,2,3 all different

Fixing three different representations of Sn, let us call them {R,S, T}, there are subspaces of

KY0(n),KY1(n),KY2(n) which come from the six different assignments of the list [R1, R2, R3]
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from the set {R,S, T}. From the equations above we see that in this case, we only get

contributions from α = (1)(2)(3). Using (7.31) we find

dim(K(R,S,T )
Y0

(n)) = (C(R,S, T ))2 (7.37)

for the color-symmetrized subspace and for the subspaces transforming according to the

other irreps of S3

dim(K(R,S,T )
Y1

(n)) = 2(C(R,S, T ))2

dim(K(R,S,T )
Y2

(n)) = (C(R,S, T ))2 (7.38)

Focusing on K(R,S,T )
Y0

(n), which forms an algebra of K(n), we can write a basis for this

algebra as ∑
i1,i2,i3,j1,j2,j3

∑
α∈S3

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
i1,i2;i3

Q
α(R)
iα(1),jα(1)

⊗Qα(S)
iα(2),jα(2)

⊗Qα(T )
iα(3),jα(3)

(7.39)

Since τ1, τ2 run over a range of C(R,S, T ) the counting of these basis elements agrees

precisely with the dimension of this subspace.

7.4.2 Subspace of K(n) where two Sn irreps are equal and different from third

Consider the subspace of K(n) where two of the R1, R2, R3 are equal to R and a third is

equal to S. The α = () term will now contribute 3/6(C(R,R, S))2 = 1/2(C(R,R, S))2. The

factor of 3 comes from the choice of which of the Ri is equal to S.

Consider for concreteness the term (7.33), for case where R1 = R2 = R,R3 = S. We

will re-write this in a number of ways.

Let us return to S[2,1]

S[2,1](n) =
1

(n!)2

∑
R,S

∑
σ1,σ2

χR(σ2
1)χS(σ1)χR(σ2

2)χS(σ2) (7.40)

This sum contains cases where R = S as well as R 6= S. Focusing on the R 6= S case, define

S
(R,R,S)
[2,1] (n) =

1

(n!)2

∑
σ1,σ2

χR(σ2
1)χS(σ1)χR(σ2

2)χS(σ2) (7.41)

The multiplicity of S in the symmetric part of VR ⊗ VR is

Mult(Sym2(VR), VS) =
1

(n!)

∑
σ

χS(σ) trR⊗R

(
(σ ⊗ σ)

1 + (12)

2

)
=

1

2n!

∑
σ

χS(σ)
(
χR(σ2) + χR(σ)χR(σ)

)
=

1

2
C(R,R, S) +

1

2n!

∑
σ

χS(σ)χR(σ2) (7.42)

The multiplicity of S in the anti-symmetric part of VR ⊗ VR is

Mult(Λ2(VR), VS) =
1

2
C(R,R, S)− 1

2n!

∑
σ

χS(σ)χR(σ2) (7.43)
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So we learn that

1

n!

∑
σ

χS(σ)χR(σ2) = Mult(Sym2(VR), VS)−Mult(Λ2(VR), VS) (7.44)

So we can re-write

S
(R,R,S)
[2,1] =

(
Mult(Sym2(VR), VS)−Mult(Λ2(VR), VS)

)2
(7.45)

From the above of course

C(R,R, S) = Mult(Sym2(VR), VS) + Mult(Λ2(VR), VS) (7.46)

The two terms which contribute to the dimension of K(n) when we restrict the list

[R1, R2, R3] to take values in {R,R, S} are

1

2
C(R,R, S)2 +

1

2
C(R,R, S) =

1

2
C(R,R, S)(C(R,R, S) + 1) (7.47)

This shows that the restriction of KY0(n) to the sector where two of the irreps are equal

is integer.

Another very instructive way to write the dimension of this subspace of KY0(n) is

1

2
C(R,R, S)2 +

1

2

(
Mult(Sym2(VR), VS)−Mult(Λ2(VR), VS)

)2
=

1

2

(
Mult(Sym2(VR), VS) + Mult(Λ2(VR), VS)

)2
+

1

2

(
Mult(Sym2(VR), VS)−Mult(Λ2(VR), VS)

)2
= (Mult(Sym2(VR), VS))2 + (Mult(Λ2(VR), VS))2 (7.48)

This formula gives an expression for the dimension of the (R,R, S) subspace of KY0(n) as

a sum of squares. That is, we have identified the WA blocks of the decomposition.

Based on this counting, we can write down the basis elements for KY0(n) in the subspace

where two of the Ri are equal to R and the third is S. We define Clebsch-Gordan coefficients

C
R,R,S;[2],τ1
i1,i2,i3

C
R,R,S;[12],τ2
i1,i2,i3

(7.49)

The first are the Clebsch-Gordan coefficients coupling Sym2(R)⊗S to the trivial represen-

tation. The second are the Clebsch-Gordan coefficients coupling Λ2(R) ⊗ S to the trivial

representation. The basis elements in KY0(n) are of two types

C
R,R,S;[2],τ1
i1,i2,i3

C
R,R,S;[2],τ2
j1,j2,j3

×(
QRi1,j1 ⊗Q

R
i2,j2 ⊗Q

S
i3,j3 +QRi1,j1 ⊗Q

S
i3,j3 ⊗Q

R
i2,j2 +QSi3,j3 ⊗Q

R
i1,j1 ⊗Q

R
i2,j2

)
(7.50)

and

C
R,R,S;[12],τ1
i1,i2,i3

C
R,R,S;[12],τ2
j1,j2,j3

×(
QRi1,j1 ⊗Q

R
i2,j2 ⊗Q

S
i3,j3 +QRi1,j1 ⊗Q

S
i3,j3 ⊗Q

R
i2,j2 +QSi3,j3 ⊗Q

R
i1,j1 ⊗Q

R
i2,j2

)
(7.51)

These agree with the correct counting in (7.48). Note that this is different from the naive

guess of C(R,R, S)2 for this sector.
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7.4.3 Subspace of K(n) with all equal R1 = R2 = R3 = R

The above allows us to guess what will happen when we consider the subspace of KY0(n)

corresponding to {R,R,R}. We should be able to write the dimension of that as

(Mult(P[3]V
⊗3
R , V0))2 + (Mult(P[2,1]V

⊗3
R , V0))2 + (Mult(P[13]V

⊗3
R , V0))2 (7.52)

The subscripts on the P ’s are Young diagrams with three boxes. Maybe we need a factor

of 2 or 4 in front of the second term. This would be the WA decomposition of the KY0(n)

projected to the (R,R,R) sector.

We now prove this. So we apply the projector

1

6(d!)2

∑
α∈S3

∑
σ1,σ2∈Sn

αρL(σ1)ρR(σ2)QRi1,j1 ⊗Q
R
i2j2 ⊗Q

R
i3j3

=
1

6(d!)2

∑
α∈S3

∑
σ1,σ2∈Sn

DR
p1i1(σ1)DR

p2i2(σ1)DR
p3i3(σ1)DR

j1q1(σ2)DR
j2q2(σ2)DR

j3q3(σ2)

×QRpα(1),qα(1)
⊗QRpα(2)qα(2)

⊗QRpα(3)qα(3)
(7.53)

Pair this with QRi1,j1 ⊗Q
R
i2j2
⊗QRi3j3 and sum over R, pl, and ql to find

1

6(d!)2

∑
α∈S3,σl∈Sn

∑
pl,ql

DR
p1pα(1)

(σ1)DR
p2pα(2)

(σ1)DR
p3pα(3)

(σ1)DR
qα(1)q1

(σ2)DR
qα(2)q2

(σ2)DR
qα(3)q3

(σ2)

=
∑
α

∑
σ1∈Sn

∑
σ2∈Sn

trR⊗3(σ1α)trR⊗3(σ2α) =
∑
α

∑
σ1∈Sn

∑
σ2∈Sn

trR⊗3⊗R⊗3(σ1 ⊗ σ2)(α⊗ α) (7.54)

This can be understood in terms of representation theory of Sn × S3 acting on V ⊗3
R .

V ⊗3
R =

⊕
Λ1`n

⊕
Λ2`3

V
(Sn)

Λ1
⊗ V (S3)

Λ2
⊗ VR:Λ1,Λ2 (7.55)

We take two copies of these tensor products

V ⊗3
R ⊗ V ⊗3

R =
⊕

Λ1,Λ′1`n

⊕
Λ2,Λ′2`3

V
(Sn)

Λ1
⊗ V (S3)

Λ2
⊗ VR:Λ1,Λ2 ⊗ V

(Sn)
Λ′1

⊗ V (S3)
Λ′2
⊗ VR:Λ′1,Λ

′
2

(7.56)

The sums over σ1, σ2 ∈ Sn project to Λ1 = Λ′1 = [n]. We further need to restrict to the

trivial of the diagonal S3. This trivial rep occurs once inside VΛ2 ⊗VΛ′2
whenever Λ2 = Λ′2.

The multiplicity is ∑
Λ`3

(dimVR:[n],Λ)2 (7.57)

This gives the WA decomposition of KY0(n) projected by overlapping the permutation

triples with PR ⊗ PR ⊗ PR.

Corresponding to the decomposition (7.55) there are Clebsch-Gordan coefficients for

the change of basis from an orthogonal basis of states |R,R,R; i1, i2, i3〉 to another orthog-

onal basis of states |Λ1,Λ2, τΛ1,Λ2 ;mΛ1 ,mΛ2〉 as

C
R,R,R;Λ1,Λ2,τΛ1,Λ2
i1,i2,i3;mΛ1

,mΛ2
= 〈Λ1,Λ2, τΛ1,Λ2 ;mΛ1 ,mΛ2 |R,R,R; i1, i2, i3〉 (7.58)
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For the case Λ1 = [n],Λ2 = Λ, we have

C
R,R,R;[n],Λ,τ[n],Λ

i1,i2,i3;mΛ
= 〈[n],Λ, τ[n],Λ;mΛ|R,R,R; i1, i2, i3〉 (7.59)

The irrep [n] is one-dimensional so has no corresponding state label.

