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ABSTRACT: We show that the counting of observables and correlators for a 3-index tensor
model are organized by the structure of a family of permutation centralizer algebras. These
algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into
matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The
matrix basis for the algebras also gives an orthogonal basis for the tensor observables which
diagonalizes the Gaussian two-point functions. The centres of the algebras are associated
with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan
multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian
model, as well as a large class of interacting models, is used to refine the description of
the permutation centralizer algebras. This discussion is extended to a general number
of colors d: it is used to prove the integrality of an infinite family of number sequences
related to color-symmetrizations of colored graphs, and expressible in terms of symmetric
group representation theory data. Generalizing a connection between matrix models and
Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of
singular 2-complexes. There is an intriguing difference, between matrix and higher rank
tensor models, in the computational complexity of superficially comparable correlators of
observables parametrized by Young diagrams.
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1 Introduction

Introduced as generalizations of matrix models [1, 2] to study the discrete-to-continuum
transition for discretized path integrals in quantum gravity, tensor models [3—5] and their
further generalizations [6] were found to be tremendously more difficult to handle than the
theory of matrices. One the main sources of difficulties in the study of tensor models at
that time was the absence of an organizing principle for their partition function. Matrix
models are organized by the large N expansion [7] which sorts maps by their genus, and
typically a world-sheet ‘t Hooft coupling constant at fixed genus. After approximately two
decades, significant progress on tensor models emerged in a series of papers [8-13]. The
large N expansion for colored tensors was characterized in terms of sets of ribbon graphs
known as “jackets” and new double scaling limits involving “melons” were found. Since
then, many results on random tensors [14] have been achieved from statistical mechanics,
to quantum field theory but as well in combinatorics and probability theory (see [15-18]
and the reviews [19-21] and [22]). Recently, the large N expansion for tensors added
another twist in this already-remarkable story: the large N limit of the famous Sachdev-Ye-
Kitaev (SYK) condensed matter model [23-27] matches with the same limit of a quantum
mechanical model built with colored tensors without disorder [28, 29]. The SYK model is an
active topic of research, its connections being explored with black hole physics, AdS/CFT
correspondence, quantum gravity and condensed matter physics. The new connection
between tensor and SYK models has thus come to be of relevance to several areas of
theoretical physics (see for instance [30, 33-38] and references therein).

A better understanding of the combinatorics of tensor models will be crucial in identi-
fying and characterizing their holographic duals. There are two closely related aspects to
the combinatorics, in the first instance the enumeration of observables, in the second, the
understanding of the correlators. The former has immediate implications for thermody-
namic questions related to these models (for recent investigations focused on these aspects
see [39]), the spectrum of physical excitations in the holographic duals and since observ-
ables can be used to parametrize deformations of a given model, for the space of possible
holographic duals. The implications of the counting for the intricacy of the holographic
dual has been discussed in [30], see also [31, 32]. In the context of the AdS/CFT corre-
spondence, correlators in the gauge theory or matrix models provide refined information
about the holographic dual: interactions of gravitons, strings and branes. From a mathe-
matical point of view, they are related to a host of interesting algebraic structures, notably
integrability and hidden symmetries [40].



In the paper [41], we developed a variety of counting formulae starting from the com-
plete set of invariant observables in tensor models with a complex tensor field having d
indices transforming in the fundamental of U(N)*9. The invariant observables are con-
structed from n copies of the complex field ® as well as n copies of the conjugate field
®. They are in 1-1 correspondence with graphs with two types of vertices, one for the
®’s and one for the ®’s, and colored edges, one for each type of index. The invariants are
constructed by contracting the indices in the fundamental of each U(N) with the indices
in the anti-fundamental. They are parametrized by a sequence of d permutations, each in
Sn, one for each factor in the unitary symmetry group. These permutations are subject
to equivalence relations, which characterize permutation sequences corresponding to the
same invariant operator. It was observed that the counting formulae can be expressed in
terms of topological field theory based on symmetric groups. The permutation description
was used to give formulae for “normal-ordered correlators” in Gaussian tensor models.

An important additional symmetry exists in these Gaussian models, and indeed in
a large class of interacting models. It is the group of all permutations of the d types of
indices, which form the symmetric group Sy. It had already been understood in the ten-
sor model literature that the counting of the above tensor invariants can be expressed as a
counting of colored graphs. It had also been understood that by taking advantage of the Sy
symmetry, it is useful to consider “color-symmetrized graphs” which are defined by addi-
tional equivalences generated by the Sy action of color-exchanges on the graphs. In [41] we
found counting formulae for the “color-symmetrized graphs” in terms of the permutation
tuples. These generated sequences of positive integers. Intriguingly the formulae we ob-
tained for the color symmetrized graphs were expressed as fractional sums of expressions,
which turned out to themselves be integers. These sequences were denoted by Séd) (n):
specifying an integer d, along with a partition of d, we have a sequence of integers as n
ranges over positive integers. One of the results which follows from the detailed treatment
of color exchange symmetry in this paper is to explain the integrality of these additional
sequences, and give general expressions for them for any d and p I d.

The permutation approach to counting and correlators has been used in a number of
papers in the context of AdS/CFT. It was used in the half-BPS sector in [42, 43] to find
orthogonal bases for operators, which are useful in identifying CFT duals of giant gravitons.
Following investigations of strings attached to giant gravitons in [44], orthogonal bases for
multi-matrix operators in CFT were found in [45-50]. The key idea is to parametrize gauge
invariants using permutations subject to equivalences, and to understand these equivalence
classes using Fourier transformation on symmetric groups based on representation theory,
to go from the equivalence classes of permutations to representation theoretic bases. A
short review is in [51]. It has been realized that an important role in understanding these
orthogonal bases is played by permutation centralizer algebras (PCAs) [52]. The basic
observation is that the once we have found a formulation of a counting of invariants in
terms of permutations subject to equivalences, it is useful to go to the group algebras of
permutations and consider their sub-algebras associated to the equivalence classes. These
algebras are semi-simple, i.e. they are associative and have a non-degenerate bilinear pair-
ing. These properties are inherited from the underlying permutation group algebras. As



a result, from the Wedderburn-Artin (WA) theorem [53, 54] on the structure of these al-
gebras, we have a matrix decomposition of these algebras. The construction of orthogonal
bases is, in many cases studied so far, closely connected to the workings of the WA theorem.
This was studied in depth for the 2-matrix problem in [52] (closely related developments
from the perspective of open-closed topological field theory are in [55, 56]). In particular,
the important role of the centre of the PCA was noted, in identifying a sector of correla-
tors which are computable using characters, without requiring more refined representation
theoretic quantities. The appropriate PCA for tensor model counting was identified and a
basis in terms of Clebsch-Gordan coefficients of S,, was described. It was called C(n) and
its dimension was shown to be the sum of squares of Kronecker coefficients.

In this paper, we present a systematic study of K(n) and highlight the role of its
structure, particularly in connection with the WA theorem, in correlators and orthogonal
bases for tensor models. The role of color-exchange symmetry in the structure of K(n) is
another important theme, which leads to new results on the integer sequences, denoted
SI(;d) (n), which arose among the counting of color-symmetrized invariants in [41]. A key
result of this paper is the formula for the dimension of the color-symmetrized sub-algebra
of K(n) as a sum of squares of representation-theoretic quantities.

The paper is organized as follows. In section 2, we introduce the tensor model we will
be discussing, based on complex tensors with d indices transforming under U(N )Xd. We
review the permutation approach to tensor models from [41].

The algebras K(n) are defined in section 3. There are two equivalent descriptions of the
algebra. In one description, they are sub-algebras of the tensor products C(S,) ® C(S,)
which commute with the diagonally embedded C(S,). In equivalent terminology, K(n)
is the centralizer of the diagonal C(S,) in the tensor product C(S,) ® C(S,), hence the
name “permutation centralizer algebra” (PCA). Another type of PCA has been found
to underlie a variety of results on correlators for the 2-matrix problem [52]: they are thus
emerging as fundamental to the application of permutation group and representation theory
techniques to matrix/tensor correlators. In the other description, they are sub-algebras of
C(Sp) ® C(S,) ® C(S,,) which are invariant under left and right diagonal actions. Both
descriptions are based on the fact that tensor invariants can be described by sequences
of permutations, subject to equivalences defined in terms of group multiplications in S,.
The second description is an algebra structure on a space of double cosets, so that K(n)
is a double coset algebra. By partially gauge fixing the equivalences in the double coset
description, we arrive at the PCA description. K(n) is a semi-simple associative algebra. As
a result of the WA theorem, such algebras are isomorphic to direct sums of matrix algebras.
We describe this direct sum decomposition of K(n). We can think of I(n) as made of matrix
blocks. The terms in the sum are labelled by triples of Young diagrams with n boxes,
with non-vanishing Kronecker coefficient. These are triples Rp, Ra, R3 of representations
of S,, such that the tensor product R ® Ry ® R3 contains the trivial under the action
of the diagonal S,,. The algebra elements belonging to the matrix block labelled by the
ordered triple [Ry, R2, R3], along with more refined data associated with the Kronecker
multiplicities, are constructed using Clebsch-Gordan coefficients of the symmetric group.
These are denoted Q.ﬁ#j?’R‘?’. K(n) is a non-commutative algebra for generic n, so that



the centre Z(K(n)) of K(n) is a proper subspace. Triples of Young diagrams label an
overcomplete basis for the centre and triples with non-vanishing Kronecker coefficient label
a basis.

KC(n) also has an interpretation as a graph algebra. We explain this in section 4. The
identity of K(n) is the maximally disconnected melonic graph. For the lower orders n < 4,
this algebra turns out to be commutative. We give illustrations of this algebra at n = 2
and n = 3 (multiplication tables). At n = 3, there are elements which could factorize in
different ways and this might lead to interesting properties.

Section 5 shows how the structure of K(n) described in section 3 organizes the proper-
ties of correlators in the Gaussian model. We consider two types of correlators: two-point
functions of normal-ordered invariants, and one-point functions without normal ordering.
We develop explicit formulae using known results on Kronecker coefficients for specific
Young diagrams. The discussion of correlators makes it natural to consider the PCAs
KC(n) for all n at once, where n labels the number of ® and ® in the invariant. Hence we
consider and discuss the algebra

K> =P K(n) (1.1)
n=0

using the convention that at n =0, K£(0) = C.

In section 6, we describe how tensor model correlators can be described by two-
dimensional topological field theory of permutations on 2-complexes. The permutation-
TFT2 description of counting and correlators for matrix theories is reviewed and applied
to general quiver gauge theories in [57]. Some results on the connection between counting
of tensor invariants and permutation-TFT2 were given in [41]. Here we consider correlators
of these invariants as amplitudes in permutation TFT2.

In section 7, we use the color-exchange symmetry Ss3 of the rank-3 tensor model in
order to give a refined description of K(n) in terms of irreducible representations (irreps)
of S3. We prove integrality of some sequences of numbers, which were observed in [41]
but not proved. The subspace invariant under color-exchange is a closed sub-algebra. We
give a formula for the dimension of this sub-algebra as a sum of squares which leads to the
understanding of the WA-decomposition of the algebra.

Section 8 gives a summary of our results and outlines interesting future directions
for research. Among those directions, we mention a new type of statistical models based
on Young diagrams, the quest for holographic duals of tensor models and an intriguing
connection between Computational Complexity Theory and correlators in matrix and ten-
sor models.

In the last part of the paper, we have four appendices: appendix A gathers basics
of representation theory of the symmetric group S, which is used thoroughly in the text.
Appendix B consists in proofs of statements about PCAs, properties of their bases and
their centre. Appendix C provides an illustration of K(n = 3) as a graph algebra and gives
its multiplication table. Finally, in appendix D, we give a summary of the calculation of
Gaussian correlators (one-point and two-point functions).



Note added. While this paper was being completed, a few papers with some overlap [38,
58, 59] appeared. We will be pointing out the specific overlaps in key points as they arise,
particularly in section 5. Representation theory and Young diagram combinatorics have
also been employed in an SYK context in [60].

2 Observables in tensor models using permutations

We start by giving a summary of the description of tensor model observables in terms of
permutations which was introduced in [41].

Consider {V;}i=1.... 4, a family of complex vector spaces of respective dimensions Ny,
igs With
i €{1,...,No}, a=1,2,...,d, transforming as ®g:1Va. No symmetry is assumed under

No, ..., Ng. Let ® be a rank d > 2 covariant tensor with components ®;, ..

permutation of the indices of ®;, ... ;,. The tensor ® transforms under the action of the
tensor product of fundamental representations of unitary groups ®g:1U(Na) where each
U(N,) independently acts on a tensor index i,. The complex conjugate ‘i)mz...id of ;45 i,
is a contravariant tensor of the same rank d. The following transformation rule holds:

(d)
Pivigia = 9 U UL, UL 0,

jl: 7]d
~(d) =
1112 dg E : Zl]l ZQ]Q T Uidjd(D]l]Q---]d (21)
jl: 7]d

where U(® are unitary belonging to U(Ny), a = 1,2,...,d and may be all distinct. The
rank d = 2 will be referred to as matrix case and will be useful to make contact with known
results in matrix models. We will however focus in the rank d > 3.

Unitary invariants with respect to the action (2.1) are built by contracting pairs of
indices of (covariant and contravariant) tensors. These contractions are in bijection with
regular bipartite d-colored graphs (see section 2.1 in [41], for illustrations).

The unitary invariants are called observables of tensor models. Take n covariant tensor
fields ® and n contravariant tensor fields ®. Invariants of the unitary group action built
from these are polynomial functions of the tensor variables which we will refer to as tensor
invariants of degree n. The observables are constructed by contracting indices from the n
copies of ® and the n copies of ®. The different contractions are labelled by d permutations,
01,09,...,04 € S, and the corresponding observables are denoted Oy, 5. oy(®, @) (sce
figure 1). There is an equivalence under right and left diagonal action of S,, on S*? as [41]:

(01,02, ,0q) ~ (P01 2, L1022, - - -, 10 gf2) (2.2)

where p12 € S,. Equivalent permutation tuples give rise to the same observable. Thus,
counting observables is counting points in the double coset

Diag(sn)\(sn X Sn X X Sn)/Diag(Sn) (23)



Figure 1. Diagrammatic rank-3 tensor contraction defining (o1, 02, 03).