The elements of the WA basis for KY0(n) will be labelled by (R,Λ, τ
(l)
[n],Λ, τ

(r)
[n],Λ) where

τ
(l)
[n],Λ, τ

(r)
[n],Λ label the multiplicity of V[n]⊗VΛ in the left and right V ⊗3

R of (7.56). Using the

Clebsch-Gordan coefficients (7.59) we can therefore write the WA basis

Q
R,Λ,τ

(l)
[n],Λ

,τ
(r)
[n],Λ =

∑
il,jl,mΛ

C
R,R,R;Λ,mΛ,τ

(l)
[n],Λ

i1,i2,i3
C
R,R,R;Λ,mΛ,τ

(r)
[n],Λ

j1,j2,j3
QRi1j1 ⊗Q

R
i2j2 ⊗Q

R
i3j3 (7.60)

which matches the counting of states in this sector. Following steps similar to the ones

for QR,S,T ;τ1,τ2 in the case of K(n), the orthogonality properties of these Clebsch-Gordan

coefficients can be used to show that these form a basis of matrix units for KY0(n) in the

subspace corresponding to R = S = T .

A consequence of the above discussion (in particular equations (7.37), (7.48) and (7.57))

is that we can write the dimension of the algebra KY0(n) as a sum of squares, corresponding

to the WA decomposition

dim(KY0(n)) =
∑

R 6=S 6=T
(C(R,S, T ))2 +

∑
R 6=S

(Mult(Sym2(R), S))2 + (Mult(Λ2(R), S))2

+
∑
R

∑
Λ

(Mult(R⊗3, [n]⊗ Λ))2 (7.61)

This color-symmetrized analog of (3.6) is a key result of the present paper.

7.4.4 More on S
(3)
[2,1](n) and the character table of Sn

A useful fact is that for any irrep R of Sn, the trivial appears in the symmetric part of

VR ⊗ VR with multiplicity one. This is related to the reality of these representations (eq.

5.82 of [77]). It leads to the identify

1

n!

∑
σ

trR⊗R

(
σ

(1 + (12))

2

)
=

1

n!

∑
σ

trR⊗R(σ) (7.62)

The r.h.s. side counts the number of times the trivial representation appears in R⊗R. The

l.h.s. counts the number of times it appears in the symmetric part. This leads to

1

2n!

∑
σ∈Sn

(
(χR(σ))2 + χR(σ2)

)
=

1

n!

∑
σ∈Sn

(χR(σ))2 (7.63)

This in turn implies that ∑
σ∈Sn

(χR(σ))2 =
∑
σ∈Sn

(χR(σ2)) (7.64)
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It also follows that ∑
σ∈Sn

δ(τ−1σ2) =
∑
S

χS(τ) (7.65)

The number of permutations which squares to τ can be written as a sum of characters in

all irreps. To see this, use∑
σ∈Sn

δ(τ−1σ2) =
1

n!

∑
σ∈Sn

∑
S`n

χS(τ)χS(σ2)

=
1

n!

∑
σ∈Sn

∑
S`n

χS(τ)χS(σ)χS(σ)

=
∑
S

χS(τ) (7.66)

We can also write

1

n!

∑
R,σ

χR(σ2)χR(σ2) =
1

n!

∑
R,σ,τ

χR(τ)χR(τ)δ(τ−1σ2)

=
1

n!

∑
R,S,τ

χR(τ)χR(τ)χS(τ)

=
∑
R,S

C(R,R, S) (7.67)

So the second contribution

S[2,1] =
∑
R,S

C(R,R, S) (7.68)

Also if we do the sum over R, we get

S[2,1] =
1

n!

∑
S

∑
τ

χS(τ)Sym(τ) =
∑
p

∑
S

χS(τp) (7.69)

We are summing over irreps S and conjugacy classes. The weight is the character of a

permutation in the specified conjugacy class, here denoted τp for conjugacy class specified

by p. Indeed OEIS recognizes S[2,1] as the sum of entries of the character table of Sn. The

refinement of S[2,1] parametrized by S (where we drop the sum over S)∑
p

χS(τp) (7.70)

is the subject of an open question posed by Stanley (problem 12 in [78]): to find a combi-

natoric construction which makes the positive integrality manifest. The positive integrality

is manifest because ∑
R

C(R,R, S) =
∑
p

χS(τp) (7.71)
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(an identity that has been used above) but this is a representation theoretic argument, not

a purely combinatoric one. Tensor invariants at large N (or equivalently colored graphs)

provide a combinatoric interpretation of the sum of squares of the Kronecker coefficients.

It would be interesting to investigate whether refined consideration of colored graphs can

provide an approach to this question of Stanley.

7.5 S3-refinement for K(n)

We have given above the dimension of the color-symmetrized subspace KY0(n) as a sum

over representation theoretic data. The expression is a sum of squares as expected from the

WA decomposition. This shows that the representation theoretic construction perspective

based on permutations and Fourier transforms naturally leads to the explicit form of the

Matrix blocks of the WA decomposition. The expression is a sum over three types of

terms, which we may describe as (R,S, T ) types involving three distinct Young diagrams,

the (R,R, S) which involves two distinct types and the (R,R,R) which involves one type.

Here we give the dimensions of

K(R,S,T )
Y , K(R,R,S)

Y , K(R,R,R)
Y (7.72)

general Young diagram Y of S3.

For the (R,S, T ) sector, the answer is easy when we consider the restriction of the trace

trC(Sn)⊗3(PY P
Sn
L PSnR ) = trK(n)(PY ) (7.73)

to the subspace of C(Sn)⊗C(Sn)⊗C(Sn) to the Fourier basis states QR1
i1,j1
⊗QR2

i2,j2
⊗QR3

i3,j3

where R1, R2, R3 are all different and take values in the set (R,S, T ). There are 6 choices,

which add up to 6C(R,S, T )2. In the expansion of PY in terms of permutations only the

identity permutation contributes and we have

K(R,S,T )
Y = d(Y )2C(R,S, T )2 (7.74)

Hence we have

dimK(R,S,T )
[3] = C(R,S, T )2

dimK(R,S,T )
[2,1] = 4C(R,S, T )2

dimK(R,S,T )
[13]

= C(R,S, T )2 (7.75)

For the (R,R, S) sector, we find

dim(K(R,R,S)
Y=[3] ) = (Mult(Sym2(VR), VS))2 + (Mult(Λ2(VR), VS))2

dim(K(R,R,S)
Y=[2,1] ) = 2C(R,R, S)2

dim(K(R,R,S)
Y=[13]

) = 2Mult(Sym2(VR), VS)Mult(Λ2(VR), VS) (7.76)

For the (R,R,R) sector, we find

dim(K(R,R,R)
Y (n))

=
∑
Y `3

d(Y ) C(Y1, Y2, Y ) Mult
(
V ⊗3
R , V

(S3)
Λ1
⊗ V (Sn)

[n]

)
Mult

(
V ⊗3
R , V

(S3)
Λ2
⊗ V (Sn)

[n]

)
(7.77)
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C(Y1, Y2, Y ) is the Kronecker coefficient which counts the number of invariants of S3 in the

tensor product Y1 ⊗ Y2 ⊗ Y .

The derivation of these formulae proceeds by unravelling the equation (7.73) in each

of these case. Some interesting consistency checks of these formulae can be easily given.

We have the identity

d(Y )C(Y1, Y2, Y ) =
∑
Y

∑
σ

1

d!
χY1(σ)χY2(σ)χY (σ) = d(Y1)d(Y2) (7.78)

Doing the sum over irreps Y gives a delta function. For the (R,R,R) case, therefore we have

∑
Y

dim(K(R,R,R)
Y (n))

=
∑
Y1,Y2

d(Y1)d(Y2)Mult
(
V ⊗3
R , V

(S3)
Y1
⊗ V Sn

[n]

)
Mult

(
V ⊗3
R , V

(S3)
Y2
⊗ V (Sn)

[n]

)
= C(R,R,R)2 (7.79)

Similarly, the reader can easily convince herself that

∑
Y

dim(K(R,R,S)
Y (n)) = 3(C(R,R, S))2 (7.80)

The 3 comes from the fact that when the ordered list of Young diagrams [R1, R2, R3] takes

values from the set {R,R, S}, there are three possibilities.

An interesting consequence of the multiplication rule given in (7.14) is that KY0(n)⊕
KY2(n) is a closed associative algebra. It will inherit a non-degenerate bilinear form from

the C(Sn)⊗C(Sn)⊗C(Sn) (or from C(Sn)⊗C(Sn)) if we are working with the gauge-fixed

formulation. So we expect that its dimension will be a sum of squares. The counting

in terms of representations above automatically leads to such a sum of squares. For the

(R,S, T ) subspace

dim(K(R,S,T )
Y0

) + dim(K(R,S,T )
Y1

) = 2(C(R,S, T ))2 (7.81)

For the (R,R, S) subspace,

dimK(R,R,S)
Y0

+ dimK(R,R,S)
Y2

= (Mult(Sym2(VR), VS))2 + (Mult(Λ2(VR), VS))2

+ 2Mult(Sym2(VR), VS)Mult(Λ2(VR), VS)

= (Mult(Sym2(VR), VS) + Mult(Λ2(VR), VS))2

= (C(R,R, S))2 (7.82)
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For the (R,R,R) subspace(
Mult

(
V ⊗3
R , V

(S3)
[3] ⊗ V (Sn)

[n]

))2
+
(

Mult
(
V ⊗3
R , V

(S3)
[13]
⊗ V (Sn)

[n]

))2

+ 4
(

Mult
(
V ⊗3
R , V

(S3)
[2,1] ⊗ V

(Sn)
[n]

))2

+ 2
(

Mult
(
V ⊗3
R , V

(S3)
[3] ⊗ V (Sn)

[n]

))(
Mult(V ⊗3

R , V
(S3)

[13]
⊗ V (Sn)

[n] )
)

=
(

Mult
(
V ⊗3
R , V

(S3)
[3] ⊗ V (Sn)

[n]

))2
+
(

Mult
(
V ⊗3
R , V

(S3)
[13]
⊗ V (Sn)

[n]

))2

+ 4
(

Mult
(
V ⊗3
R , V

(S3)
[2,1] ⊗ V

(Sn)
[n]

))2
(7.83)

These counting formulae for dimKY (n) in terms of representation theory data sets

the stage for developing representation theoretic bases. Using the basic technique of using

permutations to construct observables (2.7), these elements of KY (n) will be expected to

give a refined orthonormal basis for the gauge-invariant observables, with good quantum

numbers for the S3 color-exchange, as we described earlier for Y = Y0. This will be an

interesting refinement of the results on orthogonal bases given earlier in section 5.3 and

in [38, 59].

7.6 Counting color-symmetrised tensor invariants for general d

This way of approaching the calculation using Fourier transforms, presented for d = 3 at

the start of this section, allows us to generalize to any d. We get

Number of color symmetrised tensor invariants of rank d = (7.84)

1

d!(n!)2

∑
α∈Sd

∑
R1,··· ,Rd

∑
σ1∈Sn

∑
σ2∈Sn

∏
a

χR
(a)

(σla1 )χR
(a)

(σla2 )δ(Rα1
a
, Rα2

a
, · · · , R

αlaa
, R(a))

Here the index a runs over the cycles of the permutation α; la is the length of the cycle.

Each such cycle is of the form (α1
a, α

2
a, · · · , αlaa ) where the entries in the cycle are integers

chosen from {1, · · · d}. Such a cycle leads to delta functions enforcing Rα1
a

= Rα2
a
· · · = R

αlaa
,

which leads to the definition

R(a) = Rα1
a

= Rα2
a
· · · = R

αlaa
(7.85)

We can re-write the counting as

Number of color symmetrised tensor invariants of rank d =

1

(n!)2

∑
p`d

∑
Ri,j`d

{1≤i≤d,1≤j≤pi}

∑
σ1∈Sn

∑
σ2∈Sn

1

|Sym(p)|

d∏
i=1

pi∏
j=1

χRi,j (σi1)χRi,j (σi2) (7.86)

We have collected from (7.84) all the terms coming from a fixed conjugacy class of α, which

corresponds to a partition p of d, specified by multiplicities pi of cycles lengths i in the

permutation α, i.e.
∑
ipi = d. Given the delta functions on the representations, for a given

p, the number of distinct representations being summed after using these delta functions
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is
∑d

i=1 pi. We denote these representation labels Ri,j , where i runs over the possible cycle

lengths and j runs over the distinct cycles of the same length i.

This is also the dimension of the projection of K(n, d) to the subspace belonging to

the one-dimensional irrep of Sd. We have in general

K(n, d) =
⊕
Y `d

(K(n, d))Y (7.87)

The above gives the projection to the Sd invariant subspace.

dim(K(n, d))Y=[n]) = Number of color symmetrised tensor invariants of rank d

1

(n!)2

∑
p`d

∑
Ri,j`d

{1≤i≤d,1≤j≤pi}

∑
σ1∈Sn

∑
σ2∈Sn

1

|Sym(p)|

d∏
i=1

pi∏
j=1

χRi,j (σi1)χRi,j (σi2) (7.88)

For general representations Y , we have

dim((K(n, d))Y ) (7.89)

=
d(Y )

(n!)2

∑
p`d

χY (σp)
∑
Ri,j`d

{1≤i≤d,1≤j≤pi}

∑
σ1∈Sn

∑
σ2∈Sn

1

|Sym(p)|

d∏
i=1

pi∏
j=1

χRi,j (σi1)χRi,j (σi2)

For practical computations, expressions for the S
(d)
p (n) were also given in [41], for d ≤ 4,

in terms of sums over partitions of n, with weights obtained by applying appropriate

substitutions to the generating function of cycle indices of Sn (equations (63) and (77)

of arXiv version). The generalization of these expressions in terms of partition sums to

general d is left as an interesting exercise for the future.

7.7 K∞ and color symmetry

We explained in section 5.4 that the infinite direct sum K∞

K∞ =

∞⊕
n=0

K(n) (7.90)

has two products, which both play a role in correlators. If we restrict to the color-

symmetrised subspace

K∞Y0
=
∞⊕
n=0

KY0(n) (7.91)

we again have a vector space with two products. We have already seen that the product

at fixed n of two elements in KY0(n) is in KY0(n). Likewise the outer product of two

color-symmetrized elements in KY0(n1) and KY0(n2) is a color-symmetrized element in

KY0(n1 + n2). An easy way to see this is to think about the multiplication of color-

symmetrized observables. Systematic investigations of color-symmetrized correlators is left

for the future. We expect that the K∞ will prove to be a useful tool in these investigations.
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8 Summary and discussion

8.1 Summary

We have developed the description of the counting and correlators of general gauge invari-

ant observables in a class of tensor models started in [41]. We focus on bosonic tensor

models with a complex scalar field having d indices. We have showed that the permutation

centralizer algebras introduced in [52] provide a powerful framework for elucidating many

aspects of correlators in the Gaussian model. The vector space of gauge-invariant observ-

ables in the rank-3 tensor model is isomorphic to the vector space of the algebra K(n).

This algebra is spanned by elements in C(Sn)⊗C(Sn) which commute with the diagonally

embedded C(Sn). There is a also an equivalent description in terms of the subspace of

C(Sn)⊗C(Sn)⊗C(Sn) which is invariant under left and right action of the diagonal C(Sn).

K(n) is a semi-simple associative algebra, i.e. an associative algebra with non-

degenerate bilinear pairing. As a result, by the Wedderburn-Artin theorem, it is isomorphic

to a direct sum of matrix algebras. The number of blocks in K(n) is the number of ordered

triples [R1, R2, R3] of Young diagrams with n boxes which have a non-vanishing Kronecker

coefficient. The sizes of the blocks are the Kronecker coefficients C(R1, R2, R3). The basis

elements corresponding to the matrix decomposition are constructed using Clebsch-Gordan

coefficients for the invariant in R1 ⊗ R2 ⊗ R3. These basis elements of K(n) correspond

to gauge invariant observables which diagonalize the 2-point function of normal ordered

observables. A subspace of observables corresponds to the centre of K(n). These observ-

ables can be constructed without the detailed knowledge of Clebsch-Gordan coefficients.

They only require characters of Sn. A basis for the centre is given by triples of Young dia-

grams R1, R2, R3 which have non-vanishing C(R1, R2, R3). One point functions of central

observables are proportional to C(R1, R2, R3).

The above results are based on a few key ingredients: the parameterization of gauge

invariant observables using equivalence classes of permutations, the use of representation

theory to give a Fourier transformed description of observables in terms of Young diagrams,

and Clebsch-Gordan coefficients. These methods have found extensive use in multi-matrix

models over the recent years (an overview is in [51]).

The algebra K(n) allows a systematic study of the implications of the color-exchange

symmetry in tensor models. In [41] we had described counting formulae for color-

symmetrized observables, which correspond to color-symmetrized graphs. Here we give

the complete decomposition of K(n) in terms of a direct sum, labelled by Young diagrams

of the S3 color-exchange symmetry.

K(n) =
⊕
Y `3

KY (n) (8.1)

The color-symmetrized subspace KY0(n) is a closed sub-algebra of K(n). Again as a result

of the WA theorem, we immediately expect that it should be a direct sum of matrix

algebras. The corresponding counting formula as a sum of squares is given in (7.61),

and the corresponding refined Clebsch-Gordan coefficients are described. Similar group

theoretic decompositions for KY (n) are given in section 7.
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The counting formulae for KY0(n) can be expressed in terms of sums over characters

of Sn parametrized by partitions of Sd (with d = 3). Such formulae were derived using the

Burnside lemma in [41] for d = 3, 4 and used to get explicit number sequences for dimen-

sions of the space of color-symmetrized observables (color-symmetrized graphs). We have

generalized these character formulae (section 7.6) to general d, by exploiting an alternative

derivation which makes use the representation theoretic Fourier basis for (C(Sn))⊗d. The

group theoretic results we have developed for color-exchange symmetry will be useful for

the study of correlators in Gaussian models, as well as interacting models which are per-

turbations of Gaussians by color-symmetrized observables. This is an interesting direction

for future investigations.

A number of other future research directions are suggested by the results of this paper.

We outline some of them below.

8.2 Towards Young diagram statistical models and field theory

We have found above that interesting classes of observables in tensor models, related to

the centres of permutation algebras built from equivalence classes of permutations describ-

ing general observables, are parametrized by sets of Young diagrams. Their correlators

are directly related to fundamental representation theoretic quantities, e.g. (5.9). Similar

observations in the context of multi-matrix models are developed in [52]. This leads us

to a natural question: is there a statistical model of Young diagrams (YD) for which the

functions (5.9) are the correlators? Section 6 describes a mapping of these correlators

observables in a topological field theory on 2-complexes. Here we explore a different per-

spective, and provide a partial answer of the above question of what this statistical/field

theory model could be.