We denote the number of points in this double coset as Zg(n). Using the Burnside lemma,
we obtain the counting [41]:

d
Zin) = gz > 3 [[omemmo) (2.4)

Wi€Sn 0,€8y, i=1

which can be simplified to

n

Zg(n) = (Sym(p)*?,  Sym(p) := [J(i")(ps)) (2.5)

pkn i=1

where the sum is performed over partitions of n specified by p = {p1,p2, - ,pn} where
the partition has p; copies of 1, ps copies of 2 etc. so that n = >, ip;. A partition of p
of n, denoted p F n, specifies a cycle structure of permutations o € S,,. A cycle structure
corresponds to a conjugacy class in S,. The conjugacy class corresponding to p will be
denoted 7),. A permutation in 7, has a symmetry factor, which is the number of S,
permutations leaving it unchanged under conjugation. This is denoted as Sym(o) and is
the same for any permutation o € T}, so we also denote this number as Sym(p).

An important feature of this paper is that we will extend the correspondence between
permutations in S*¢ and observables

(o1, ,04) = Ogy e 0, (P, D) (2.6)
to the group algebra (C(S,,))®? by linearity

SN g @ Rag) & > A0, 6, (D,D) (2.7)

O1,+,04 O1,,04

We will consider sub-algebras of (C(S,))®¢ defined by these equivalences (2.2). We will
describe special bases in these sub-algebras constructed using representation theory, which
reveal the matrix structure of these sub-algebras expected from the WA theorem.

We now introduce the second fundamental ingredient for our analysis, the measure
over the complex tensors

P P

i1ig...ig

du(®, @) H d®iyiy. i,dPiyiy. ig€ 2y,

i

11%9...%9 (28)



which defines the Gaussian tensor models of interest. Expectation values of observables
Ooy.03, 04 (P, @) (Which we will denote as Oy, g, ... o, for brevity) are defined as

— fdﬂ(q)>(i))0‘717‘72""’0d
(Oar21 ) = Tan(@ 5] (2.9)

These correlators can be evaluated by summing over Wick contractions, which can be
parametrized by permutations v € S,. Thus a graph configuration in the expansion of
(Op1,00,,04), 15 determined by (v,01,02, - ,04). Summing over all ¥’s gives the full
correlator. Fixing N, = N, foralla = 1,...,d, after some algebra one gets (see appendix D
for a derivation of the following equality)

<001,02,~~,0d> = Z NC(WJl)+C(702)+M+C(70d) (2'10)
YESh

where c(«) is the number of cycles of o. This formula reflects the fact that correlators
depend on the total number of cycles of compositions of the permutations yo;, i =1,...,d.
The formula (2.10) has also been obtained in [58]. Another natural type of correlator
considered in [41] is the insertion of a product of observables in the integral, with the
prescription that we do not allow Wick contractions within the observable. These are
referred to as “normal ordered” correlators. They are discussed further in the appendix D
and section 5.

3 The permutation centralizer algebra IC(n)

In this section we will show that the equivalence classes of permutations which define
tensor invariants of degree n in the rank d = 3 case form an associative algebra IC(n). The
structure of the algebra KC(n) is intimately related to Kronecker coefficients. Its dimension
is equal to the sum of squares of Kronecker coefficients. For higher d, we have analogous
algebras K(n, d) with dimensions equal to a sum of squares which can be expressed in terms
of higher order products of Kronecker coefficients. This is shown below in section 3.1. In
subsequent subsections, we will primarily focus the analysis to the rank d = 3 case and the
algebra K(n).

3.1 Counting observables and Kronecker coefficients

Consider the counting of tensor invariants of degree n. We rewrite the above count-
ing (2.5) as

Zs(n) =) Sym(p) =) Syls!(p) > Sym(p) (3.1)
pFn pkn o€Typ

For each partition p of n, we are summing over all the permutations in that conjugacy class
o € T, and dividing by the size of the conjugacy class T}, denoted |T,|. We use the fact that

n!
Sym(p)

Ty = (3.2)



Using identities in appendix A.1, we write

Z3(n) = Z Sym Z Sym Z Sym(o)Sym(o)

pkn : o€Ty n 0E€Sn

1 L L
=2 D dtnorte ey te )

O'GSn Y1,72ESn

== Z > x (0)x" () x(0)

O’GSn R1,Ratn

— n' >y > «x X (01)8(o1v02y )X (02)x ™ (02)

YESy 01€Sn R1,Rakn

=G 2 2 X (Zx o) UQ)XRw@)sz(oz)

O'ZGSn R17R2)—n Skn

= Z (C(R1, Ry, 9))? (3.3)

R1,R2,Stn

where the symbol
C(Ru, Ro, R3) = ] Z X (0)x ™ (o)X (o) (3.4)
0ESH
is the Kronecker coefficient or multiplicity of the irreducible representation (irrep) Rj3 in
the tensor product of the irreps R; and Rs. Equivalently it is the multiplicity of the one-
dimensional representation in the tensor product R; ® Ro ® R3. Similar manipulations
show that the same counting is also equal to

Zs(n)= > C(Ri,Ry,S)C(Ry, Ry, S) (3.5)
R1,R2,5+n

Hence, counting observables of tensor model of rank 3 coincides with a sum of squares (or
product) of Kronecker coefficients. That sum is also the dimension of an algebra K(n) that
we will discuss in the next section. The connection between the counting of tensors and
Kronecker coefficients has also been discussed in the physics literature in [38, 52, 59] and
in the mathematics literature in [61]. For future reference in this paper, a key point from
the above discussion is

dim(K(n)) = (C(R1, Ry, 9))? (36)

R1,R2,5Fn

Counting in rank-d tensors. The above counting generalizes quite naturally at any
rank as

Zi(n) = Z Sym Z Sym(p Z Sym(o

pkn o€y, nl o€Sn

1 1 1 1
= n! Z Z 5('71071 ‘o 1)5(720'}’2 Lo 1) .. .5(7d_107d}10 1)

' 0ESn Y1725 YdESn

d—1
-3 [ > xRi<o—>fo<o>] (3.7)

" oeSy, i=1 LR;bn



where we used (A.21) of appendix A.1. Then we re-introduce delta-functions which couple
different permutations as:

Za(n) = n.g S Y P e (0o )X (02)x 2 (02)

YESn 01€Sn Ri,Ratn

XH[ZX (02)x m]

=3 LR;Fn

= _3 > D «x 1(01)< > XSI(Ul)XSI(Uz))XR2(02)XR2(02)

01ESy R1,Rabn Sikn
d—1
X [Z X2 (02)x % (03) | X (o3)x ™ (03) [T | D2 XR"(U:S)XR"(U?,)]
Sobn i=4 LR;bn

Z C(Ry1, R1, 51)Ca(R2, Ra, S1,52)Ca(R3, R3,S2,53) ...
R;,SiFn

X C4(Rg—2, Ra—2,S4-3,84—2)C(Rg—1, R4—1, Sq—2)

d—2
Z C(Rl,Rl,Sl)[HCzL(Ri,Ri,Si1,Sz') C(Ra—1, Ri-1, Si—2) (3.8)
R;,Sikn i=2
where the symbol C4(-) stands for
C (RluRQ)R37R4 ' Z XR1 )XR3( )XR4(U)
’ O’GSn
1 _
= )2 > o)X (o) (5(o1vo2y ™)) X (02)x (02)
v,01,02E€Sn
1
~ ()2 > XM (Zx a1)x" (02 ) ) | X (02)x™ (02)
01,02€5n Skn
=Y C(Ry, Ry, S)C(S, Rs, Ra) (3.9)
Skn

Thus at any rank the counting of observables of tensor models maps to a sum of products
of Kronecker coefficients. For example, at rank d = 4, we obtain

Zd(4) = Z C(SQ, Sl, Sg)C(Rl, Rl, Sl)C(RQ, RQ, SQ)C(Rg, R3, Sg) (3.10)
R;,S;Fn
To write a compact formula as a sum of squares, we introduce
1
Cr(Ry,Ro, - ,Ry) = ~ Z XR1 (O.)XRQ(O-) .. XRk (o) (3.11)
’ O’GSn

This counts the multiplicity of the one-dimensional S,, irrep in the tensor product of irreps
R ®---® Ri. It can be expressed in terms of products of Kronecker coefficients. The
dimension of K(n,d) is

Zg(n) = dim(K(n,d)) = > (Ca(Ri, Ry, Ry-1,5)) (3.12)
Ry, ,Rq_1,Skn



3.2 K(n) as a centralizer algebra in C(S,,) ® C(S,)

The permutation equivalence classes in S, X S, X S,, described earlier (2.2) have a gauge-
fixed formulation involving pairs of permutations. One way to see this [41] is by manipulat-
ing the symmetric group delta functions which implement the Burnside lemma counting.
For example, we can choose p1 = o ! which maps the triple

(01,00,03) — (1,07 02,07 o3) = (1,71, 79) (3.13)
The uo = p equivalence now acts on (71, 72) as

(11,72) ~ (prip™t, prap™") (3.14)

We will therefore define K(n) as the sub-algebra of group algebra C(S,,) ® C(S,,) which is
invariant under conjugation by the diagonally embedded S,,. In this section, we detail the
structure of this sub-algebra.

Consider the elements of C(S,) ® C(S,,) obtained by starting with a tensor product
01 ® o2 and summing all their conjugates by v acting diagonally

01 ® o2 — Z o1yt @ yoay Tt (3.15)
YESn

Now, K(n) C C(S,) ® C(Sy) is the vector space over C spanned by all >°_ ¢ yory ' ®
yooy~!, o1 and oy € S,

K(n) = Span(c{ Z yory Tt @ yoay Y, 01,00 € Sn} (3.16)
YESn

By construction, the elements of IC(n) are invariants under the action of Diag(C(S,)). To
verify this, we evaluate any element A € K(n)

rorn)-A-r'er )= Y cmemmoy T @mey T =4 (3.17)
01,02,Y€Sn
where we redefine v — 7.

Proposition 1. K(n) is an associative unital sub-algebra of C(S,) @ C(Sy).

Proof. We verify that K(n) is a closed under multiplication. Take two elements of K(n),
A= 201,027’716571 0‘71702710171_1 ® ’710271_1 and B = 2717727’726571 6/71,7'2’727—172_1 ® 727—272_17

. . /
with coefficients co, o, and ¢, .,

AB= ) Comlnm ) NON Mm@ M0 Ty

0, Ti€Sn V1,72
=3 > ormhm Y mlorymy Dt @nleaymy ! (3.18)
v 04,Ti€Sh "

where we redefined v = v, L, Yo - vy L Clearly, the last line shows that AB belongs
to K(n) as a linear combination of basis elements.

The unit of C(S,)®? is id ® id which also belongs to K(n). One can also check that
K(n) is an associative algebra because C(S,) is associative. Hence K(n) is a sub-algebra
of C(Sy) ® C(Sy). O
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The dimension of (n) is associated with the number of observables of tensor models.
Indeed, each colored tensor graph is associated with an equivalence relation (3.15) also
associated with one basis element of IC(n). Thus dimc K(n) = Z3(n). In the following, the
elements of K(n) are then called as and identified with “graphs” and the basis (3.16) will
be called graph-basis.

A Fourier basis of invariants. The Fourier transform of the basis (3.15) of K(n)
determines another basis of invariants for C(n). The elements of this basis are labelled by
(R,S,T,11,72) and are of the form

R,S,T __ R,S;T, R,S;T, R S
QTf,TQ = KRS Z Z 0217227137-1 ijz 2;2 D2131( )Di2j2 (02) 01 @ 02 (3.19)

01,02E€8n 11,12,13,J1,52

where kg g = %, i1 and j; (resp. 72 and jo) are positive integers bounded by the

dimension d(R) (resp. d(S)) of the representation of S,,, and i3 by d(T). Meanwhile,

R,S;T,T
C’Ll 112313 '
of S, see appendix A.2 for a brief definition and properties that we will use hereafter; the

multiplicities 71 and 72 € [1,C(R,S,T)]. We can check that, by acting by the diagonal
action, the basis elements are invariant (for the proof see (B.1) in appendix B.1):

(r®7)-QE% - (e = QR (3.20)

The basis {Qﬁ’i’f , shortly called @Q-basis in the following, makes explicit that the
dimension of the algebra K(n) is given by

Y C(R,S,T)? (3.21)
R,S,T

are Clebsch-Gordan coefficients involved in the tensor products of representations

An important property of the Qﬁ’,ST’QT’s is that they are matrix bases of K(n). We have (the
proof of the following is detailed in (B.3) of appendix B.1):

R,S,T AR ,S',T" _
QTl,’TQ QTZ T3 5RR/555/5TT/ TQTQQTl T3 (3.22)

Finally, noting that C(R,S,T) is at most 1 for n < 4, then the matrices er o are 1 x 1
hence are commuting. Consequently, at lower order in n < 4, (n) is commutative.

Orthogonality of the Q-basis. Consider the bilinear pairing &5 : C(S,,)®¢xC(S,)®? —
C,d >0,

da(®L 01 ©L,07) H5 ool (3.23)

which extends to linear combination with complex Coefﬁments naturally:
d d
4 ( Y oy ®i o) Clory Bzt Ul’) = ooy (3.24)
o1 o] o

We can also consider an inner product, i.e. a sesquilinear pairing, where we would have
C{s;} on the r.h.s. above. The inner product will have the same non-degeneracy property
we discuss below for the bilinear form.
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The following proposition can be easily checked.
Proposition 2. §, is a non-degenerate pairing on C(S,)®¢ vd > 1.

Inspecting the pairing of basis elements of {3 yo17 !t @ yoay 1} in K(n), we have

(P <27101711 ® 10271 Z’Yﬂﬂ{l ® 727'2’721>
7 72

= > dnory H(eme )T (me (e ) Y
Y1,72

= > d(mory e e (o e T )
Y1,72

=Y d(noryer ) (o (1) )
V1,72
=n!Y_ (oryr 'y ooy ) (3.25)
>

which is not vanishing whenever the o;’s are conjugate to 7;’s, ¢ = 1,2. This is precisely
saying that the two basis elements and the corresponding graphs are in the same class.
The above sum over v computes to the order of the automorphism group of the graph

associated with any of the basis element. Consider two colored tensor graphs G, -, and

1 1

Gaflvgé associated with the basis elements Z,y yo1y !t ® yoey~! and 2’7 yoiy t @ yohy L,

respectively, then we write

3 (Z not @nenr Y penyn @ 727272‘1> = n18(Goy 00, G} 01 )| AUL(Gory o, )|
71 Y2
(3.26)

where §(Goy,05: Got oy) = 1 if the graphs are equivalent and 0 otherwise, and |[Aut(Gg,,0, )|
is the order the automorphism group Aut(Gy, ,) of the graph Gy, »,. In the end, the
restriction of d2 to K(n) is non degenerate and the basis of invariants is orthogonal with
respect to that product. The following statement is therefore obvious

Proposition 3. K(n) is an associative unital semi-simple algebra.