Fix n ∈ N, and consider R ` n a Young diagram. A real field over YDs is a function

Y : p(n)→ R. We define an action of a Y k− Young diagram model (YDM) by:

Sk-YDM[Y ] =
∑

R,R′`n
YRK(R,R′)YR′ + g

∑
Rl`n

I({Rl})
k∏
l=1

YRl (8.2)

where K(R,R′) and I({Rl}) are kernels, g a coupling constant. From now, let us restrict

to a cubic action determined by k = 3, K(R,R′) = δR,R′ and I({Rl})=C(R1, R2, R3), the

Kronecker coefficient. The use of complex fields, the choice of I({Rl}) as the Littlewood-

Richardson coefficient, or more generic Y k-models of the form I({Rl})=Ck(R1, R2, . . . , Rk),

see (5.9), might be also interesting choices let for future investigations.

Being interested in perturbation theory, the positivity of the above action will not be

addressed here. The partition function of the model (8.2) under the above restrictions is

of the form

Z3-YDM[g, J ] =

∫ ∏
R`n

dYR e
−S3-YDM[Y ]−

∑
R`n JRYR (8.3)

where JR is a source term. Correlators are computed perturbatively using the Gaussian
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measure dµ(Y ) =
∏
R`n dYRe

−
∑
R |YR|2 and we find〈

YS1YS2 . . . YSk
〉

3-YDM

=

∞∑
n=0

(−g)n

n!

∫
dµ(Y )

(
YS1YS2 . . . YSk

)( ∑
Rl`n

C(R1, R2, R3)YR1YR2YR3

)n
. (8.4)

The free propagator in this theory is naturally defined by 〈YRYR′〉free =G0(R,R′)=δRR′ .

Via the Wick theorem, N -point correlators expand in terms of Feynman graphs, as

〈YS1YS2 . . . YSN 〉3-YDM; pert. =
∑
GKGAG , with AG(S1.S2, . . . , SN ) a graph amplitude, and

KG a combinatorial factor.

We evaluate a connected 3-point function a first order of perturbation:

〈YS1YS2YS3〉3-YDM; pert.; connected = −g
∑
Rl

C(R1, R2, R3)
∏
σ∈S3

∏
i

G0(Si, Rσ(i))

= −3! g C(R1, R2, R3) . (8.5)

There are 3! trees contributing to the correlator and each of them has the same weight

−gC(R1, R2, R3). Thus at this first order of perturbation 〈YS1YS2YS3〉3-YDM; pert.; connected

is proportional to 〈OS1,S2,S3〉 up to the factor 1
(−3!g)(n!)2 [

∏3
i=1 fN (Sl)].

Computing a connected 4-point function 〈YS1YS2YS3YS4〉3-YDM; pert.; connected at second

order of perturbation, we have a sum of Feynman amplitudes. Consider the tree graph

which appears in that expansion,

R

S1

S2 S3

S4 , the amplitude of which is given by

At(S1.S2, S3, S4) =
g2

2

∑
R`n

C(S1, S2, R)C(R,S3, S4) (8.6)

which is proportional to OS1,S2,S3,S4 (5.9). We conjecture that at any order m − 2 > 0 of

perturbation theory, 〈OS1,S2,...,Sm〉 corresponds to a tree (hence connected) Feynman graph

of the correlator 〈YS1YS2 . . . YSm〉3-YDM; pert.;connected up to a constant.

Dealing with an action Sd-YDM, it is direct to get at first order of perturbation:

〈YS1YS2 . . . YSd〉d-YDM; pert.; connected ∝ 〈OS1,S2,...,Sd〉 (8.7)

Beyond tree level, generic amplitudes should involve free sums over Young diagrams asso-

ciated with loops in the graphs, hence factors of the number of partitions p(n). In the limit

n→∞, where we have an infinite number of degrees of freedom, one should expect that a

YDM will have divergent amplitudes. It will be interesting to investigate the application

of quantum field theoretic renormalization techniques to make sense of this limit.

8.3 The space of holographic duals of tensor models

In the early applications of matrix models as holographic duals to quantum gravity in low

dimensions of the nineties [1, 2], a detailed map was achieved where the holographic duals
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included minimal model CFTs with c < 1 coupled to Liouville theory and the standard

string theory b, c ghost system, as well as a c = −2 model coupled to Liouville and ghosts

as a dual for the Gaussian model [79]. A dual to the Gaussian model in terms of Belyi

maps and topological strings on CP1 has also been investigated [67, 80–82], which should

be related to the earlier c = −2 proposal.

The AdS2 dual for the double-scaled limit with a quartic interaction (Gurau-Witten

model) is currently of active interest, with motivations from black hole physics [28, 29]. The

rich mathematical structure of the Gaussian model raises the very interesting question of

what is the precise dual of this model. The description of permutation TFT2 constructions

for the correlators of the Gaussian model given in section 6 is a good starting point for

investigations along the lines of [67, 80–82]. The rich mathematics involving permutations,

Fourier transforms of group algebras, the structure of associative algebras, the role of

color-exchange symmetry underlying the space of tensor model observables suggests that

a complete description of holography for the space of tensor models will be a fascinating

challenge.

8.4 Computational complexity of central correlators in matrix versus tensor

models

One of the interesting results is that the one-point function in the representation basis, for

the d = 3 complex tensor model, is equal to the Kronecker coefficient (5.5), a number of

fundamental importance in Computational Complexity Theory.

Compare this with the extremal 3-point correlator for the half-BPS sector which is

directly proportional to the Littlewood-Richardson (LR) coefficient g(R,S, T ) [42]

〈χR(Z)χS(Z)χT (Z†)〉 = g(R,S, T )
n!DimN (T )

d(T )
(8.8)

This correlator has been interpreted in terms of topology change [83]. The half-BPS sector

and its connections to topology change has also been investigated recently in [84, 85]. In

the AdS-CFT correspondence, Young diagrams can be used to parametrize space-times of

different topologies [42, 86, 87].

The LR coefficient has been of interest in the context of Computational Complexity

Theory. It has been shown that the determination of the vanishing or otherwise of the LR

coefficient can be done in polynonial time [88]. The actual evaluation of the LR coefficient

for general Young diagrams is # P-hard [89] (# P is the analog of NP when we go from

decision problems to counting problems). Recently it was found that deciding the vanishing

of Kronecker coefficients is NP-hard [90]. This is an interesting contrast between central

correlators in the 1-matrix problem (8.8) and the one-point function of central observables

in the tensor model (5.5). Characterizing the complexity of determining the vanishing of

extremal correlators of central observables in the 2-matrix case studied in [52] would be a

useful problem to solve in getting a more complete picture of the relative complexities in

matrix and tensor models.

It would be interesting to explore the implications of the above results in the context

of physical applications of matrix/tensor models, e.g. in black hole physics or early cos-

– 53 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
2

mology. Different physical roles for computational complexity in these contexts have been

proposed [91, 92]. Finite N effects, of interest in the physics of the stringy exclusion priin-

ciple and giant gravitons, turn out to have drastic effects on the complexity questions [93],

tending to allow polynomial time algorithms.

Acknowledgments

SR’s research is supported by the STFC consolidated grant ST/L000415/1 “String Theory,

Gauge Theory & Duality” at Queen Mary University of London and a Visiting Professorship

at the Mandelstam Institute for Theoretical Physics, University of the Witwatersrand,

funded by a Simons Foundation grant. JBG thanks the Centre for Research in String

Theory at QMUL for hospitality, while this work was in progress.

A Symmetric group, representation theory and group algebra

A.1 Symmetric group and representation

We collect some basic facts in the representation theory of symmetric groups. A useful

textbook discussion is in [77].

Irreducible representations of symmetric group Sn are labelled by Young diagrams or

partitions R of n, that we denote R ` n. In the following, we interchangeably use and

assimilate an irrep with R. As a consequence of the Schur-Weyl duality, one associates also

a Young diagram R with an irreducible representation of the unitary group U(N), when

the length l(R) of the first column of R is bounded by N , i.e l(R) ≤ N .

At fixed n, denote d(R) the dimension of the representation of Sn and DimN (R) the

dimension of representation of U(N), we write

d(R) = n!/h(R) , DimN (R) = fN (R)/h(R) (A.1)

where h(R) is the product of the so-called hook lengths, i.e. h(R) =
∏
i,j(cj− j+ ri− i+ 1)

and fN (R) is the products of box weights

fN (R) =
∏
i,j

(N − i+ j) (A.2)

where the pairs (i, j) label the boxes of the Young diagram: i is the row label and j is

the column label. ri is the row length of the i’th row. cj is the column length of the j’th

column.

The matrices DR
ij(σ) of the representation R of a permutation σ ∈ Sn are d(R)× d(R)

and satisfy the following basic properties∑
i

DR
ai(σ)DR

ib(σ
′) = DR

ab(σσ
′) , DR

ab(e) = δab (A.3)

and are also orthogonal ∑
σ∈Sn

DR
ij(σ)DS

kl(σ) =
n!

d(R)
δRS δikδjl (A.4)
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This follows from Schur’s lemma. Note that we choose to work with orthogonal (and so

real) matrices obeying

DR
ij(σ

−1) = DR
ji(σ) (A.5)

such that (A.4) is again
∑

σD
R
ij(σ)DS

lk(σ
−1).

Another important object in representation theory is of course the character of a

given representation. The character of the irrep R is simply the trace of DR(σ), χR(σ) =

Tr(DR(σ)) =
∑

iD
R
ii (σ). It is immediate that

χR(σ) = χR(σ−1) (A.6)

The Kronecker delta of the symmetric group (defined to be equal to 1 when the argument

is the identity and 0 otherwise) decomposes as

δ(σ) =
∑
R`n

d(R)

n!
χR(σ) (A.7)

The summation R ` n is a sum over partitions of R of n, equivalently over Young diagrams

with n boxes. We have also∑
γ∈Sn

δ(γσγ−1τ−1) =
∑
γ∈Sn

∑
R`n

d(R)

n!

∑
i,a,b,c

DR
ia(γ)DR

ab(σ)DR
cb(γ)DR

ic(τ)

(A.4)
=

∑
R`n

∑
i,a,b,c

DR
ab(σ)DR

ic(τ) δicδab =
∑
R`n

χR(σ)χR(τ) (A.8)

If B is a central element, then∑
γ∈Sn

χR(AγBγ−1) = n!χR(AB) =
∑
a,b,c,d

∑
γ∈Sn

DR
ab(A)DR

bc(γ)DR
cd(B)DR

da(γ
−1)

(A.4)
=

n!

d(R)

∑
a,b,c,d

DR
ab(A)DR

cd(B)δbaδcd =
n!

d(R)
χR(A)χR(B) (A.9)

Hence

χR(AB) =
1

d(R)
χR(A)χR(B) (A.10)

Also useful to know that
1

n!

∑
α

χR(α)Nc(α) = DimN (R) (A.11)

where DimN (R) is the dimension of the U(N) representation R (A.1).

The same type of the above calculation which involves (A.4) leads to other formulae

given by∑
σ∈Sn

χR(στ1)χS(στ2) =
n!

d(R)
δRS χ

R(τ1τ
−1
2 )

τ1=τ2=id⇒
∑
σ∈Sn

χR(σ)χS(σ) = n! δRS

(A.12)
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Finally, concerning identities involving the dimension of irrep R in U(N), one has

∑
σ∈Sn

DR
ij(σ)Nc(σ) = δijfN (R)

(A.4)
⇒

∑
σ∈Sn

χR(σ)Nc(σ) = d(R)f(R) = n! DimN (R)

(A.13)

where c(σ) is the number of cycles of σ.

The following table lists the above formulas:

DR
ij(σ

−1) = DR
ji(σ) (A.14)

χR(σ) = χR(σ−1) = χR(γσγ−1) , ∀γ ∈ Sn (A.15)

δ(σ) =
∑
R`n

d(R)

n!
χR(σ) (A.16)

∑
σ∈Sn

DR
ij(σ)DS

kl(σ) =
n!

d(R)
δRS δikδjl (A.17)

∑
σ∈Sn

χR(στ1)χS(στ2) =
n!

d(R)
δRS χ(τ1τ

−1
2 ) (A.18)

∑
σ∈Sn

χR(σ)χS(σ) = n! δRS (A.19)

∀B ∈ Z(Sn) , χR(AB) =
1

d(R)
χR(A)χR(B) (A.20)∑

γ∈Sn

δ(γσγ−1τ−1) =
∑
R`n

χR(σ)χR(τ) (A.21)

∑
σ∈Sn

DR
ij(σ)Nc(σ) = δijfN (R) (A.22)

∑
σ∈Sn

χR(σ)Nc(σ) = d(R)f(R) = n! DimN (R) (A.23)

Defining the central element Ω ∈ C(Sn),

Ω =
∑
σ∈Sn

Nn−c(σ)σ (A.24)

equation (A.23), can be also written as

Nn

n!
χR(Ω) = DimN (R) (A.25)

A.2 Clebsch-Gordan coefficients

Consider two irreps VR1 , VR2 of Sn corresponding to Young diagrams R1, R2. We assume

that we have picked an orthogonal basis of states for the irreps e.g. |R, i〉 obeying

〈R, j|R, i〉 = δij (A.26)

A representation %R : Sn → End(VR) is given by a matrix DR with entries determined

by %S(σ)|R, i〉 =
∑d(R)

l=1 DR
li (σ)|R, l〉 with σ ∈ Sn. We write in short %S(σ) = σ and then

– 56 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
2

〈R, j|σ|R, i〉 = DR
ji(σ). The tensor product representation VR1 ⊗ VR2 can be decomposed

into a direct sum of irreps VR3 with multiplicities

VR1 ⊗ VR2 =
⊕
R3`n

VR3 ⊗ V m
R3

(A.27)

One set of basis vectors in the tensor product space is |R1, i1〉 ⊗ |R2, i2〉 =: |R1, i1;R2, i2〉
while the r.h.s. corresponds to a basis set |R3, i3, τR3〉. The label i3 runs over states in the

irrep R3, while τR3 runs over an orthogonal basis in the multiplicity space V m
R3

. Clebsch-

Gordan coefficients (CG’s) are transition coefficients between the two types of bases

C
R1,R2;R3, τR3
i1,i2; i3

:= 〈R1, i1;R2, i2|R3, τR3 , i3〉 = 〈R3, τR3 , i3|R1, i1;R2, i2〉 (A.28)

The last relation is obtained from the reality property of the CG’s. We will then use

C
R1,R2;R3, τR3
i1,i2; i3

= C
τR3

,R3;R1,R2

i3; i1,i2
. A detailed discussion of the CG’s for symmetric groups

is in [77].

Linear operators for σ ⊗ σ in VS ⊗ VR have matrix elements

DR1
i1j1

(σ)DR2
i2j2

(σ) = 〈R1, i1|σ|R1, j1〉 〈R2, i2|σ|R2, j2〉 =: 〈R1, i1;R2, i2|σ |R1, j1; R2, j2〉
(A.29)

Inserting a complete set of states resolving the identity we get

DR1
i1j1

(σ)DR2
i2j2

(σ) =
∑

R3,R′3,τR3
,τ ′R3

∑
i3,j3

〈R1, i1;R2, i2|R3, τ
′
R3
, i3〉 〈R3, τR3 , i3|σ |R′3, τ ′R′3 , j3〉

× 〈R′3, τ ′R′3 , j3|R1, j1; R2, j2〉

=
∑

R3,R′3,τR3
,τ ′R3

∑
i3,j3

〈R1, i1;R2, i2|R3, τR3 , i3〉 δR3R′3
δτR3

τ ′
R′3
DR3
i3j3

(σ)〈R′3, τ ′R′3 , j3|R1, i2; R2, j2〉

=
∑
R3,τR3

∑
i3,j3

〈R1, i1;R2, i2|R3, τR3 , i3〉D
R3
i3j3

(σ)〈R3, τR3 , j3|R1, j1; R2, j2〉 (A.30)

Using the definition of the CG’s (A.30), can be also written as

DR1
i1j1

(σ)DR2
i2j2

(σ) =
∑
R3,τ

∑
i3,j3

C
R1,R2;R3,τR3
i1,i2;i3

DR3
i3j3

(σ)C
R1,R2;R3,τR3
j1,j2;j3

(A.31)

Because there is no possible confusion, τR3 is sometimes denoted τ in the text.

The following identities hold∑
j1,j2

DR1
i1j1

(γ)DR2
i2j2

(γ)CR1,R2;R3, τ
j1,j2; j3

=
∑
i3

CR1,R2;R3, τ
i1,i2; i3

DR
i3j3(γ) (A.32)

∑
i1,i2

CR1,R2;R3, τ
i1,i2; i3

C
R1,R2;R′3, τ

′

i1,i2; j3
= δR3R′3

δττ ′ δi3j3 (A.33)

∑
R3,i3,τ

CR1,R2;R3, τ
i1,i2; i3

CR1,R2;R3, τ
j1,j2; i3

= δi1j1 δi2j2 (A.34)

∑
R3,τ ; i3,j3

CR1,R2;R3, τ
i1,i2; i3

DR3
i3j3

(γ)CR1,R2;R3, τ
j1,j2; j3

= DR1
i1j1

(γ)DR2
i2j2

(γ) (A.35)

Note that (A.31) is (A.35).

– 57 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
2

Furthermore, we have by applying twice (A.32):∑
j1,j2,j3

DR1
i1j1

(γ)DR2
i2j2

(γ)DR3
i3j3

(γ)CR1,R2;R3, τ
j1,j2; j3

=
∑
j3

∑
l

CR1,R2;R3, τ
i1,i2; l DR3

lj3
(γ)DR3

i3j3
(γ)

=
∑
l

CR1,R2;R3, τ
i1,i2; l

∑
j3

DR3
lj3

(γ)DR3
j3i3

(γ−1) = CR1,R2;R3, τ
i1,i2;i3

(A.36)

These equations can be put in diagrammatrics which lighten the proofs. We now recall

them. The diagrammatic notation for the CG coefficient will be a three valent black node:

CR2,R2;R3,τ
i1,i2;i3

=
τ

i1

i2

i3
R3

R1

R2

(A.37)

A representation matrix DR
ij(σ) is drawn like σ , the rest of the indices will be explicit

when the matrix will be composed with others coefficients. Then the above identities can

be translated as

(A.32)
τ

i1

i2

i3

γ

γ

R3
R1

R2

=

i1

i2

i3γ
τ

R3

R1

R2

(A.38)

(A.33)
τ τ ′

i3 j3

R1

R2

R3 R′3
= i3 j3

R3 × δR3R′3
δττ ′δi3j3 (A.39)

(A.34)
∑
R3,τ

τ τ

i1

i2

j1

j2

R1

R2

R3
R1

R2

=

i1

i2

j1

j2

R1

R2

× δi1j1δi2j2 (A.40)

(A.35)
∑
R3,τ

τ
γ

τ

i1

i2

j1

j2

R1

R2

R3
R1

R2

=

i1

i2

j1

j2

γ

γ

R1

R2

(A.41)

The following lemma is useful in the text.