Semi-simple algebras and their isomorphism to a direct sum of matrix algebras (WA
theorem) are explained in [53, 54].
The Q-basis proves to be orthogonal with respect to the bilinear pairing d2 (see (B.4)
of appendix B.1)
62 (QES15 QNS ) = ki sd(T) SnidsisrOr170 11701 (3.27)

/ /
71,71 T2,To

Note that we could have changed the normalization kg g of Qﬁ’ﬁ’f to make that basis

orthonormal with respect to d2. However, the previous choice of making as simple as
possible the matrix multiplication of the @)’s has fixed the normalization krg. Another
option to make the bilinear pairing of ()’s normalized is to change the definition of the
pairing itself, but we will keep the present definition of §4 for simplicity. The orthogonality
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relation (3.27) reveals that the basis {Q > T1 decomposes K(n) in orthogonal blocs labelled
by (R, S,T) and for each such triple an orthogonal square bloc labelled by (7, 7’).

We can address the expansion of the graph-basis in terms of the @-basis (inverse
transform):

27017_1(8’7027_1 = Z Zég(@ﬁif,’yaw ® Yooy~ 1) Qﬁ’fi’f (3.28)
Y R757T7717T2

where the coefficients calculate as

Z&(Qﬁﬁfﬁaw ® yooy ) = 252 (y®7) - Qﬁ;ﬁ’f (YT ey )01 ®09)

R,S, T R,S;T, R ST, R S
= Z da( QTl m 101 & 02) = n"{R S Z 011712 Z3T1 J1,J2; 13T2Di1j1 (Ul)Diﬂz (02)
i1
(3.29)
where used has been made of (3.20), namely the invariance of the @Q-basis. The coeffi-
cient (3.29) can be interpreted as the projection of a graph onto the @-basis.

3.3 The centre Z(K(n)) of KK(n)

Using the basis elements QX" ST we build elements of the centre Z(K(n)) of K(n) by taking

their trace at fixed (R, S, T):
PR,S,T _ Z QR S, T (330)

T

PR,S,T

To prove that is in the centre Z(K(n)), it is sufficient to show that it is commuting
R,S,T

with the basis elements Q77 of K(n):

R'.,S"T'" pR,S,T R',S" T AR,S,T R,S,T
QST pH Z QST QR Z SRR 055077 07yrQE ST = 6 pp 05557 QRS
R’,S T _ pRST RS T’
= Z SRR 055077 0rp QIS = PRST . QIS (3.31)
-

The orthogonality of the P’s follows from the orthogonality of the Q-basis (3.27):
52(PR,S,T; PR/,SI,T/ Z 52 QR ST7 QR 80T ) (332)

= kip,s d(T) Sprdss6rr Y Orr = kips d(T) C(R, S, T)drp 655 011"

7,7’
Proposition 4. The set {P™5T} is a basis of Z(K(n)) and
dim Z(K(n)) = number of non vanishing Kronecker coefficients (3.33)

Proof. K(n) decomposes in irreducible blocs labelled by (R, S,T') and, associated with each

RST. In that vector space, for a given (R, S,T), P®5T is the
R, 5’ T

of the triples, a matrix Q
sum of diagonal elements of Q Collecting all possible diagonals hence P57 spans
the centre Z(K(n)).

The dimension of Z(K(n)) is given by the number of non vanishing Kronecker coef-
ficients: a triple (R, S,T), such that C(R,S,T) # 0 yields a non vanishing Qf’T‘?’T and
contributes to a single P57, The result on the dimension of Z(K(n)) follows. 7 O
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An overcomplete basis of central elements. Here we will show how we can start
with a triple of irreps of C(.S,,) and construct central elements of /C(n) from them. These
will form an overcomplete basis of central elements, which will be demonstated by taking
the pairing with the basis P%T described above.

First consider a partition R of n and the element zg = Y. _ x(c)o that is central in
C(Sy). Indeed for any R F n, choose v € S,, any arbitrary basis element of C(S,,), and
calculate:

vy =) XMooyt =) xfoy o = 2k (3.34)
g g

Let Ry and Ry be two partitions of n from which we introduce the central elements
zr, = >, xXY(0)o, i = 1,2, then build

ZR1,Ry = 2Ry ® ZR, = Z XRI (O’l)XR2 (0'2) 01 X 09 (335)

01,02€5n

that one can show to be central because is a tensor product of central elements (use (3.34)
twice on each sector).
Another possible element of the centre obtained from a single partition R F n is

2R = Z Yt(o)o®o (3.36)
oES)
One can quickly verify that zgr, gr,:rs = 2R, R, - ZRs € K(1):
(Y@7) 2Rk - (V@Y = D X (o)X (02)x ™ (03) yo1057 @ y000377!
o, ESn

= > X (o)X (02)x™ (03) yo1037 " @ yoa037”
UiESn

1

= Y XM (o)X (02)x (03) 0103 ® 0205 = 2y Rosry
UiESn

(3.37)

where we change variables yo;—1 2 — 7;=1,27, ~vo3y~t — &3, and rename 0i=1,2,3 S 0j=1,23.
We arrive at the following statement:

Proposition 5. The set {zr, ry:rs}, with R; = n, is an overcomplete basis of the centre

Z(K(n)).

Proof. We project PRu12:83 onto 2 R, R};R, and check that the coefficients are not vanishing
(see details in (B.17) in appendix B.1):

o(PTT TS, 2 b priry) = nVOR, i Oy ry ORr, C(R1, Ra, R3) (3.38)

Hence PF1:R2:.83 admits a decomposition in terms of z R}.Ry:R, The overcompleteness
follows from the number of elements of {zx; ry.p;} is p(n)3 which is larger than the number

of non vanishing Kroneckers the dimension of Z(IC(n)). O

A general study of central elements in algebras constructed as subgroup-centralizers
in a group algebra is given in [62].
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3.4 Double coset algebra

The algebra K(n) introduced in the previous sections as a sub-algebra of C(S,) ® C(S,)
has another description as a sub-algebra of C(S,,) ® C(S,) ® C(S,,). As we will see shortly,
in this latter description, we have an algebra of double cosets. The former description as
a centralizer algebra is a gauge-fixed version. Hence the double coset description is an
un-gauge-fixed version. For this reason, we will refer to the double coset algebra in this
section as Kyun(n) and establish its isomorphism with /C(n). In the rest of the paper, we
will use K(n) for either description of the algebra, and it will be clear from the context
whether we are working with the gauge-fixed (centralizer algebra) or un-gauge-fixed (double
coset) description. While the centralizer algebra is a more economical description, being
embedded in a smaller algebra, Ku,(n) arises more immediately from inspection of the
permutation equivalences relevant to tensor models, as reviewed in section 2.

KCun(n) as a double coset algebra in C(S,)®3. Consider elements 01 ® 02 ® 03 €
C(S,,)®? and the left and right actions of Diag(C(S,)) on these triples as:

01 ® 0y Q03 — Z V10172 @ V10272 ® V10372 (3.39)
V1,72E€5n

Kun(n) is the vector space and sub-algebra of C(S,,) ® C(S,,) ® C(S,,) which is invariant
under left and right actions by the diagonal Diag(C(S,,)):

Kun(n) = Spanc{ Z 710172 ® 7110272 @ 110372, 01,02,03 € Sn} (3.40)
71,72ESn

The equivalence classes defining Ky,(n) are the double cosets
Diag(S,)\(Sn X Sn % Sn)/Diag(Sn) (3.41)

It is simple to check that ICyy(n) is stable under multiplication. The identity of Ky, (n) is
id ® id ® id. The rest of required properties to make Ky, (n) a sub-algebra of C(S,,)®3 can
be easily verified.

Proposition 6. Ku,(n) is an associative unital sub-algebra of C(S,)®3.

In fact, one shows that the two algebras IC(n) and Ky,(n) have the same dimension.
The isomorphism between the basis elements stems from a change or variable: v; =5 101_ L
and then renaming o lo; as 0y, i = 2,3, and 79 — ~. Under this change of variable we

obtain

Z 710172 ® 710272 @ 710372 = Z id ® ooyt @ yozy ! (3.42)
Y1,72€5n YESn

and the r.h.s. is clearly associated with the basis element nyesn yooy @03yt of K(n).
It is direct to get dim Kyn(n) = dimK(n) = Zs(n). Finally, we will keep the name of
“graphs” as elements of Cyn(n).
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Fourier basis Qun. In this formulation in terms of triples of permutations, the basis of
invariants of ICun(n) is given by

RST __ RSTTl R,S;T, 72 "R S T
Qun;‘rlﬂ'Z - HR,S,T Z Z 11,1213 le,jg,jg ‘Dll ]1( )DZQ jg( )Dig,jg (03)01 Koy ® g3

01E€Sn 11,1
(3.43)
with kp g7 = %ﬁ%dm. The basis {QEHST;‘F  } is called Quu-basis. Its elements are invari-

ant under left and right diagonal actions (see (B.5) for an intermediate step, appendix B.1):
(%) - Quaitrs - (05°) = QUi s (3.44)
and multiply like matrices (for a few details, see (B.6) in appendix B.1):

R,ST AR.,S' T _
Qul’l;Tl,TQ Qun;72,73 - /iR S T(SR R’ 55 S’ 5T T'

R,S;T,m1 ~R,S;T,m3 nR S T
X Z Z Z Zch,zz i3 Cal az; a33D21 al( 1)Di2702(02)Di3,a3(03> 01802 ® 03

01ESn 1,01 0,€Sn @

Z RS T RSTmy — 6r.R 08,5001 QR7$7T (3.45)

J1,J2;793 ]17]2 J3 un;7i,73

Computing the pairing of two Qun’s yields (for details see (B.7) in appendix B.1)

R/ Sl /!
85 (QEST s Q™) = hmsir d(T)2 O Sssr 001 0r, 2y ryry (3.46)

we infer that the basis QQy, is orthogonal. Same comments about making @)y, orthonormal
by appropriately tuning the kg g7 normalization factor can be made at this stage.

The centre Z(Kyn(n)). We now investigate the centre Z(Kun(n)) of Kyn(n). Using
the same strategy as in section 3.3, we construct now the basis of the centre by taking the
trace of the matrices Qun’s

PisT =3 Quih (3.47)

T

/ !/ !
We show that Pﬁ’S’T is commuting with any an’;i;g:

R,S,T R/ ST’ R,S,T R’,S’,T’
pl ZQ

111'1 3T1,7T2 un;7,T Un;T]_,TQ

RST _ R,5T
= R r 05,9011 Y Orm QST = 0p 05,5 0r QLT
RS T’ R,S,T R,ST _ pRST RS T’
Qun! iTL,T2 B = 5R,R/657S/5T7T/ Z 6T77'2Qun;7'1,7' = Py ) Qun;n,’rg (3.48)
T

Hence P&S’T is in the centre of KCyy(n). Adapting the arguments of the proof of Proposi-
tion 4 in the present context, the next result can be deduced without difficulties.
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Proposition 7. {PE5T} is a basis of Z(Kua(n)).
The pairing of two Pyy,’s gives

/ ! 7 R/,S,,T/
53(]31{%5?; Pﬁ’s T = Z 53(QR,$,T. )

un; 7,7 Cun; 7/, 7’

= KJR,S,Td(T)25RR/(SSS/(5TT/ Z (57_7,

7’

= rrs1 d(T)’C(R, S, T)drr 055671 (3.49)

Overcomplete bases of Z(Kyy(n)). Given three Young diagrams R;, i = 1,2, 3, and
the central element zp, = Y. x'%(0)o of C(S,), we are interested by the element

RuBaRs — op @ 2R, ® 2R, = Z T (01)x 2 (00) XT3 (03)01 @ 00 @ 03 (3.50)
0;€ESn

that proves to belong to the centre of C(S,)®3. It is sufficient to prove this claim for any
basis element as

M@y @3- 2 = N X (01)x 2 (02)x B (03) 1101 © 7202 @ Y303

i ESy
_ Ro —1 Rs/.—1
= Z B Yy, 01 (73 T02)X (3 03)01 ® 02 ® 03
g, ESp
_ —1v\. R3 -1
= Y XMoo x (o2 I (0375 o1 @ 02 @ 03
0,€Sn
= Z X (01)x T2 (02) X (03) 01711 ® 0272 ® 0373
0,€Sn
_ le,R2,R3 T ®Y2 @ Y3 (3.51)

we used a change of variable o; — 7, !
The following statement holds.

R1,Ra,

Proposition 8. {1} forms an overcomplete basis of the centre Z(Kun(n)).

Proof. We want to find an expansion

Plﬁl,Rg,Rg _ Z 53 R17R27R3 PR1,R2,R3) fnlszvRa (3.52)
R} ,R}),Rl
with the coefficient 53(25&’R2’R Pﬁl’RQ’RS). That quantity has been computed in (B.19)

of appendix B.2 and one finds it as
R! R}, R} )
83(zuit "2 PV 18) — d(R3)C(R1, Ry, R3)0k, r, O, O R, R, (3.53)

Now, for a given triple (R, R2, R3) for which PRiR2,Rs

R ,R,,R!
53( Mottt PR1,R2,R3)

is not vanishing, then the coefficient
is not vanishing. Therefore PI" 2% has an expansion in terms
of the le’Rz’R“s The cardinality of {zi 2%} is p(n)3, cube of the number of partitions
of n, is larger than the number of nonvanishing Kroneckers C(Rp, Ra, R3). The basis

anl’RQ’Rs is therefore overcomplete. ]
p
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4 IK(n) as a graph algebra

As already mentioned, to each element of Ky, (n) of the form Z% aeS, MO1V2 @ V10272 ®
Y1037, we associate a tensor observable, determined by the triple of permutations
(01,09,03) subjected to the equivalence (o1,02,03) ~ 71 - (01,02,03) - v2. We now in-
vestigate the algebra inherited on colored bipartite graphs induced from the multiplication
law of Kun(n). As observed in [41] and discussed earlier in this paper, the gauge-fixed
formulation involves permutation pairs subject to simultaneous conjugation equivalence.
These naturally correspond to ordinary bi-partite graphs (edges are not colored). A differ-
ent algebra structure on the space of bi-partite graphs has been considered in [63].
First, given the normalized graph elements of Kyy(n), labelled by o; € Sy,

1
Ao 02,05 = W Z 710172 ® 110272 & V10372 (4.1)

71772€Sn
we write a product of two of these elements in Ky, (n) as
1
Agy,00,05404,05,06 = W Z Y101Y2T104T2 @ Y102Y2T105T2 @ Y10372T106T2  (4.2)
Y1725, 72€8n

A change of variables v — 71, and renaming of 75 as 72 and 71 as 7, allow us to get

1 1
A01702,03AU4,05,06 = E Z W Z '71(0'17'0'4)’72 ®’71(U2705)’72 XM (0'37'(76)72]
" TESH 7 41,72€8n
1
= ! Z Aciro4, 00705, 03706 (4.3)
TGSn

Thus, the product of two graphs can be written as a sum of graphs. There is a particular
element such that

1 1
Aoy or,05Aid,idid = — § [ 3 E Y1(017T)v2 @ Y1(02T) Y2 ® 71(037')72]
TESH Y1, ¥2ESn

1
= > 0112 ® 0272 @ N03Y2 = Agy 00,05 (4.4)

Y1,72€Sn

and similarly A;qiqidA0 02,05 = Aoi,00,05- Lhis shows that A;q;4:¢ = E is a unit element
of the graph algebra.
In the gauge-fixed formulation, the graph multiplication takes the form:

BoyoyBogos = O M019 1120375 ' @ 110277 120475 !

V1,72
_ —1 -1 -1 —1
= V2T TO1TO3%9 = @ 72T 027047,
7,72
:E BT_10'1T0'3,T_10'2T0'4 (45)
=
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where we used a change of variables v; — v27~! and omit normalization factor, for sim-
plicity. This relation can be also obtained from (4.3) after some proper gauge fixing.

Coming back to the formula (4.3), we can illustrate this in diagram

| | | 1 i
[ i P 0] [ i i o]
N Y RN b
[ (. [ i [ i
[ [ [ 1 L 1
I D) 1 _lo9)
| | | | | | ! 1 ! 1 ! 1
P P! P! 1! 1! Vo
| | | l 1 l 1 l 1
IR 7 N e
I 1 I | | | | |

T — +
. . . N Ll
[ 1ol [ | \0'4] l ' ' ' |0'4]
| T | T | T T 1 T 1 T 1
;o ;o P i i 1
SN 3 L N
l ! ! el l ' ' (ol
T T T v T N T N T
P o P ' ' '
P! ;! P! [} [ ] [}
L c i ! ! P!
(L L _og] (i i i fors)

(4.6)

Algebra Kyn(n = 1). Let us illustrate the formula (4.3) at n = 1. There is no choice
here, we obtain E? = E. This is the unique invariant made by contraction of two tensors,
that is

of an 1 dimensional algebra {E}.

1 mams Tni nonsIninans = 2. We consider E as an idempotent or unit element

Algebra KCyn(n = 2). We now examine n = 2. There are 4 possible diagrams, see (4.7).

«—D
E ~ (01 = id, 05 = id, 03 = id) = TP

1=
Aigia o) = A~ (01 =id, oy =id, 03 = (12)) =

| oI5
Ajg 120 = B ~ (01 = id, 00 = (12),03 = id) =

1=
Aq2yidia = D ~ (01 = (12),02 = id, 03 = id) = (4.7)

where the labels 3,2, 1 denote a particular colored edge which can be used as a label of the
invariant. Note that due to the equivalence under left and right diagonal action, any other
choice reduces to one of the above. For example o1 = id, s3 = (12),s3 = (12) ~ (12)- (01 =
id,s2 = (12),s3 = (12)) - (12) = (01 = (12),02 = id,03 = id). We then compute some
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products (note that they are normalized by 1/(2!)? and we use (4.3)):

—_

A-E= §(Aid,id,(12) + A12),12),id) = Aidia,12) = A

DS

1
A-A=S(E+Aay,a2,09) = E

DS =

1
A-B= §(Az'd,(12),(12) +D)=D

D

1
A-D= §(A(12),id,(12) +B)=B

==L 28

B-D= (A(lz (12 tA4)=A4A

e as

Other products behave like, in loose notations, BE = B, DE = D, B?> = E,D? =
E,AB = BA = D,AD = DA = B,BD = DB = A. Thus F is the unit element of
the multiplication law. Furthermore, it is simple to check that the law its associative
(AB)D = D?> = E = A2 = A(BD), (AB)B = DB = A = (AE) = A(B?), commutative
and any element of the graph basis is its own inverse. As expected K(2) = C(S3) ® C(S2):
the diagonal conjugation action which defines K(2) leaves the permutation pairs invariant.

Algebra KCyn(n = 3). The number of invariants is Z3(3) = 11 and this makes the

multiplication table more complicated. We have listed the products in appendix C. In fact,
>

(S
21 products involving the unit £ = © are known.

From the multiplication table, we see that Ku,(3) is commutative, that some basis
elements can be factorized. We illustrate the product for a non trivial situation obtained
by taking the product of the following elements A1) (123),:a and A(123),(123),(12) depicted as:

e

W

A12),123),id = A123),(123),(12) =
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Then we get:

i 8.8.8. 88 .

5 PCAs and correlators

In this section, we undertake the analysis of correlators of Gaussian tensor models, building
on the permutation description for tensor model observables introduced in [41] and reviewed
earlier. We start with one-point functions of tensor model observables corresponding to
central elements in K(n). These observables are labelled by triples of Young diagrams
and are sums of permutation basis operators weighted by characters. As explained in
section 3 such sums of permutations weighted by characters lead to an overcomplete basis
for the centre in K(n). Correlators parametrized by Young diagrams using characters
have also been highlighted in [58, 59]. Analogous correlators at higher d are expressed in
terms of sums of products of Kronecker coefficients. In section 5.2, we use known results
on Kronecker coefficients to give explicit formulae for several families of correlators. In
section 5.3 we consider normal ordered 2-point correlators, which we have briefly discussed
in [41]. We show that the tensor model observables corresponding to the WA basis for
K(n) discussed in section 3 provide an orthogonal basis for these 2-point functions. This
orthogonality property has also been considered in [38, 59].

5.1 Correlators for central observables

We start our analysis with correlators of general observables at d = 3, parametrised by
permutations, corresponding to general elements of K(n). We then specialize to central
observables labelled by triples of Young diagrams: as we saw in section 3 triples of projectors
labelled by Young diagrams lead to an overcomplete basis for the centre Z(KC(n)). We
extend the discussion to any d.

Rank d = 3 correlator. In rank d = 3 tensor models, consider a general observable
Og1,00,05 defined by three permutations o;, i = 1,2,3. The expectation value (Og, 5y,03)
evaluates in the Gaussian measure, using appendix D. We write:

<001,02,03> = Z Nebo)teyoz)telyos) (5'1)
vy

:Z Z Nele)te(@)+e(@s) 5~ g1 01 )5 (yoaa2)8 (yoz0s)

Yo 01,002,003

d(R1)d(R2)d(R,
= Z Z Z ( 1) (51')23) ( 3)N0(a1)+c(a2)+c(a3)XR1 (’Yo'lal)XRQ (’YUZQQ)XRg (’}/030(3)
Y o Ry ’

where we expand the §’s over S,, using characters as in (A.16) of appendix A.1. Now we
use three facts: (1) >, N« is a central element in C(S,), since c¢(gay™!) = c(a), (2)

if B is a central element, characters factorize as x(AB) = ﬁXR(A)XR(B), see (A.20),
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appendix A.1, and (3) that characters extend by linearity over C(S,), XR(Z7 cyy) =
> e x (), to write (5.1) as

01702,03 ZZ n Ry)d(Rs)

v R

x X <’Y01 (Z N C(“)oq) ) X ('702 (Z N C(“”%) ) X (703 (Z N C(O‘s)a:a) )
[e%1 a2 a3

> Z (o)X (vo2)x 2 (yos) D Netetelea)teles) B (q )y B2 (ag) x ¥ (a3)
Ry

¥ oy
v R

where, in the last stage, we use (A.23) of appendix A.1. Dimy(R) is the dimension of the

HDimN(Rz) X (yo1)x 2 (vo2)x 2 (y03) (5.2)

=1

representation of the unitary group U(N) determined by the Young tableau R. Consider
sums of Og, o, 5, Weighted by characters with Young diagrams S; = n, ! = 1,2, 3, and define
the function

D X7 o)X * (02)x™(03)(O01,00,05) (5.3)

O'ZESn

1
<051,Sz,53> = (n1)3

These observables correspond to central elements in /C(n) by the map (2.7). We can use
character orthogonality (see (A.18) and (A.1))

S R _ " RS R
ZO;X (@x" (o7 = gry? X () (5.4)
to write
3
Dimy (.5;) Ss | Dimy (.5))
<OSLS2,S3> o d Sl ; X (7) n l];! d(Sl) (31752,53)

- [HfmS»] C(S1. . 53) 55)
=1

Thus the correlators (Og, s,.55) are proportional to the Kronecker coefficients. The factors
fn(S;) are products of box weights of the Young diagrams (A.2). In a large N limit where
we are considering tensor invariants of degree n, hence Young diagrams with n boxes,
where n is kept fixed and N is taken to infinity, the f-factors behave like N™ at leading
order. The relative magnitudes of the correlators in this limit is determined purely by the
Kronecker coefficients. At finite IV, since we are dealing with a theory where the tensor
indices are taking N possible values, the Young diagrams are cut-off to have no more than
N rows.

Rank d correlator. The above formula (5.2) can be generalized at any rank d. Rank
d Gaussian correlators of a generic observables Oy, ,,.. 0, labelled by d permutations o,
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l=1,2,...,d. We will sketch the above analysis for Oy, 4,....,

oq-

<Ocrl 02,... o’d = Z NC('Y‘H)+C(702)+~~~+c(~/gd)

=D (1) [HdRz (701§Nc(al)al>] (5.6)

v R

Then, using the same technique, we arrive at

< 01,02,.. 7Gd : :: :

v R

H Dimy (Ry)x ('yal)] (5.7)

We calculate the Fourier transform of Oy, 4, o, Weighted by characters. Let S,
l=1,...,d, partitions of n,

(O081,85,...54) = Z (n!)dxsl(al)xsg(az)---Xsd(ffd)<(9m,crz,...,ad>

5 [Hxsl ) 639

H Dim y ( Sl
RG]

Introducing Cq(S1, S2,...,S4) = & > {Hle x> (’y)], the number of invariants in S; ®
So ® -+ ® Sy, we can write

4 Dimy ()
N (91
(O8,.85,..5.0 =n!| [ — e~ | CalS1, Sa, -, Sa) (5.9)
= s
As an illustration, restricting to rank d = 4, and using the relation (3.9), that is

C4(S51,52,53,84) = > g C(S1, 82, 5)C(S, S3,5;) counting the number of invariants in S; ®
So ® S3 ® Sy, we have

DlmN (Sy)
<OS1,52,53,S4> =n L d Sl ] Z C Slv SQ’ (S’ 53, 84) (510)
Note that C4(S1,...,S4) can be decomposed as a sum of Kronecker coefficients convoluted

in one of their indices. A possible sequence of such a convolution could be 35 C(51, S, Sh)
C(S1, 53, .52)C(Se, S4, 53)C(S3,55,54) .... Any permutation over S;’s giving a different se-
quence should give the same answer C4(S1,...,S;). Then, we observe that there is graph-
ical way to encode the expansion of (Og, s,....s,) as a convoluted sum of Kronecker coeffi-
cient C(Sg, Sp, S¢). Reminiscent of Feynman rules, we associate C(Sg, Sy, S¢) with a triva-
lent graph vertices and half edges labelled by S,, S, and S., each symbol S summed over
between two Kroneckers C(Sg, S, S) and C(S, Sy, Sw) is associated with an edge between
the vertices C(S,, Sp, S) and C(S, Sy, S¢). It is not hard to realize that the corresponding
graph is always a tree graph with vertex set with vertices of degree 3 and d half-edges.
Therefore, each correlator (Og, s, s,) is associated with a decomposition in several tree
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B IR

Figure 2. Order 5 unlabelled tree configurations.

graphs the half edges of which are labelled by S, ...,S3. Any of these tree graphs to which

we finally give a weight n! [Hle Digl(gl()s l)} is a valid representative of (Og, s,... 5,). For

-----

example, the correlator (5.10) is associated with any of the following trees:

So S3 S3 Sa Sy Sa
P D =S G = an

ST Sy S1 Sy S Sa
At order 5, there is a unique unlabelled tree configuration (see figure 2 A) yielding 15
different tree labellings of half edges (or leaves) and, at order 6, there are 2 unlabelled tree
configurations (see, figure 2 B1 and B2) giving 120 different tree labellings of half edges
(B1 yields 90, and B2, 30). The counting of that type of trees is the counting of 3-regular
(or binary) trees with d leaves and d — 2 vertices (and so 2d — 3 edges). This will involve a

mixture of a counting of the so-called binary beanstalk (A and B1) but also more general
terms. For d = 3,4,5,6, we have the sequence

1,3,15,120, (5.12)
respectively, which should be completed at any d.

5.2 Correlators and Kronecker coefficients: explicit examples

To illustrate the above formula (5.5), we evaluate correlators of rank 3 tensor models as a
function of N > 1, and n > 0, for some particular Young diagrams.
For any S and Sy, and for 81 = [n] = | | ..l [ ] then C(81,5,53) =1 and

n—boxes

50 (Os,.55.55) = [[Ti-y 5 (S1)]/(n!)?, from (5.5). That computes to

In(S2) fn(S3)
(n!)?

Note that, in the following, we consider that IV is large enough compared to n. Specifying

(0s,,85.55) = (N —=2)(N—=3)...(N—1—n) (5.13)

So and S3 to give a more precise formula for the correlator. For all n, consider the Young
diagrams defined by

Si=m =L 1 L1 L1] 1=123, (5.14)

Vv
n—boxes

such that from (5.13), one gets

© >:[(N—2)(N—3)--~(N—1—n)]3: (N —2)1°
51,5255 (n!)? (n1)?[(N =2 =)l

Varying the order of the symmetric group, that is varying n = 1,2,3,...,10 gives table 1.

(5.15)
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n=1 | n=2 n=3 n=4 n=>5
N =2 0 0 - - -
N =3 1 0 0 - -
N =4 8 2 0 0 -
N=5 27 54 6 0 0
N=6 64 432 384 24 0
N=7 | 125 | 2000 6000 3000 120
N =8| 216 | 6750 48000 81000 25920
N =9 | 343 | 18522 | 257250 | 1029000 | 1111320
N =10 | 512 | 43904 | 1053696 | 8232000 | 21073920

Table 1. Evaluation of <O[n],[n],[n]>

Let us introduce the notation [n — k,1,...,1] = [n — k, 1¥], where k is the number
of 1 appearing in the dots. For all n, C([n],[n — k,1*],[n — k,1¥]) = 1. Hence, for k €
{0717'” 7n_1}7

n—k—boxes

L] L]

(5.16)

where the dots in the 1st vertical column refers to k-times a block of size 1. Hence for this
class of Young diagrams, the correlator calculation can be easily made.
(O in—k1#,n—kar) = (N =2)(N =3)...(N —1—n)
[(N—=2)(N—-3)2...(N-1-k)?N-k—-22*N-k-3)...(N
(n!)?