Lemma 1. The following relation holds:∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(γ1σ1γ2)DR2
i2j2

(γ1σ2γ2)DR3
i3j3

(γ1σ3γ2)

=
∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(σ1)DR2
i2j2

(σ2)DR3
i3j3

(σ3) (A.42)
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Proof. We have∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(γ1σ1γ2)DR2
i2j2

(γ1σ2γ2)DR3
i3j3

(γ1σ3γ2)

=
∑
al,bl

DR1
a1b1

(σ1)DR2
a2b2

(σ2)DR3
a3b3

(σ3)
∑
il

CR1,R2;R3,τ1
i1,i2;i3

DR1
i1a1

(γ1)DR2
i2a2

(γ1)DR3
i3a3

(γ1)

×
∑
jl

CR1,R2;R3,τ2
j1,j2;j3

DR1
b1j1

(γ2)DR2
b2j2

(γ2)DR3
b3j3

(γ2)

=
∑
al,bl

DR1
a1b1

(σ1)DR2
a2b2

(σ2)DR3
a3b3

(σ3)CR1,R2;R3,τ1
a1,a2;a3

CR1,R2;R3,τ2
b1,b2;b3

(A.43)

where we used (A.36).

Integrating three representation matrices, the following relation is useful:

Lemma 2. We have∑
σ∈Sn

DR1
i1j1

(σ)DR2
i2j2

(σ)DR3
i3j3

(σ) =
n!

d(R3)

∑
τ

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;j3

(A.44)

Proof. We use, successively, (A.31) and (A.17) to get:∑
σ∈Sn

DR1
i1j1

(σ)DR2
i2j2

(σ)DR3
i3j3

(σ) =
∑
σ

[∑
R,τ

∑
a,b

CR1,R2;R,τ
i1,i2;a CR1,R2;R,τ

j1,j2;b DR
ab(σ)

]
DR3
i3j3

(σ)

=
n!

d(R3)

∑
R,τ

∑
a,b

CR1,R2;R,τ
i1,i2;a CR1,R2;R,τ

j1,j2;b δRR3δai3δbj3 (A.45)

summing over R, a and b achieves the result.

We can illustrate Lemma 2 in the following way:

σi1 j1

σi2 j2

σi3 j3

= τ τ (A.46)

Note that we have defined the Clebsch-Gordan coefficients in terms of inner products

between states in VR1⊗VR2 transforming as VR3 under the diagonal action of Sn. We could

also have defined them in terms of the states in VR1 ⊗ VR2 ⊗ VR3 which transform as the

trivial representation [n] of the diagonal S3. If we use the latter formulation the Clebsch’s

C̃R1,R2,R3;τ
i1,i2,i3

= 〈R1, i1, R2, i2, R3, i3|[n], τ〉 (A.47)

will appear on the r.h.s. of Lemma 2 without the 1/d(R3) factor, so that

C̃R1,R2,R3;τ
i1,i2,i3

=
1√
d(R3)

CR1,R2;R3,τ
i1,i2;i3

(A.48)
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A.3 Projectors for irreducible representations

We discuss some properties of projectors in the group algebra of C(Sn), which we use in

the text. For every irreducible representation R of C(Sn) we have the characters χR(σ)

which are used to define projectors PR

PR =
d(R)

n!

∑
σ∈Sn

χR(σ)σ (A.49)

Using character orthogonality we verify that

PRPS = δR,SPR (A.50)

Consider a general representation W of Sn which has a decomposition into irreducible

representations

W =
⊕
R`n

VR ⊗ V m
R (A.51)

VR are irreducible representation spaces and V m
R are multiplicity spaces of dimension mR

W .

Taking the trace

trW (PS) =
∑
R`n

trVR⊗V m
R

(PS ⊗ 1)

=
∑
R

mR
W trVR(PS) =

∑
R

d(R)mR
W δRS

= mS
Wd(S) (A.52)

We used

trVR(PS) =
∑
σ∈Sn

d(S)

n!
χS(σ)χR(σ) = d(S)δR,S (A.53)

which is an application of the orthogonality of characters. For the case where R is the

trivial representation R0 = [n], χR0(σ) = 1 and

PR0 =
1

n!

∑
σ∈Sn

σ (A.54)

is the projection on the invariant space of W .

B The permutation centralizer algebra K(n)

B.1 Basis of K(n)

The semi-simple algebra K(n) is defined in terms of permutation equivalences in C(Sn)⊗
C(Sn)⊗C(Sn) (double coset description) or in C(Sn)⊗C(Sn) (centralizer description). By

Fourier transforming from the permutation basis of C(Sn) to the representation basis QRij ,

we have Fourier bases for K(n) in either formulation. In this appendix, we prove that the

Q-basis elements in each formalism are indeed invariant under the appropriate equivalence

relations, that they multiply like matrices (thus giving the WA decomposition) and that

they are orthogonal with respect to the non-degenerate bilinear pairing.
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Q-Basis of K(n). We start by checking the invariance of the basis QR,S,Tτ1,τ2 (3.19) under

the diagonal action:

(γ ⊗ γ) ·QR,S,Tτ1,τ2 · (γ
−1 ⊗ γ−1)

= κR,S
∑

σ1,σ2∈Sn

∑
i1,i2,i3,j1,j2

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;i3

DR
i1j1(σ1)DS

i2j2(σ2) γσ1γ
−1 ⊗ γσ2γ

−1

= κR,S
∑

σ1,σ2∈Sn

∑
i1,i2,i3,j1,j2

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;i3

DR
i1j1(γ−1σ1γ)DS

i2j2(γ−1σ2γ)σ1 ⊗ σ2

= κR,S
∑

σ1,σ2∈Sn

∑
i1,i2,i3,j1,j2

∑
al,bl

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;i3

DR
i1a1

(γ−1)DR
a1b1(σ1)DR

b1j1(γ)

×DS
i2a2

(γ−1)DS
a2b2(σ2)DS

b2j2(γ)σ1 ⊗ σ2 (B.1)

Using (A.32) of appendix A.2, we get

(γ ⊗ γ) ·QR,S,Tτ1,τ2 · (γ
−1 ⊗ γ−1)

= κR,S
∑

σ1,σ2∈Sn

∑
al,bl,i3

[∑
i1,i2

DR
a1i1(γ)DS

a2i2(γ)CR,S;T,τ1
i1,i2;i3

][∑
j1,j2

DR
b1j1(γ)DS

b2j2(γ)CR,S;T,τ2
j1,j2;i3

]
×DR

a1b1(σ1)DS
a2b2(σ2)σ1 ⊗ σ2

= κR,S
∑

σ1,σ2∈Sn

∑
al,bl,i3

[∑
l1

CR,S;T,τ1
a1,a2;l1

DT
l1i3(γ)

][∑
l2

CR,S;T,τ2
b1,b2;l2

DT
l2i3(γ)

]
×DR

a1b1(σ1)DS
a2b2(σ2)σ1 ⊗ σ2

= κR,S
∑

σ1,σ2∈Sn

∑
a1,a2,b1,b2,l

CR,S;T,τ1
a1,a2;l CR,S;T,τ2

b1,b2;l DR
a1b1(σ1)DS

a2b2(σ2)σ1 ⊗ σ2

= QR,S,Tτ1,τ2 (B.2)

where the factor
∑

i3
DT
l1i3

(γ)DT
l2i3

(γ) evaluates using (A.3).

We prove now that QR,S,Tτ1,τ2 ’s multiply like matrices:

QR,S,Tτ1,τ2 Q
R′,S′,T ′

τ ′2,τ3
= κR,SκR′,S′

∑
σi,σ′i∈Sn

∑
il,jm,i′l,j

′
m

CR,S;T,τ1i1,i2;i3
CR,S;T,τ2j1,j2;i3

DR
i1j1(σ1)DS

i2j2(σ2)

× CR
′,S′;T ′,τ ′2

i′1,i
′
2;i
′
3

CR
′,S′;T ′,τ3

j′1,j
′
2;i
′
3

DR′

i′1j
′
1
(σ′1)DS′

i′2j
′
2
(σ′2) σ1σ

′
1 ⊗ σ2σ′2

= κR,SκR′,S′
∑

σi,σ′i∈Sn

∑
il,jm,i′l,j

′
m

CR,S;T,τ1i1,i2;i3
CR,S;T,τ2j1,j2;i3

DR
i1j1(σ1σ

′−1
1 )DS

i2j2(σ2σ
′−1
2 )

× CR
′,S′;T ′,τ ′2

i′1,i
′
2;i
′
3

CR
′,S′;T ′,τ3

j′1,j
′
2;i
′
3

DR′

i′1j
′
1
(σ′1)DS′

i′2j
′
2
(σ′2) σ1 ⊗ σ2

= κ2R,S
(n!)2

d(R)d(S)
δRR′δSS′

∑
σi∈Sn

∑
i1,i2,i3,i′3,a,b

CR,S;T,τ1i1,i2;i3
CR,S;T

′,τ3
a,b;i′3

DR
i1a(σ1)DS

i2b(σ2)σ1 ⊗ σ2

×

[∑
j1,j2

C
R,S;T ′,τ ′2
j1,j2;i′3

CR,S;T,τ2j1,j2;i3

]
= κR,SδRR′δSS′δTT ′δτ2τ ′2

×
∑
τ2

∑
σi∈Sn

∑
i1,i2,i3,i′3,a,b

δi3i′3C
R,S;T,τ1
i1,i2;i3

CR,S;T
′,τ3

a,b;i′3
DR
i1a(σ1)DS

i2b(σ2)σ1 ⊗ σ2

= δRR′δSS′δTT ′δτ2τ ′2Q
R,S,T
τ1,τ3 (B.3)

where we used the orthogonality relations (A.17) and (A.33).
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Next, we evaluate the pairing between two basis elements Q’s and check that there are

orthogonal:

δ2

(
QR,S,T
τ1,τ ′1

;QR
′,S′,T ′

τ2,τ ′2

)
= κ2

R,S

∑
σi,γi,γ′i∈Sn

∑
il,jl,i

′
l,j
′
l

CR,S;T,τ1
i1,i2;i3

C
R,S;T,τ ′1
j1,j2;i3

CR
′,S′;T ′,τ2

i′1,i
′
2;i′3

C
R′,S′;T ′,τ ′2
j′1,j
′
2;i′3

×DR
i1j1(σ1)DS

i2j2(σ2)DR′

i′1j
′
1
(σ1)DS′

i′2j
′
2
(σ2)

= κ2
R,S

∑
il,jl,i

′
l,j
′
l

CR,S;T,τ1
i1,i2;i3

C
R,S;T,τ ′1
j1,j2;i3

CR
′,S′;T ′,τ2

i′1,i
′
2;i′3

C
R′,S′;T ′,τ ′2
j′1,j
′
2;i′3

× (n!)2

d(R)d(S)
δRR′δSS′δi1i′1δi2i′2δj1j′1δj2j′2

= κR,SδRR′δSS′
∑

il,jl,i
′
3,j
′
l

CR,S;T,τ1
i1,i2;i3

CR,S;T ′,τ2
i1,i2;i′3

C
R,S;T,τ ′1
j1,j2;i3

C
R,S;T ′,τ ′2
j1,j2;i′3

= κR,Sd(T ) δRR′δSS′δTT ′δτ1τ2δτ ′1τ ′2 (B.4)

which shows that according to the normalization that we are using the matrices Q are

orthogonal but not normalized.

Qun-basis of Kun(n). We now give few properties of the Qun-basis (3.43). We will skip

steps since the derivations are similar to the above case.

The Qun-basis is stable under left and right actions of the diagonal Diag(C(Sn)):

(γ⊗3
1 ) ·QR,S,Tun;τ1,τ2 · (γ

⊗3
2 ) = (B.5)

= κR,S,T
∑
σi∈Sn

∑
il,jl

∑
al,bl

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;i3

DR
i1a1

(γ−1
1 )DR

a1b1(σ1)DR
b1j1(γ−1

2 )

×DS
i2a2

(γ−1
1 )DS

a2b2(σ2)DS
b2j2(γ−1

2 )DT
i3a3

(γ−1
1 )DT

a3b3(σ3)DT
b3j3(γ−1

2 )σ1 ⊗ σ2 ⊗ σ3

We use (A.32) and (A.3) (of appendix A.2) to reduce the above to QR,S,Tun;τ1,τ2 .

Taking a product of Qun-elements, we change variables σi → σiσ
′−1
i , use (A.17) to get

QR,S,Tun;τ1,τ2Q
R′,S′,T ′

un;τ ′2,τ3

= κR,S,TκR′,S′,T ′
∑
σl,σ

′
l

∑
il,i
′
l,jl,j

′
l

CR,S;T,τ1
i1,i2;i3

CR,S;T,τ2
j1,j2;j3

C
R′,S′;T ′,τ ′2
i′1,i
′
2;i′3

CR
′,S′;T ′,τ3

j′1,j
′
2;j′3

×DR
i1,j1(σ1σ

′−1
1 )DS

i2,j2(σ2σ
′−1
2 )DT

i3,j3(σ3σ
′−1
3 )DR′

i′1,j
′
1
(σ′1)DS′

i′2,j
′
2
(σ′2)DT ′

i′3,j
′
3
(σ′3)σ1 ⊗ σ2 ⊗ σ3

= δRR′δSS′δTT ′δτ2τ ′2Q
R,S,T
un;τ1,τ3 (B.6)

which shows that Qun multiply like matrices.

Computing the pairing of two elements of the Qun-basis, we obtain

δ3

(
QR,S,Tun;τ1,τ2Q

R′,S′,T ′

un;τ ′2,τ3

)
= κR,S,T δRR′δSS′δTT ′

∑
il,jl

CR,S;T,τ1
i1,i2;i3

C
R,S;T,τ ′2
i1,i2;i3

CR,S;T,τ2
j1,j2;j3

CR,S;T,τ3
j1,j2;j3

= κR,S,Td(T )2δRR′δSS′δTT ′δτ1τ ′2δτ2τ3 (B.7)
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Qun-basis from a tensor product basis- There is a nice way to arrive at the Qun-basis

for K(n) by starting from the representation theoretic Fourier basis for the tensor product

C(Sn)⊗ C(Sn)⊗ C(Sn).

Consider in the group algebra C(Sn), the elements

QRij =
κR
n!

∑
σ∈Sn

DR
ij(σ)σ (B.8)

with κR is a normalization factor that we will fix after introducing the pairing. R is any

irreducible representation of Sn, parametrised by partitions of n or Young diagrams withn

boxes. The indices i, j run over an orthonormal basis set for the representation. The

number of these QRij is equal to n! thanks to a standard group theory identity∑
R`n

(d(R))2 = n! (B.9)

These QRij form a representation theoretic Fourier basis for C(Sn).

We have the following important properties:

τ QRij =
∑
l

DR
li (τ)QRlj , QRij τ =

∑
l

QRil D
R
jl(τ) (B.10)

There is a pairing on C(Sn)d, such that

δ(σ1 ⊗ · · · ⊗ σd;σ′1 ⊗ · · · ⊗ σ′d) = δ(σ1σ
′−1
1 ) . . . δ(σ−1

d σ′−1
d )

and such that

δ(QRij ;Q
R′
i′j′) =

κRκR′

(n!)2

∑
σ

DR
ij(σ)DR′

i′j′(σ) =
κ2
R

n!d(R)
δRR′δii′δjj′ = δRR′δii′δjj′ (B.11)

with κ2
R = n!d(R). Then

δ
(
QR1
i1j1
⊗ · · · ⊗QRdidjd ; Q

R′1
i′1j
′
1
⊗ · · · ⊗QR

′
d

i′dj
′
d

)
= δR1R′1

δi1i′1δj1j′1 . . . δRdR′dδidi
′
d
δjdj′d (B.12)

Hence, the basis {QR1
i1j1
⊗ · · · ⊗QRdidjd} is an orthonormal (Fourier-like) basis for C(Sn)d.

Let us restrict now to rank d = 3 (the following extends to any d easily). Consider

ρL(τ1) and ρR(τ2) the left and right diagonal action on the tensor product C(Sn)3. Then

we write:∑
σ1,σ2

ρL(σ1)ρR(σ2)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3
=
∑
σ1,σ2

σ1Q
R1
i1j1

σ2 ⊗ σ1Q
R2
i2j2

σ2 ⊗ σ1Q
R3
i3j3

σ2

=
∑
σ1,σ2

∑
pl,ql

DR1
p1i1

(σ1)QR1
p1q1D

R1
j1q1

(σ2)⊗DR2
p2i2

(σ1)QR2
p2q2D

R2
j2q2

(σ2)⊗DR3
p3i3

(σ1)QR3
p3q3D

R3
j3q3

(σ2)

=
(n!)2

d(R3)2

∑
pl,ql

∑
τ,τ ′

CR1,R2;R3,τ
p1,p2;p3

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ ′

j1,j2;j3
CR1,R2;R3,τ ′
q1,q2;q3 QR1

p1q1 ⊗Q
R2
p2q2 ⊗Q

R3
p3q3

(B.13)
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where we used (B.10) and Lemma 2 for summing σ1, σ2, (in appendix A.2). Then we couple

the last result with two CG’s, and use (A.33) , in such a way to have:∑
il,jl

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ ′

j1,j2;j3

∑
σ1,σ2

ρL(σ1)ρR(σ2)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

=
(n!)2

d(R3)2

∑
pl,ql

∑
%,%′

∑
il,jl

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,%
i1,i2;i3

CR1,R2;R3,τ ′

j1,j2;j3
CR1,R2;R3,%′

j1,j2;j3

× CR1,R2;R3,%
p1,p2;p3

CR1,R2;R3,%′
q1,q2;q3 QR1

p1q1 ⊗Q
R2
p2q2 ⊗Q

R3
p3q3

= (n!)2
∑
pl,ql

CR1,R2;R3,τ
p1,p2;p3

CR1,R2;R3,τ ′
q1,q2;q3 QR1

p1q1 ⊗Q
R2
p2q2 ⊗Q

R3
p3q3 (B.14)

The last expression matches QR1,R2,R3

un;τ,τ ′ up to a normalization (3.43).

From∑
il,jl

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ ′

j1,j2;j3

∑
σ1,σ2

ρL(σ1)ρR(σ2)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3
(B.15)

we can infer invariance under left and right diagonal action of QR1,R2,R3

un;τ,τ ′ : fix γ1, γ2,

ρL(γ1)ρR(γ2)

[∑
σ1,σ2

ρL(σ1)ρR(σ2)

]
=
∑
σ1,σ2

ρL(γ1σ1)ρR(γ2σ1) =
∑
σ1,σ2

ρL(σ1)ρR(σ2).

Finally, similar derivations allows one to get QR1,R2,R3

τ,τ ′ (3.19) in terms of diagonal adjoint

action coupled with CG’s.