) —1-(n— k)P

[(N—-2)(N—=3)...(N—=1—(n—k))?
(n!)?
X (N=3*N-4? . (N-2-k*N-n+k-2)(N-n+k-3)...(N—1—-n)
[V = 2)P [T (V=2 = 2] [T (N = n+ k= 1-1) 51
(n2[(N —n+k—2)1]3 ‘
It turns out that (O, 1%],[n—k,1#]) 18 DOt necessarily an integer for any values of k. One

can check this by direct evaluation for instance using N = 7,n = 3, <O[3L[271]7[271}> = @.

In any case, we further restrict to the case k = 1 and give (O [n—1,1),[n—1,1]) for different
values of NV and n > 2, in table 2.

Next, we relax the assumption that S; is the symmetric representation. Avoiding
trivial cases, consider n > 2 and k < 5, then we consider the following

n—k—boxes

-~

S1 =8 =853=[n—kk|]= (5.18)

where of course the second row has k boxes.
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n=2
N =2 0
N=3 0
N =4 2
N=5| 54
N =6 432
N =71 2000
N =8| 6750

24

864
32000

3
75000

216
12000

225000

1920
162000

18000

Table 2. Evaluation of (O} (n-1,1),jn—1,1])-

n=2 n=3 n=4 n=>5 n=6
N=2| 0 - - - -
N=3| 0 0 - - -
N=4| 2 2 0 - -
N=5| 54 48 3 0 -
N=6| 432 | 1296 648 g 0
N =71 2000 | 128000 | 24000 7630 80
N =8| 6750 | 93750 | 375000 | 405000 | 90000
N =9 | 18522 | 444528 | 3472875 | 8890560 | 6667920

Table 3. Evaluation of (Op,—1.1),jn—1,11,[n-1,1])-

According to a computation using SAGE mathematical software up to order n = 25,
for all n > 3k, the Kronecker coefficient of the two-row Young diagrams is given by
k
Cln = ks k], [0 = b K], [n = by ) = | 5] + 1
where || denotes the floor function. Therefore, from (5.5), we have

(=t ov 1) (i ov—2-0)]° (L

(i §J +1> (5.20)

forn <25and k < %: while we have checked for n < 25, we expect this will hold for higher
n as well. General stability properties of Kronecker coefficients are described in [64, 65].

(5.19)

(On—kk), [n—k k) [n—k k) =

This correlator (5.20) is not integral in general. We obtain table 3 listing some values of
(Op—-1,1],fn-1,1,[n—1,1)) (at k = 1). Note that for this table, the column n = 2 coincides with
the column n = 2 of table 2 as expected from the correlator formulas (5.20) and (5.17) at
n=2and k= 1.

Finally, let us consider three Young diagrams with rectangular shape. Consider n to
be divisible such that n = jk, with j and k integers:

k—boxes

S1 =Sy =53 =[k]= (5.21)

— 96 —



n=2 n=4 n=6 n =8 n=3 | n=6
N=2] - - 0 - N=2| - -
N=3| 0 - 0 - N=3]| - B}
N=4 2 0 0 - N=4| 2 -
N=5| 54 3 0 - N=5| 6 -
N=6| 432 648 0 - N=6| 48 -
N =71 2000 | 24000 0 § N=7| 20| 8
N =8| 6750 | 375000 | 0O 2430000 N=8| 750 | 120
N =9 | 18522 | 3472875 | 0 | 17010000 N =9 | 2058 | 15435

Table 4. Evaluation of (Ox2),x2),1x2)), for n = 2k (left) and of (O3 k3], k3]), With n = 3k (right).

For simplicity, let us assume that j <k < N — 1,

k 3
(n1')2 [H (]\(fj\igizl_)'ly] C([kj]v [k]], [kj])

=1

(5.22)

(Otws) v, 09)) =

which can be again computed. We will restrict to the lowest orders in k:

— If the number of rows is j = 2, such that S; = [k?], for k even, we have
C([k?],[k%],[k?]) = 1 and for k odd, C([k?],[k?],[k?]) = 0. In this case, the corre-
lator values coincide with columns n = 2 and 4 of table 3 but, at order n = 8, they
start to differ. In this case the correlator is also not an integer. We obtain the Lh.s.
of table 4.

k3], we have, for k < 30 and for k
1, [k3], [k®]) = |k/2] + 1. We obtain

— If the number of rows is j = 3, such that S; =
even, C([k%], [k%],[k®]) = k/2 and for k odd, C([k
the r.h.s. of table 4.

[
3

5.3 Orthogonality of two-point functions and WA basis for IC(n)

If we consider correlators of normal-ordered operators (see appendix D), then we can write
them in terms of the product in K(n) and the delta function

<0017027U3OTI’7—277—3> = Z N3n53[(01 Qoo ® 03)’}/{@3(T1 QT & Tg)’}/é@?’(Ql ® Qe @03)] (5.23)
V1,72

with Q; = > aes, N c(@i)=nq,  An important property of the €;’s is that they are central
elements of C(S),).
tensor product of €2 factors defines a central element in K(n), hence the product in (5.23)
involves the triples of permutations defining the two observables and the central elements
defined by the Q-factors. The above equation (5.23) was derived as eq. (42) in [41] (or
(102) of the arXiv version)). There is a mistake in a following equation ((105) of the arXiv)
which should be

(O01,09,05 Or1 70,m5) = 1! Z 52[(52_1:“*71052MQ2) ® (/83_1M71CV31UJQ3)A(QI)]
UESH

Indeed, using c(yay~!) = c(a), one finds that v;7~! = Q;. The

(5.24)
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where ag = 01_102, a3 = 01_103, Bo = 7'1_17'2, B3 = 7'1_17'3, and

Q) =) N@Waga (5.25)

The Fourier basis (or representation basis ) of operators is defined by

RST _ RST 1o 1o —1
On,fz = E: 63(Qun;n,m‘71 ® oy ®og )001,02703 (5.26)
01,02,03
RSTTl RSTT2 R S S
_K’RSTZZ iniiniis Cirgosis Diij, (01) D35, (02) D; 4, (03) 0oy 05,0
01 4,1

The conjugate operator is

071'%152 —"QRSTZ RSTTICRSTTQDR ( )DS ( )DS ( )001702703

21712713 Ji,g2;93 T 12]2 1373
oL i
o R,S;T,711 ~R,S;T, 72 WR S S
= RRST Z Z 011712713 CJ17J2,J3 D“]l( )D12J2( )Disjs (03)001_1 oy oyt
o1 ig,g1
o R,S;T, 71 ~R,S;T, 72 WR S S
= RR,S,T § : 2 :Cu,mﬂs C]1J2 73 Djlll( )DJ212( )Djsis (03)Os1,02,0
/AT
R,S,T
Om,n (5.27)

where in the last stage of the equality, we simply rename i; — j; and vice-versa.
The two-point correlator evaluates as:

<OR1’Sl’TIOR2’S2’T2 Z N3n5 |: RhSl,Tl i@?)QRQ,Sz,Tz ®3(Ql ®QQ®93) (5.28)

T1,T] T2,T) un;7y, 7 v un;74, 7o Y2
Y1,7Y2

This shows that the inner product on tensor model observables, given by the Gaussian
integral (with a normal ordering prescription which excludes Wick contractions within the
observable), is proportional to the group theoretic inner product on K(n) with the insertion
of the 1 ® Q9 ® Q3 factor. The invariance property of the Qun-operators (3.44) gives

<OR1,S1,T1 ORz,SQ,T2> _ (n!)2N3"53 (QRLSl’Tl QR27527T2Q R0 ® Qg) (5‘29)

T1,T1 TQ,TQ un;7i Tl un;7,,72

Use the matrix-multiplication property of the Quu-operators from (3.45) to write:

(OB O T) — (02N, 05, 5,07, 150+ 7 03(QUESTI O © Qy © Q3) - (5.30)

Since €2; are central elements in C(S,,), we have

X () x ™2 (Q2) X2 (Qs)

Ri,R2,R3 () 9 Oa = Ri,R2,R3
Quiind: &8 &5 =)l () O
= N™*"Dimy (Ry)Dimy (R;)Dimy (Rg) Q51,121 (5.31)

where, recalling the form of y®(Q) = 3, N°@="\f(a), we then use (A.25) in
appendix A.1.
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We also have (as we prove shortly)

RST \ _ CRSTToRSTm2g s s _
63(Qun;nﬁz KRSTZ 01,0203 ]1,32,j3 8i1,j10iz,j20is js = KR,S,TA(T)07 7, (5.32)

,J1

The @Q’s behave like elementary matrices of a matrix algebra. The d3 behaves like the trace.

Using (5.30) and the above, the correlator becomes

R ,S 11 AR ,S S
<O 1,01,41 2,02 2>
71,7'1 7'2,7'2

= 5317325517525T17T257-1,7-257_{7T51€R17517T1d(Tl)DimN(Rl)DimN(Sl)DimN(Tl) (5.33)

and this shows that {(’)RST} forms an orthogonal basis for Gaussian correlators (with
R,S,T

normal ordered prescription) arising directly from the Q, ",

theoretic WA basis of IC(n), via the map (2.7).

which are the representation

5.4 K and correlators

We have emphasized, in the bulk of the paper, the role of the algebra K(n) in organiz-
ing several aspects of correlators. Similar algebras arise in the context of matrix theory
problems. For the half-BPS sector, we have the centre of C(S,), denoted by Z(C(S,)).
A basis at fixed n is labelled by partitions, which in turn can be used to organize multi-
trace holomorphic functions of a single matrix of degree n (i.e. a multi-trace containing
n copies of the matrix Z). The multiplication of two multi-traces of degrees n; and no
produces a multi-trace of degree ny + ny. Using the map to central elements of Z(C(S,,)),
this corresponds to an outer product which takes central elements 71 € Z(C(S,,)) and
Ty € Z(C(Sy,)) to get something in Z(C(Sp,+n,)) followed by a projection to the centre.
The direct sum

P z(c(sn) (5.34)
n=0

provides a natural setting for correlators.

For the 2-matrix problem, relevant to the quarter BPS sector of N =4 SYM, there is
a PCA A(m,n) corresponding to multi-traces with m copies of X and n copies of Y. In
this case too, it is natural to consider a direct sum over all m,n > 0.

For the problem which is our present main focus, rank-3 complex tensors, the analogous
infinite dimensional associative algebra is

~ =PK(n) (5.35)
n=0

There are in fact two associative products on this vector space. The product at fixed n
has been the main subject of this paper. The WA decomposition at fixed n is related to
the formula for K(n) as a sum of squares of C(R, S,T). There is also an outer product on
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K which we now decribe. Given two permutation pairs in (n;) and K(ng) respectively,

(@1,52) = Y (mowy L moan )
"/1€Sn1

(T1,72) = Z (v b 12emeys ) (5.36)
'YQESnQ

we have an outer product

o: K(n1) ®@ K(n2) = K(n1 + n2)
(G1,52) 0 (F1,72) = > (¥@1071)y (@20 T2)y ) (5.37)

765n1 +no

This outer product to the multiplication of the gauge-invariant functions of ®, ® of degrees
n1 and no to give a function of degree nj + ny. This outer product is related to the ring
structure which has been described in detail, using the representation basis in [38].

As a generalization of normal ordered two-point functions,

N(Og,1,00)N (07, 7,)) (5.38)
which is expressed using the product in K(n), we may consider
(N(Os1,05071,7 )N (Oc3,04)) (5.39)

Here 03,04 are in Sy, +n, and the correlator can be expressed in terms of

((@1,02) o (T1,72)) - (03,04) (5.40)

which involves the commutative outer product followed by the non-commutative product
within KC(n; 4+ n2). This interplay between the two products in the context of correlators
of one and two-matrix models has been described in [52].

Infinite dimensional algebras constructed as direct sums of the above kind, with more
than one associative product, in some cases with a co-product and Hopf algebra struc-
ture, have been studied in the subject of combinatorial Hopf algebras, with applications
in diverse areas of combinatorics (see e.g. [66]). It would be interesting to explore the
application of such combinatorial Hopf algebras in providing a mathematical framework
for the computation of correlators in matrix/tensor models.

6 Correlators, permutation-TFT2 and covers of 2-complexes

In this section, we will show how correlators in tensor models can be expressed as observ-
ables in topological field theory of S, flat connections on appropriate 2-complexes. This S,
description is closely related to covering spaces of the 2-complexes. The powers of N are
shown to be related to the Euler character of the cover. This generalizes to tensor mod-
els analogous results obtained for single-matrix models and quiver matrix models [57, 67].
Unlike the case of matrix models, where the 2-complexes are cell-decompositions of smooth
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2-manifolds (possibly with boundaries and possibly equipped with line defects), here the
2-complexes do not discretize smooth 2-dimensional spaces.
Consider (5.6) that we re-express:

(Oc1,02,.04) = > 5(ay ' yo1)8 (a5 y02) - - 6oy o) N Felaa) o elaa)
7,01,02, ,q€Sn
= Z (5(0&20&101_10'2)(5(()(306101_103) cee (5(Oéd06101_10d) (6.1)

01,02, ,0g

In the last line, we did the sum over v by using the first delta function. Defining 7 = oy Loy,
To = aflog, Tl = Jflag, we have

<Oal,02,~~-,0d) = <01,Tl,7'2,---,7-d,1>
= d(aza1m1)d(azanTy) - 6(agayTay ) Nole el telas) (6.2)
(6%

It is instructive to normalize the observables by including factors

d—1 d—1
H N(c(n)fi’m) _ N72n(d71) H N(C(Ti)f’n) (63)
i=1 =1

so that the normalized observable takes the form

d—1
Oty g gy = <N2n<d1> 11 N(C(”)")> Oty gy (6.4)

=1

We then write the above normalized correlator as

<01,T177'2:'" 77'd71>

=Y N+ 1 () =+ (@) =) §(anay 71 )8 (azans) - - S(agarTa1)  (6.5)
e%

These sums over delta functions can be interpreted as partition functions of two-
dimensional S,, 2D-topological field theory (TFT2) on 2-complexes. These S, TFT2 are
lattice gauge theories with a simple topological plaquette action consisting of delta func-
tions for the product of permutations along the edges of the 2-cell. For a review of these
TFT2 and their applications to correlators in quiver gauge theories and Feynman graph
combinatorics see [57, 68].