B.2 Basis of Z(K(n))

Overcompleteness of the zR1,R2;R3-basis in Z(K(n)). Consider the elements

zR1,R2;R3 = (zR1 ⊗ zR2) · zR3 , zR1,2 =
∑
σ

χR1,2(σ)σ , zR3 =
∑
σ

χR3(σ)σ ⊗ σ (B.16)

which are elements of Z(K(n)). We evaluate now the overlapping between the basis

PR1,R2,R3 and the elements zR′1,R′2;R′3
:

δ2

(
PR1,R2,R3 ; zR′1,R′2;R′3

)
=
∑
τ

∑
σi∈Sn

χR
′
1(σ1)χR

′
2(σ2)χR

′
3(σ3)δ2(QR1,R2,R3

τ,τ ;σ1σ3 ⊗ σ2σ3)

= κR1,R2

∑
τ

∑
σ′l,σl∈Sn

∑
il,jl

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;i3

×DR1
i1j1

(σ′1)DR2
i2j2

(σ′2)χR
′
1(σ1)χR

′
2(σ2)χR

′
3(σ3) δ2(σ′1 ⊗ σ′2;σ1σ3 ⊗ σ2σ3)

= κR1,R2

∑
τ

∑
σl∈Sn

∑
il,jl

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;i3

×
∑
al,bl

DR1
i1a1

(σ1)DR1
a1j1

(σ3)DR2
i2a2

(σ2)DR2
a2j2

(σ3)D
R′1
b1b1

(σ1)D
R′2
b2b2

(σ2)D
R′3
b3b3

(σ3)
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= κR1,R2

(n!)2

d(R1)d(R2)
δR1R′1

δR2R′2

∑
τ

∑
il,jl

∑
σ

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;i3

×
∑
al,bl

δi1b1δa1b1δi2b2δa2b2D
R1
a1j1

(σ)DR2
a2j2

(σ)D
R′3
b3b3

(σ)

= κR1,R2

(n!)2

d(R1)d(R2)
δR1R′1

δR2R′2

∑
τ

∑
b3

∑
il,jl

∑
σ

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;i3

×DR1
i1j1

(σ)DR2
i2j2

(σ)D
R′3
b3b3

(σ)

= δR1R′1
δR2R′2

∑
τ

∑
b3,l

∑
il

∑
σ

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
i1,i2;l D

R′3
b3b3

(σ)DR3
li3

(σ)

= δR1R′1
δR2R′2

C(R1, R2, R3)
∑
b,l

∑
σ

D
R′3
bb (σ)DR3

ll (σ)

= n! δR1R′1
δR2R′2

δR3R′3
C(R1, R2, R3) (B.17)

Overcompleteness of the zR1,R2,R3
un -basis in Z(Kun(n)). The elements of interest

are of the form

zR1,R2,R3
un = zR1 ⊗ zR2 ⊗ zR3 , zRi =

∑
σ

χRi(σ)σ (B.18)

which are elements of Z(K(n)). Note that they are more symmetric in the three indices

than the previous central element. We compute the overlap:

δ3

(
zR1,R2,R3

un ;P
R′1,R

′
2,R
′
3

un

)
=
∑
τ

∑
σi

χR1(σ1)χR2(σ2)χR3(σ3)δ3(σ1 ⊗ σ2 ⊗ σ3;Q
R′1,R

′
2,R
′
3

un;τ,τ )

= κR′1,R′2,R′3

∑
τ

∑
σl,σ

′
l∈Sn

∑
il,jl

C
R′1,R

′
2;R′3,τ

i1,i2;i3
C
R′1,R

′
2;R′3,τ

j1,j2;j3

× χR1(σ1)χR2(σ2)χR3(σ3)D
R′1
i1,j1

(σ′1)D
R′2
i2,j2

(σ′2)D
R′3
i3,j3

(σ′3)δ3(σ1 ⊗ σ2 ⊗ σ3;σ′1 ⊗ σ′2 ⊗ σ′3)

= κR′1,R′2,R′3

∑
τ

∑
σl∈Sn

∑
il,jl

C
R′1,R

′
2;R′3,τ

i1,i2;i3
C
R′1,R

′
2;R′3,τ

j1,j2;j3

× χR1(σ1)χR2(σ2)χR3(σ3)D
R′1
i1,j1

(σ1)D
R′2
i2,j2

(σ2)D
R′3
i3,j3

(σ3)

= δR1R′1
δR2R′2

δR3R′3

∑
τ

∑
il

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
i1,i2;i3

= d(R3)C(R1, R2, R3)δR1R′1
δR2R′2

δR3R′3
(B.19)

That coefficient is not vanishing in general hence PR1,R2,R3 admits an expansion in the

zR1,R2,R3-basis.

C Multiplication table of rank d = 3, n = 3 colored tensor graphs

We list, in this appendix, the multiplication table of the 10 invariants (recall that there are

11 invariants but the row for the identity element E = is trivial) of rank d = 3 at 2n = 6

– 65 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
2

number of vertices. The index c = 1, 2, 3 is a color label of a graph. Define č = 1, 2, 3

such that č 6= c, and ˇ̌c = 1, 2, 3 which can be neither č nor c, we obtain table 5 giving the

multiplication between the 10 possible elements.

The table teaches us that the basic products are all commutatives and so is the algebra

Kun(3). Furthermore, some elements admit a or multiple factorizations:

c

=
c

c

(C.1)

c

=
c

č

=

č c

=
c

D Correlators of tensor observables

Correlators involves insertions and evaluation of general observables in the Gaussian path

integral. We will restrict attention to d = 3 and consider the Gaussian model

Z =

∫
dΦdΦ̄ e

− 1
2

∑
il

Φi1i2i3 Φ̄i1i2i3 (D.1)

The index ia takes values in {1 · · ·Na}, for a ∈ {1, 2, 3}. The propagator or 2-point function

is of the form

〈Φi1i2i3Φ̄j1j2j3〉 = δi1j1δi2j2δi3j3 (D.2)

The observables, invariant under U(N) × U(N) × U(N), are labelled by permutations

(σ1, σ2, σ3) subject to equivalence (σ1, σ2, σ3) ∼ (γ1σ1γ2, γ1σ2γ2, γ1σ3γ2). We will write

these observables subjected to the equivalence as Oσ1,σ2,σ3 = Oγ1σ1γ2,γ1σ2γ2,γ1σ3γ2 . We recall

Oσ1,σ2,σ3 =
∑
il,jl,kl

Φi1j1k1Φi2j2k2 . . .Φinjnkn

× Φ̄iσ1(1)jσ2(1)kσ3(1)
Φ̄iσ1(2)jσ2(2)kσ3(2)

. . . Φ̄iσ1(n)jσ2(n)kσ3(n)
(D.3)

The integral the such operators is given by the Wick theorem

〈Oσ1,σ2,σ3〉 =
1

Z

∫
dΦdΦ̄ e−

1
2

∑
i,j,k ΦijkΦ̄ijkOσ1,σ2,σ3

=
∑
il,jl,kl

∑
µ∈Sn

δi1iµ(σ1(1))
δi2iµ(σ1(2))

. . . δiniµ(σ1(n))

× δj1jµ(σ2(1))
δj2jµ(σ2(2))

. . . δjnjµ(σ2(n))
δk1kµ(σ3(1))

δk2kµ(σ3(2))
. . . δknkµ(σ3(n))

=
∑
µ∈Sn

Nc(µσ1)+c(µσ2)+c(µσ3) (D.4)

where c(α) is the number of cycles of α ∈ Sn. We have used the fact that, given σ ∈ Sn,

il ∈ [[1, N ]], l = 1, . . . , n, ∑
il

δi1iσ(1)
. . . δiniσ(n)

= Nc(σ) (D.5)

This allows us to recover (2.10).
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×
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Two point-functions 〈Oσ1,σ2,σ3Ōτ1,τ2,τ3〉 can be also computed in a similar way. We

give a summary of appendix C in [41] (note that we correct a few mistakes appearing this

appendix below). We are taking the observables to be “normal ordered” so we only allow

contractions to take place between the Φ’s from the first observable to the Φ̄’s from the

second (parametrized by µa) and between the Φ̄’s from the first observable to the Φ’s from

the second (parametrized by νa):

〈Oσ1,σ2,σ3Ōτ1,τ2,τ3〉 =
∑
µ∈Sn

∑
ν∈Sn

trV ⊗n1
(σ1µτ

−1
1 ν)trV ⊗n2

(σ2µτ
−1
2 ν)trV ⊗n3

(σ3µτ
−1
3 ν) (D.6)

that could be translated as

〈Oσ1,σ2,σ3Ōτ1,τ2,τ3〉 =
∑
µ∈Sn

∑
ν∈Sn

N
c(σ1µτ

−1
1 ν)

1 N
c(σ2µτ

−1
2 ν)

2 N
c(σ3µτ

−1
3 ν)

3

=
∑
µ∈Sn

∑
ν∈Sn

∑
αi∈Sn

N
c(α1)
1 N

c(α2)
2 N

c(α3)
3 δ(σ1µτ

−1
1 να1)δ(σ2µτ

−1
2 να2)δ(σ3µτ

−1
3 να3)

=
∑
µ∈Sn

∑
ν∈Sn

Nn
1 N

n
2 N

n
3 δ(σ1µτ

−1
1 νΩ1)δ(σ2µτ

−1
2 νΩ2)δ(σ3µτ

−1
3 νΩ3) (D.7)

with c(α) = c(α−1), and

NnΩ = Nn
∑
α∈Sn

Nc(α)−nα . (D.8)

Finally, setting γ1 = µ, and γ2 = ν, and keeping in mind that Ōτ1,τ2,τ3 = Oτ−1
1 ,τ−1

2 ,τ−1
3

,

〈Oσ1,σ2,σ3Oτ1,τ2,τ3〉 =
∑
γ1,γ2

N3nδ[(σ1 ⊗ σ2 ⊗ σ3)γ⊗3
1 (τ1 ⊗ τ2 ⊗ τ3)γ⊗3

2 (Ω1 ⊗Ω2 ⊗Ω3)] (D.9)

which is the starting point (5.23).
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