S, TEFT2 are also closely related to branched covers, a fact which has applications
in the string theory of 2dYM [69, 70]. It is interesting that it is possible to choose the
normalizations of the operators and an overall normalization in terms of powers of N,
such that the amplitude has a power of N which is exactly equal to the Euler character
of the covering 2-complex. The appropriate 2-complexes have a single vertex and loops
corresponding to the permutations, and 2-cells (plaquettes) corresponding to the delta
functions. Figure 3 shows the appropriate 2-cells for the cases d = 3,4. The vertices,
labelled A are all identified to a single point. The «; as well as the 7; therefore correspond
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Figure 3. 2-cell for S,, TFT2 interpretation of correlator at d = 3 (left) and d = 4 (right). The
2-cells in the 2-complexes are (aymay), | = 2,3, 4.

to closed loops. The triangles are the 2-cells. In the covering space interpretation, there
is an n-fold cover of the 2-complex. The permutations «; describe the monodromy of the
sheets of the covering as the different cycles are traverses from A back to A. The terms
(c(o) —n) is the contribution to the Euler character of a 2-surface whose boundary covers
a circle on the target space with monodromy o (see for example the review on branched
covers in [70, 71]). Hence we have these factors for each of the a’s and 7’s. The 2-complex
has one vertex, 2(d — 1) + 1 = 2d — 1 edges, and (d — 1) faces. The Euler characteristic
V—FE+F = —d+1. According to the correlator formula above, when the permutations are
all equal to the identity, the power is —n(d — 1), which is the correct Euler characteristic
of the trivial n-fold cover.

The weight NX is expected from a string theory where gs; = N~!. The above formula
for the correlators, as a sum over coverings of a 2-complex by a 2-complex, suggests an
interpretation where the covering 2-complex is viewed as a “string worldsheet” and the
target 2-complex as a target space for the string. Interestingly the 2-complexes for general
d have d—1 2-cells joined at the vertical edge. So these 2-complexes are not cell decomposi-
tions of smooth two-dimensional surfaces. They can be 2-skeletons for cell decompositions
of 3-manifolds.

This raises a number of fascinating questions for the future. Is there some form of
higher dimensional topological invariance in this string counting, associated with higher
dimensional manifolds? Can we use this combinatoric string theory interpretation to de-
velop a topological string action with these higher dimensional manifolds as target spaces?
This logic of identifying the stringy geometry in the combinatorics of the large N expan-
sion proved useful as a stepping stone for developing the string theory in the case of 2d
Yang Mills theory [70, 72] — for a proposal connecting this string theory to AdS dynamics,
see [73]. The recent focus on tensor models, through their connection to SYK models, is
directed towards the emergence of conformal symmetry and holographic duality involving
AdS spaces (see the references mentioned in the introduction). The story of gauge-string
duality (see e.g. the review [2]) involving low dimensional non-critical string backgrounds
formulated as ¢ < 1 matter coupled to Liouville theory, co-existing with alternative formu-
lations in terms of topological strings, intersection theory on moduli spaces, or collective
field theory may conceivably have a counterpart for tensor models. The unifying role of
algebras related to permutations, and permutation topological field theories, in organizing
physical correlators for matrix as well as tensor models suggests that such a scenario is not
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unrealistic and worth exploring. The key role of the Wedderburn-Artin decomposition of
algebras, which finds an interpretation in open-closed topological string theory [55, 56, 75]
— with open strings associated to generic elements of the algebra and central elements
associated with closed strings — suggests that finding an interpretation of these open-
closed relations in the alternative holographic formulations of the string theory would be
an interesting goal.

The S,-TFT2 picture also gives a geometrical picture for correlators in the Fourier
basis. Take for example the correlator (5.5) that is:

3
Dim
(ORy,Ry,Rs) = 1! C(R1, Ry, Rs3) H AR n(R (6.6)
=1

Consider the partition function of .S, TF'T2 on the 2-complex shown in figure 4

Z(ov,00,03) = Y d(oonoiyy (0020275 o (00730375 )
00,71,72,¥3ESn
=nl > d(ormoey; (0172087, ) (6.7)

01,02,03,71,72

Considering the central correlators in the Fourier basis
Z(Pr,, Pr,, Pr,) = n! C(R1, R2, R3) (6.8)

Inserting the central elements Q=3 o N <@g we have

N™ N™ N™ DlmN<R1> DlmN(RQ) DlmN(Rg)
—QP —QPg,, —QPgr,) =n! C(R1,Rs, R
2 R T I S
(6.9)
Similarly, for d = 4,
Z(Pr,, Pr,, Pry, Pr,) = n!C(R1, R2, R3, R4) (6.10)

and

NP N N N
(QPRI, [ QPry, - QPr,, mQPR4>

'DlmN(Rl) DlmN(Rg) DlmN(Rg) DlmN(R4)
d(R1) d(R2) d(R3) d(Ra)

C(R1, R2, R3, Ry) (6.11)

The 2-cellular complexes associated with the counting at d = 3 and at d = 4 have been
given in figure 5.

The different ways of factorizing this 4-point function corresponds to the different
topologically equivalent ways of resolving the 4 copies of incident circles into successive
3-fold incidences. This is illustrated in figure 6.
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-~ C(Rl,Rz,R3,R4)

Figure 6. S,, TFT2 for Kronecker coefficients: factorization equation (3.9) or (5.10).

7 Ss-color exchange symmetry

The standard Gaussian integral over tensor fields is symmetric under exchange of the d
colors, and as such is expected to provide selection rules for correlators. This is also
expected in any interacting model, which is obtained by adding to a Gaussian term an
interaction which is invariant under color-exchange. It is therefore natural to consider the
implications of the Sy permutation group symmetry for the correlators of the tensor model
and for the algebra K(n), which has been shown to be intimately related to correlators
in previous sections. Colored symmetric tensor model observables have been enumerated
in [41] using group algebra techniques. Color-symmetric interactions have also played a
distinguished role as interactions in renormalizable tensor field theories [16-21].

The counting of color-symmetric observables in [41] was done in terms of sums over
the conjugacy classes of S;. For each conjugacy class p in Sy, we had expressions Sé‘”
which were sums over partitions of S,,. These were themselves observed to have integrality
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d)

properties. Explicit formulae for 512
to high orders in OEIS [76].
In this section, we will give formulae in terms of character sums for S,(,d) (n) for general

were given for d up to 4, and they have been computed

d and p F d. We will consider the decomposition of I(n,d) in terms of symmetry types
of Sy, labelled by Young diagrams Y of S3. The integrality of these will be used to prove
that the integrality of S/}(,d) (n). The completely symmetric Young diagram Y = [d] = Y
corresponds to the counting of color-symmetrized graphs.

Focusing on the case d = 3, where we have 3 colors, we describe selection rules for
the multiplication in K(n) which follow from color-exchange symmetry. We observe that
the subspace Ky, (n) forms a sub-algebra of K(n). Like KC(n) it inherits a non-degenerate
pairing from C(.S,,) ® C(Sy,). The WA theorem implies therefore that it has a decomposition
as a direct sum of matrix algebras. This in turn implies that we should be able to write
a formula for the dimension of Ky, (n) as a sum of squares. We find such a formula and
explain how to construct a basis for Ky, (n) which matches the counting. We give group
theoretic formulae for the dimensions of the other S3 invariant subspaces of (n), namely
Ky, (n), Ky, (n) where Y1 = [2,1],Ys = [3] are the Young diagrams for mixed symmetry and
for the antisymmetric representation of Ss.

7.1 Counting observables in the rank d = 3 case

Color-symmetrised graphs are defined [41] by imposing an equivalence under S3 permuta-

tions of the permutation triples describing the graph
(0'1,0'2,0'3)N(0'2,0'1,0'3)N(01,0'3,0'2)N... (71)

These S3 permutations commute with the diagonal left S, action and the diagonal right
multiplication, which are used to get colored graphs from the permutation triples. Elements
of (C(S,))®? invariant under this S3 action are

[o10903] = Z Oa(l) @ 0n2) @ 0n(3) € (C(Sn)®3 (7.2)
a€Ss
The left and right S, equivalences are imposed on these S3 symmetric triples
[o10203] ~ [7? ][010203][7 Z V10a(1)72 © V10a(2)72 @ V10a(3)72 (7.3)
a€ESs
The color-symmetric subspace of K(n), denoted Ky, (n) has a dimension given by

dim(Ky; (n 6n, YooY (v toryer (v osvos?)
'yGSnag,ages

225707201 Z(S

'YESn oESy 'y,aeS
1 1 L 1
= G o Sm) + 5 DD APy e ) kg D
6n! 2n! 3n!
pFn 'yESn oESy ~,0E€Sn
(3) LG 3)
65[131( n) + 55,1 (n) + 35[3}( n) (7.4)
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This was denoted Zs,.s(n) in [41]. Since the actions of S3 commutes with S, x S,,, we in
fact have an action of S3 x .S, X S,, and we can equally first apply the S,, x S,, equivalence
in C(Sy,) ® C(S,) ® C(Sy,) to get K(n) and subsequently project to the invariants of the S3
action. Following the steps in [41] (see equation (59) and following there) we see that the
three terms can be written as

S =t (@B)), Sy =trew((12), 8§ =t ((123)  (7.5)
where tri(,,)(+) is a trace over the vector space K(n). We thus have

1

dim(Kyy (m)) = Sty (D)E) + 3trce((12) + st (123)  (76)

The Burnside lemma calculation in [41] can be regarded as the application of the normalized
projector for S,, x S, x S3 acting on C(S,,) ® C(S,,) ® C(S,,) followed by taking the trace.
This is because under inner product on C(.S,,) given by the delta function, the permutations
form an orthonormal basis.

7.2 The algebra Ky, (n)

We define the algebra Ky, (n) the left and right invariant and colored symmetric sub-algebra
of C(S,)®3 as

Kes(n) = Spanc{ > V10112 @V10-(2)72 @ V107(3)V2 5 O1,02,03 € Sn} (7.7)
Y1,72,¥3ESn,TES3

It can be checked that the product of two basis elements of Kcs(n), A = ZTGS3,’Y~;ESn

(7107(1)72 XV107(2)72 ®71UT(3)72) and B = foesg,v;esn ’71071(1)75 ®’Y{<TTI(2)7§ ®%UT'(3)7§
belongs to Kcs(n). We have

AB (7.8)

= Z Z (7107172 @ M0r(2)72 @ V107(3)72) (M Tr (1)72 @ V107272 © V107/(3)75)
7,7/ €53 i, V;€Sn

=nl ) { YY) oo @)vs @ (or@) 120 @)V ®71(UT(3)7207/(3))’Y§}

7/72€83 \ TE€S3 v1,74€Sn

1

where we successively used y27] — 72, 7 — 7/77'. Then, the product AB is a sum of

basis elements of Kcs(n) hence belongs to Kes(n).

7.3 Decomposition of /IC(n) into representations of S3

The group algebra C(S,,) ® C(S,,) @ C(S,,) is a representation of S,, x S, x S3. One S,, acts
on the diagonally on the left, the other acts diagonally on the right, and the S3 permutes
the three factors. These three actions commute. Once we have projected to the invariant
subspace of S, X Sy, to get (n) we still have an S3 action. We can decompose K(n) into
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subspaces which transform as irreducible representations of S3. We have a decomposition
of K(n) into

K(n) = Ky, (n) ® Ky, (n) ® Ky, (n) (7.9)

Yy = [3] is the one-dimensional trivial rep of S3, corresponding to a Young diagram with

a single row of length 3. Y; = [2,1] is the two-dimensional irrep of S3. Yo = [1%] is

the anti-symmetric irrep of S3. In other words the vector space of 3-colored graphs is a

representation of S3. This space can be decomposed into a direct sum of the trivial along

with the [2, 1] and [13] representations, which will all appear, generically with multiplicities.
Using the standard formula for the projector Py in the group algebra of Sy

d(Y)

Py = 5 Z Y (@) a (7.10)
’ a€Sy
and specializing to d = 3, we can write
dim((Ky; (n Z d(Yi)x" () trieny (@), i=0,1,2 (7.11)
aESg
We have
. 1 1
dim(Ky, (n)) = s{f’gl( )+ =S5y () + 2Si5) (n) (7.12)
6 271 3
and
dim(k ~ 250 25
im(Ky, (n)) = 3 [13](71) 378 (n)
. 1 1 1
dim(Ky, (n)) = 65[(1331 (n) — 53{5’}” (n) + gsf;? (n) (7.13)

Taking a9, a®, a® to belong to subspaces of K(n) labelled by the three Young diagrams
Yo={3},Y1 ={2,1},Y> = {1,1, 1} of Sz, we will have the following selection rules

a(o) G K:y )

ah.al) ¢ Ky, (n) & Ky, (n) ® Ky, (n)
aW.a® e Ky, (n)
)

a?.a? e Ky, (n (7.14)

These follow from the corresponding tensor product decompositions of S5 representations.
From these equations we see that Ky, (n) is a sub-algebra of K(n). Ky, (n) and Ky, (n) are
modules for the algebra Ky, (n). Ky, @ Ky, is also a closed sub-algebra of IC(n).

An interesting consequence of the above decomposition of K(n) is that we can use it
to prove the integrality of the separate terms S[(lg)], S[(S)}, Sg’]). A similar argument can be
made when we have d colors instead of 3. We will in fact present the argument in this
generality. Take a vector space V, which is a representation of S;. The multiplicity of an

irrep labelled by Young diagram Y (partition of d) is given by

Py
a Z Tyl XY (o) try (o) Z |Sym Y(op) try(op) = try <d(Y)> (7.15)

pkd pkd
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op is a permutation with cycle decomposition given by the partition p, i.e. some fixed
permutation in the conjugacy class 1,,. We will use T; to denote the sum of all the permu-
tations in the conjugacy class T,,. The subspace of V' transforming in the irrep Y, denoted
Vy, has dimension

dim Vy = try (Py) = mi d(Y) (7.16)
These mi‘; are natural numbers (zero or positive integers). The quantities we called SI()d)
in [41] are
1 —
S7 = trv(op) = -ty (4) (7.17)

for the case where V = K(n).
T, is a central element in the group algebra of \S,, and has an expansion in projectors

v
oy X' (Tp)
T, = P 7.18
P ZY: ay) (7.18)
This can be seen by writing
@ = Z ay/Py/ (719)
Y/
and then taking the trace in irrep Y to find
v
Y X' (Tp)
T,) = ayd = 7.20
X ( p) ay ( )? ay d(Y) ( )
Now write
Y (7 Y (7
- X (Tp) _ X (Tp) Y _ Y 7\, Y
(D) = 30 g v (By) = 30 G dmy = 3o @ymY (72
R R R
and observe
1L~ L) v XL, Py
—try(T,) = my = try (7.22)
i ) = 2 T = 2 T e
It turns out that, for symmetric groups, we know that the characters XT%Z[“ = XY(ap) are

integers (this follows for example from the Murnaghan-Nakayama lemma for computing
the characters). This proves that the S](,d) — for all d and p — in our previous paper are
integers. From the above equation it is not clear they are positive, but we also know from
before that they are sums of delta functions. Combining these two facts, we conclude that
they are indeed positive integers — as we found to high orders in [41] and in [76].
As a consistency check of the above (7.13) we can construct the sequence for the Y;
sector ﬁ dim(Ky, (n)) = (S[(f’g] - S[(;))/S — using the S]()S) are found to be
0,1,3,13,52,296, 1850, 14386, 126082, 1247479 (7.23)
so indeed integral. Also for dim(Ky,(n)), we find
0,0,0,2,13,110,810,6796, 61693, 618880 (7.24)

Again these are indeed integral as expected.
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7.4 Color symmetrisation using Fourier basis

We can better understand the connection between the Qﬁf}fZ’RS and the S3 invariant

subspaces, Ky (n) by doing the color symmetrisation directly in the Fourier basis for C(.S,,)®
C(Sn) ® C(Sp)

QZI ,J1 Q’Lz ,J2 ng ,J3 (725)

Important properties (see appendix B.1) are

1] \/ n' Z D g, Z pJ ’ T - Z Qf}Dﬁl (7'26)

oESH

and the orthonormality property

5(QF, Q%) = 6r,s0u;1 (7.27)

In order to project (7.25) to Ky (n) we apply the normalized projectors

P(Ss)P[(/Sn)P}(2 6 n' o Z Z Z apL 01 ,OR 0'2) (728)

01E€Sn 02€S, aES3

where pr(01) indicates the left diagonal action, pr(o2) is the right diagonal action and «
acts by swapping the tensor slots. We will calculate

dim(Ky, (n)) = tregs,yes (PO PL PR) = try (P9) (7.29)

We have

Z Z ZapL(Ul)pR(U?) 11]1 szz stjs

01E€Sy 02€S, aES;3

= > > > Y DR (0D, (01) D (o)

01E€Sn 02€Sn aES3 PI,qI

R R R,
thl(ffz)D];;Z( 2)Djogs(72)

a(l) a(2) (X(S)
Qpa(l)?Qa(l) ® Qpa(?) da(2) ® Qpa(S)an(S) (730)

To compute the trace, pair this with Q“ i ® QZQ Yia ® le *ia and sum over Ry,1;,j; giving

22, 2. 2 Dyl (oD, (on)

Ry 01€Sn a€S391,51,01,Q

Dt (99) D2, (02) D (09)

Jiq1 J292 J343

§frRaq g, 01y gy, 0T a5, ) §Rala@g, 6

11,Pa(1) YI1,9a(1) 12,Pa(2) j27qo¢(2) 13,Pa(3) VJ3:4a(3)

= 2. 2, 2 2> D, (@)D, (oD, (o)

Rl,RQ,Rg o1 eSn O'QESn 04653 Zl 7]l

R R R: R1,R,, R2,R,, R3,R:
D]lza(l)(o-z)D]é?a@) (Uz)DjS;a(S) (02)5 ! M2 2§ @) (731)
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There are three types of terms. If « is the identity then we have

1
6(n!)2 D X (o)X (01)x ™ (01)x ™ (02)x ™ (02)x " ()81 e g2 a2 5T M)
V01,02
1
=3 > (C(Ry, Ry, Ry))? (7.32)
R1,R2,R3

When o = (1,2) we get

m s > S XX o)X (03)x (02)

Rl R; 01,02

= n, —= > > X eDXT(03) ) (oryoy 'y )

Ry 01,02

= Tn') ZZXRI(U%)X&(U%) (7.33)
Ry o1
The other permutations in the same conjugacy class give the same factor. So we get
1
s 2 2 X (e?)x(0?) (7.34)
2(n!)
R o
If « has cycle structure [3], then we have
T 2 3 e (7.3)

R 01,02

So we recover the counting we previously had, from working with the delta functions over
the group algebra.
These three expressions above

5P () = 3 (C(Ry, Ry, Ry))?

R1,R2,R5
(3)
Sp 21 1ZZX o?)
1) (n) = o 22 S xR ed)xE(od) (7.36)
R 01,02

are directly related to the delta functions derived in [41] by starting from Burnside lemma.
The advantage of the present method is that the generalization to general SZ(,d) (n) is easily
done. We will describe this generalization in section 7.6 of these formulae in terms of
character sums.

7.4.1 Subspace of K(n) with Ry 23 all different

Fixing three different representations of Sy, let us call them {R, S, T'}, there are subspaces of
Ky, (n), Ly, (n), Ly, (n) which come from the six different assignments of the list [R1, Ra, R3]
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from the set {R,S,T}. From the equations above we see that in this case, we only get
contributions from o = (1)(2)(3). Using (7.31) we find

dim (KK (n)) = (C(R, S, T))? (7.37)

for the color-symmetrized subspace and for the subspaces transforming according to the
other irreps of S5

dim(KS" (n)) = 2(C(R, S, T))?
dim(KYE 5 (n)) = (C(R, S, T))? (7.38)

(RST)( )

Focusing on IC , which forms an algebra of K(n), we can write a basis for this

algebra as
R,S;T, 11 ~R,S;T T2 a(S)
Z Z 021712713 C'Ll 12313 Q a(1)7]a ® Q a(2)7]a(2) ® Q a(3) ]a(S) (739)
11,42,13,J1,J2,J3 €€S3

Since 71,7 run over a range of C(R,S,T) the counting of these basis elements agrees
precisely with the dimension of this subspace.

7.4.2 Subspace of IC(n) where two S,, irreps are equal and different from third
Consider the subspace of K(n) where two of the Ry, Ry, R3 are equal to R and a third is
equal to S. The a = () term will now contribute 3/6(C(R, R, S))? = 1/2(C(R, R, S))?. The
factor of 3 comes from the choice of which of the R; is equal to S.

Consider for concreteness the term (7.33), for case where Ry = Ry = R, R3 = S. We
will re-write this in a number of ways.

Let us return to Sy ]

Spy(n) = n' (nh2 Z Z X)X (01)x " (03)x (02) (7.40)
R,S 01,02
This sum contains cases where R = S as well as R # S. Focusing on the R # S case, define
R,R,S)
Spog) () = n. —5 3 X)X (01)x(03)x (02) (7.41)
01,02

The multiplicity of S in the symmetric part of Vg ® Vg is

Mult(Sym (Vr), V. ZX tI‘R®R ((U ® o) 1+ (12)>

2

szx o)+ X0 "(0))
C(R R,S) + —ZX (7.42)

The multiplicity of S in the anti—symmetric part of Vg ® Vg is

Mult(A%(VR), Vs) = C(R R.8) - o ,Z X (7.43)
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So we learn that

~ Z X = Mult(Sym?*(Vg), Vs) — Mult(A*(Vg), Vs) (7.44)

So we can re-write

Sttt = (Mult(Sym?(Vi), V) — Mult(A%(Vg), Vs))® (7.45)

From the above of course

C(R, R, S) = Mult(Sym?(Vg), Vs) + Mult(A*(Vg), Vs) (7.46)

The two terms which contribute to the dimension of K(n) when we restrict the list
[R1, Ra, R3] to take values in {R, R, S} are

%C(R, RS+ %C(R, R,S) = %C(R, R, S)(C(R,R,S)+1) (7.47)

This shows that the restriction of Ky, (n) to the sector where two of the irreps are equal
is integer.
Another very instructive way to write the dimension of this subspace of Ky, (n) is

1C(R R,S)* + % (Mult(Sym?(Vz), V) — Mult(A?(Vz), Vs))”
(Mult Sym?(Vi), Vi) + Mult(A%(Vi), Vi)

5 (Muli(Sym® (Vi) Vs) — Mult(A*(Vi), Vs))’

= (Mult(Sym?(Vg), Vs))? + (Mult(A*(VR), Vs))? (7.48)

T2
+

This formula gives an expression for the dimension of the (R, R, S) subspace of Ky, (n) as
a sum of squares. That is, we have identified the WA blocks of the decomposition.

Based on this counting, we can write down the basis elements for Ky, (n) in the subspace
where two of the R; are equal to R and the third is .S. We define Clebsch-Gordan coefficients

R,R,S;[2],11
11,i2,3
R,R,S;[1%],7
11,42,13 ’ (7.49)
The first are the Clebsch-Gordan coefficients coupling Sym?(R) ® S to the trivial represen-
tation. The second are the Clebsch-Gordan coefficients coupling A?(R) ® S to the trivial
representation. The basis elements in Ky, (n) are of two types

R.R.5:[2),m R.R.Si[2)m
11712713 J1,72,73

( 11,71 ® Q'LQ ,J2 X ng ,J3 + Qll ,J1 & ng ,J3 & QZQ J2 + Q’Lg J3 ® Qll,]l & QZQ ]2) (750)

X

and

R7R15§[12],7’1 CR,R,S;[12],TQ
ilvi2vi3 J1.J2,73

( 1,J1 ® Q 2,J2 ® QZJJ& + Q 1,J1 ® Q 3,J3 ® Q'LQ 2J2 + QZJJ& ® Q 1,J1 ® QZQ ]2) (751)

These agree with the correct counting in (7.48). Note that this is different from the naive
guess of C(R, R, S)? for this sector.
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7.4.3 Subspace of KC(n) with all equal R; = Ry = R3 = R

The above allows us to guess what will happen when we consider the subspace of Ky, (n)
corresponding to {R, R, R}. We should be able to write the dimension of that as

(Mult (P Vg2, Vo)) + (Mult( P, ViE*, V0))? + (Mult(Pys) VE?, Vo)) (7.52)

The subscripts on the P’s are Young diagrams with three boxes. Maybe we need a factor
of 2 or 4 in front of the second term. This would be the WA decomposition of the Ky, (n)
projected to the (R, R, R) sector.

We now prove this. So we apply the projector

(d' 2 Z Z arL Ul)pR(UZ)Q11 J1 ® Q22J2 ® Qz3]3

a€S3 01,02€Sy

R R R R
d.QZ > DR (00D, (00Dl (1) Dfty, (02) Dy, (02) Dy (02)
a€S3 01,02€8,
X Qpa (1)9a(1 ® QPQ(Q)QQ(Q) ® Qpa(3)qa(3) (753)

Pair this with Q“ i ® ng ® Qm3 and sum over R, p;, and ¢; to find

1 R R R R R R
6(d!)2 Z Z Dplpau)(Ul)Dmpa(z) (Ul)Dps.pa(s) (Jl)an(l)QI (02)an<z>¢n (02)an<a)q3 (02)
" a€S3,00€8, PL,@

= Z Z Z trres (o1a)trges (o2a) Z Z Z trresgres (01 @ 02) (@@ a)  (7.54)

o 01€S, 02€S, a 01€S, 02€8,

This can be understood in terms of representation theory of .S,, x S acting on Vg)g.

Vs = B P Vi @ VY @ Vi a, (7.55)
A1Fn Aok3

We take two copies of these tensor products

Viteve= @ @D Vi eV e Viaa o Ve @ VY @ Veaay (7.56)
A, AL Fn Ao, ALF3

The sums over 01,02 € S, project to A; = A} = [n]. We further need to restrict to the
trivial of the diagonal S3. This trivial rep occurs once inside Vi, ® Vi, whenever Ao = A,
The multiplicity is

> (dim Viijy,4)° (7.57)
AF3
This gives the WA decomposition of Ky, (n) projected by overlapping the permutation
triples with Pr ® Pr ® Pg.
Corresponding to the decomposition (7.55) there are Clebsch-Gordan coefficients for
the change of basis from an orthogonal basis of states |R, R, R;11,1i2,13) to another orthog-
onal basis of states |A1, Ao, Ta, Ay;MAL, MA,) @S

R,R,R;A1,A2,TA; Ay
11,92,135MA 1 ;M A,

- <A17 A27 TAl,AQ; AL, TNA, |R7 Ra R7 il) i27 Z3> (758)

43 —



For the case A; = [n], A2 = A, we have

R,R,R; [TL] vAvT[n] A
11,92,13;5MA

= <[n]7AaT[n],A;mA‘R7 Rv R;il7i25i3> (759)

The irrep [n] is one-dimensional so has no corresponding state label.

The elements of the WA basis for Ky, (n) will be labelled by (R, A, T[(n]) A [(T}) A) where

[(TZL]) A [( }) label the multiplicity of V},; ® V in the left and right V]§3 of (7.56). Using the
Clebsch-Gordan coefficients (7.59) we can therefore write the WA basis

Z RRRAmaT() \  RRRAma) o

R,A, T( ) (r)
A T[] A —
Q TnlA = i1,i2,i3 J1,92,33 1131 Qm” QZ3]3

(7.60)

i,J1,MmA

which matches the counting of states in this sector. Following steps similar to the ones
for Q3T in the case of K(n), the orthogonality properties of these Clebsch-Gordan
coefficients can be used to show that these form a basis of matrix units for Ky, (n) in the
subspace corresponding to R=5=1T.

A consequence of the above discussion (in particular equations (7.37), (7.48) and (7.57))
is that we can write the dimension of the algebra Ky, (n) as a sum of squares, corresponding
to the WA decomposition

dim(Ky,(n)) = > (C(R,8,7))* + Y _ (Mult(Sym*(R), 5))* + (Mult(A*(R), 5))
R#£SAT R#£S

+3 0D (Mult(R®2, [n] ® A))? (7.61)
R A

This color-symmetrized analog of (3.6) is a key result of the present paper.

7.4.4 MoreonS()

2.1] (n) and the character table of S,

A useful fact is that for any irrep R of S, the trivial appears in the symmetric part of
Vi ® Vi with multiplicity one. This is related to the reality of these representations (eq.
5.82 of [77]). It leads to the identify

' ZU“R@R < + > ' ZtrR®R (7.62)

The r.h.s. side counts the number of times the trivial representation appears in R® R. The
L.h.s. counts the number of times it appears in the symmetric part. This leads to

2n' > (@) +x"(e?) :% > (o)) (7.63)

o€Sy " oeS,

This in turn implies that

Y ()P = (F(e?) (7.64)
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It also follows that
Y ar o) =) xP(r) (7.65)
g€eSy, S

The number of permutations which squares to 7 can be written as a sum of characters in
all irreps. To see this, use

S srtet) = o 3 S n(0?)

o€Sh " o€S, Skn

= Y )

" oeS, Skn

=> X°() (7.66)
S
We can also write

%ZXR(UZ)XR(UZ) = % > X (r)e(re?)
R,o

R,o,7

= = )

"R,S,T
=> C(R,R,S) (7.67)

So the second contribution

Spa =Y C(R,R,S) (7.68)
R,S

Also if we do the sum over R, we get
== Z Z x(D)Sym(r) = D x(n) (7.69)
p S

We are summing over irreps .S and conjugacy classes. The weight is the character of a
permutation in the specified conjugacy class, here denoted 7, for conjugacy class specified
by p. Indeed OEIS recognizes Sjp 1) as the sum of entries of the character table of S,,. The
refinement of Sy 1) parametrized by S (where we drop the sum over )

> X () (7.70)

is the subject of an open question posed by Stanley (problem 12 in [78]): to find a combi-
natoric construction which makes the positive integrality manifest. The positive integrality
is manifest because

Y CR,R,8) =) x°() (7.71)
R p
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(an identity that has been used above) but this is a representation theoretic argument, not
a purely combinatoric one. Tensor invariants at large N (or equivalently colored graphs)
provide a combinatoric interpretation of the sum of squares of the Kronecker coefficients.
It would be interesting to investigate whether refined consideration of colored graphs can
provide an approach to this question of Stanley.

7.5 Ss-refinement for K(n)

We have given above the dimension of the color-symmetrized subspace Ky, (n) as a sum
over representation theoretic data. The expression is a sum of squares as expected from the
WA decomposition. This shows that the representation theoretic construction perspective
based on permutations and Fourier transforms naturally leads to the explicit form of the
Matrix blocks of the WA decomposition. The expression is a sum over three types of
terms, which we may describe as (R, S,T) types involving three distinct Young diagrams,
the (R, R, S) which involves two distinct types and the (R, R, R) which involves one type.
Here we give the dimensions of

R,S,T R,R,S R,R,R
J\EST) el el R) (7.72)

9 Y 9

general Young diagram Y of S3.
For the (R, S, T) sector, the answer is easy when we consider the restriction of the trace
tre(s,)es (Py P PRr) = trg(n (Py) (7.73)
to the subspace of C(S,,) ® C(S,,) ® C(S,,) to the Fourier basis states Qﬁljl ® QinQ ® Qﬁ%g
where Ry, Ro, R3 are all different and take values in the set (R, S,T'). There are 6 choices,
which add up to 6C(R, S, T)2. In the expansion of Py in terms of permutations only the
identity permutation contributes and we have

K51 = 4(v)2C(R, S, T)? (7.74)
Hence we have

dim K551 = C(R, 8, T)?

3
dim K5 = 4C(R, 8,T)?
dim /cffgf’T) = C(R,S,T)? (7.75)

For the (R, R, S) sector, we find
dim(KC{ %)) = (Mult(Sym?(Vi), Vs))? + (Mult(A2(Vi), Vs))?

Y=[3]
dim (K2 00)) = 2C(R, R, S)?
dim (K{ 1) = 2Mult(Sym?(Vi), Ve)Mult(A? (Vi) Vi) (7.76)
For the (R, R, R) sector, we find
im0 (1))
=3 dv) C(vi, v, v) Mult (Vi Vi @ v ) e (Vi v @ v ) zm)
Y3
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C(Y1,Y,Y) is the Kronecker coefficient which counts the number of invariants of Sz in the
tensor product V1 @ Yo @Y.

The derivation of these formulae proceeds by unravelling the equation (7.73) in each
of these case. Some interesting consistency checks of these formulae can be easily given.
We have the identity

d(Y)C(Y2, Yo, Y Z Z ; Y2 ()Y (0) = d(Y2)d(Ya) (7.78)

Doing the sum over irreps Y gives a delta function. For the (R, R, R) case, therefore we have

Zdlm RRR) (n))
= > a(vidve)Mult (V2 i @ v ) Muit (VR 15 @ viS)
Y1,Ys
= C(R, R, R)? (7.79)

Similarly, the reader can easily convince herself that

Zdlm KBRS (1)) = 3(C(R, R, 5))? (7.80)

The 3 comes from the fact that when the ordered list of Young diagrams [R;, Ro, R3] takes
values from the set {R, R, S}, there are three possibilities.

An interesting consequence of the multiplication rule given in (7.14) is that Ky, (n) ®
Ky,(n) is a closed associative algebra. It will inherit a non-degenerate bilinear form from
the C(S,,) ® C(S,,) @ C(S,,) (or from C(S,) @ C(S,)) if we are working with the gauge-fixed
formulation. So we expect that its dimension will be a sum of squares. The counting
in terms of representations above automatically leads to such a sum of squares. For the
(R, S, T) subspace

dim(KCY5) + dim(KYP5T) = 2(C(R, S, T))? (7.81)
For the (R, R, S) subspace,

dim IC;?’R’S) + dim IC%%’R’S)
= (Mult(Sym?(Vg), Vs))? + (Mult(A%(VR), Vs))?
+ 2Mult(Sym?(Vg), Vg)Mult(A2(VR), Vs)
= (Mult(Sym?(Vg), V) + Mult(A?(Vg), Vs))?
= (C(R, R, 95))? (7.82)
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For the (R, R, R) subspace

(v (Vi v @ v(5)) + (e (v i 0 v

+ 4 (e (V2 Vi @ V(S”)»

(21 [n]
2 (e (V0 V) (v v o )
- o 2 ) (e (1 )
+4<Mult (Vz??’,V[( }) V{gm)) (7.83)

These counting formulae for dim Ky (n) in terms of representation theory data sets
the stage for developing representation theoretic bases. Using the basic technique of using
permutations to construct observables (2.7), these elements of Ky (n) will be expected to
give a refined orthonormal basis for the gauge-invariant observables, with good quantum
numbers for the S5 color-exchange, as we described earlier for Y = Y. This will be an
interesting refinement of the results on orthogonal bases given earlier in section 5.3 and
in [38, 59].

7.6 Counting color-symmetrised tensor invariants for general d

This way of approaching the calculation using Fourier transforms, presented for d = 3 at
the start of this section, allows us to generalize to any d. We get

Number of color symmetrised tensor invariants of rank d = (7.84)

nl N N2 Z Z Z Z H R(a) i R( )( ZQE)é(Ra}ZJRa?Ly"' ’Raff"R(a))

acSy R, ,Rg 01€Sn 02€S, a

Here the index a runs over the cycles of the permutation «; [, is the length of the cycle.

Each such cycle is of the form (a}, a2, .-, ale) where the entries in the cycle are integers
chosen from {1, ---d}. Such a cycle leads to delta functions enforcing Ry =Raz- =R 1,
which leads to the definition

R@ — Ryp =Rz -+ = Raga (7.85)

We can re-write the counting as

Number of color symmetrised tensor invariants of rank d =

d p;

nl D > Z > ]Sym ,HHX H (o)X () (7.86)

pHd Rl ]Fd 01E€Sn 02€8Sn i=1j5=1
We have collected from (7.84) all the terms coming from a fixed conjugacy class of «, which
corresponds to a partition p of d, specified by multiplicities p; of cycles lengths ¢ in the
permutation «, i.e. Y ip; = d. Given the delta functions on the representations, for a given
p, the number of distinct representations being summed after using these delta functions
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is Z‘ijzl p;- We denote these representation labels I; ;, where 7 runs over the possible cycle
lengths and j runs over the distinct cycles of the same length 3.

This is also the dimension of the projection of K(n,d) to the subspace belonging to
the one-dimensional irrep of S;. We have in general

K(n,d) = @P(K(n,d))y (7.87)

YHd

The above gives the projection to the Sy invariant subspace.

dim(K(n, d))y—[)) = Number of color symmetrised tensor invariants of rank d

d p;
22 > XX ,Sym T ILII ™ ™ (od) (7.88)
pHd R; jHd 01ESy 02€Sy, i=1j=1
{1<i<d,1<j<p;}
For general representations Y, we have
dim((K(n,d))y) (7.89)
7d(Y)Z Y (62) Z Dy ﬁﬁ Ris (o) Fis (o)
B (n!)2 X A% |Sym X 72

pkd R; jHd 01E€Sy 02€S,
{1<i<d,1<j<p;}

11]1

For practical computations, expressions for the Szgd) (n) were also given in [41], for d < 4,
in terms of sums over partitions of n, with weights obtained by applying appropriate
substitutions to the generating function of cycle indices of S,, (equations (63) and (77)
of arXiv version). The generalization of these expressions in terms of partition sums to
general d is left as an interesting exercise for the future.

7.7 K and color symmetry

We explained in section 5.4 that the infinite direct sum K>

~=PK(n) (7.90)
n=0

has two products, which both play a role in correlators. If we restrict to the color-
symmetrised subspace

K3 = P Ky (n) (7.91)

we again have a vector space with two products. We have already seen that the product
at fixed n of two elements in Ky, (n) is in Ky,(n). Likewise the outer product of two
color-symmetrized elements in Ky, (n1) and Ky,(n2) is a color-symmetrized element in
Ky,(n1 + n2). An easy way to see this is to think about the multiplication of color-
symmetrized observables. Systematic investigations of color-symmetrized correlators is left
for the future. We expect that the K will prove to be a useful tool in these investigations.
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8 Summary and discussion

8.1 Summary

We have developed the description of the counting and correlators of general gauge invari-
ant observables in a class of tensor models started in [41]. We focus on bosonic tensor
models with a complex scalar field having d indices. We have showed that the permutation
centralizer algebras introduced in [52] provide a powerful framework for elucidating many
aspects of correlators in the Gaussian model. The vector space of gauge-invariant observ-
ables in the rank-3 tensor model is isomorphic to the vector space of the algebra K(n).
This algebra is spanned by elements in C(S,,) ® C(.S,,) which commute with the diagonally
embedded C(S,,). There is a also an equivalent description in terms of the subspace of
C(Sp)®C(S,) ® C(S,,) which is invariant under left and right action of the diagonal C(S,,).

K(n) is a semi-simple associative algebra, i.e. an associative algebra with non-
degenerate bilinear pairing. As a result, by the Wedderburn-Artin theorem, it is isomorphic
to a direct sum of matrix algebras. The number of blocks in K(n) is the number of ordered
triples [Ry1, Re, R3] of Young diagrams with n boxes which have a non-vanishing Kronecker
coefficient. The sizes of the blocks are the Kronecker coefficients C(Ry, Rg, R3). The basis
elements corresponding to the matrix decomposition are constructed using Clebsch-Gordan
coeflicients for the invariant in Ry ® Ry ® R3. These basis elements of C(n) correspond
to gauge invariant observables which diagonalize the 2-point function of normal ordered
observables. A subspace of observables corresponds to the centre of IC(n). These observ-
ables can be constructed without the detailed knowledge of Clebsch-Gordan coefficients.
They only require characters of S,,. A basis for the centre is given by triples of Young dia-
grams Ry, Ry, R3 which have non-vanishing C(R1, Rz, R3). One point functions of central
observables are proportional to C(Ry, Re, R3).

The above results are based on a few key ingredients: the parameterization of gauge
invariant observables using equivalence classes of permutations, the use of representation
theory to give a Fourier transformed description of observables in terms of Young diagrams,
and Clebsch-Gordan coefficients. These methods have found extensive use in multi-matrix
models over the recent years (an overview is in [51]).

The algebra K(n) allows a systematic study of the implications of the color-exchange
symmetry in tensor models. In [41] we had described counting formulae for color-
symmetrized observables, which correspond to color-symmetrized graphs. Here we give
the complete decomposition of K(n) in terms of a direct sum, labelled by Young diagrams
of the S5 color-exchange symmetry.

K(n) = P Ky (n) (8.1)
Y3
The color-symmetrized subspace Ky, (n) is a closed sub-algebra of K(n). Again as a result
of the WA theorem, we immediately expect that it should be a direct sum of matrix
algebras. The corresponding counting formula as a sum of squares is given in (7.61),
and the corresponding refined Clebsch-Gordan coefficients are described. Similar group
theoretic decompositions for Ky (n) are given in section 7.
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The counting formulae for Ky, (n) can be expressed in terms of sums over characters
of Sy, parametrized by partitions of Sy (with d = 3). Such formulae were derived using the
Burnside lemma in [41] for d = 3,4 and used to get explicit number sequences for dimen-
sions of the space of color-symmetrized observables (color-symmetrized graphs). We have
generalized these character formulae (section 7.6) to general d, by exploiting an alternative
derivation which makes use the representation theoretic Fourier basis for (C(S,))®%. The
group theoretic results we have developed for color-exchange symmetry will be useful for
the study of correlators in Gaussian models, as well as interacting models which are per-
turbations of Gaussians by color-symmetrized observables. This is an interesting direction
for future investigations.

A number of other future research directions are suggested by the results of this paper.
We outline some of them below.

8.2 Towards Young diagram statistical models and field theory

We have found above that interesting classes of observables in tensor models, related to
the centres of permutation algebras built from equivalence classes of permutations describ-
ing general observables, are parametrized by sets of Young diagrams. Their correlators
are directly related to fundamental representation theoretic quantities, e.g. (5.9). Similar
observations in the context of multi-matrix models are developed in [52]. This leads us
to a natural question: is there a statistical model of Young diagrams (YD) for which the
functions (5.9) are the correlators? Section 6 describes a mapping of these correlators
observables in a topological field theory on 2-complexes. Here we explore a different per-
spective, and provide a partial answer of the above question of what this statistical/field
theory model could be.

Fix n € N, and consider R F n a Young diagram. A real field over YDs is a function
Y : p(n) — R. We define an action of a Y*— Young diagram model (YDM) by:

k
SL-YDM [Y] = Z Yr K(R, R/) Yr +g Z I({Rl}) H YR[ (8.2)
R,R'Fn RiFn =1

where K (R, R') and I({R;}) are kernels, g a coupling constant. From now, let us restrict
to a cubic action determined by k =3, K(R,R') = dg r and I({R;}) =C(R1, R2, R3), the
Kronecker coefficient. The use of complex fields, the choice of I({R;}) as the Littlewood-
Richardson coefficient, or more generic Y'*-models of the form I({R;})=Ci(R1, Ra, ..., Ry),
see (5.9), might be also interesting choices let for future investigations.

Being interested in perturbation theory, the positivity of the above action will not be
addressed here. The partition function of the model (8.2) under the above restrictions is
of the form

Zoxoulg. 7] = [ ] avie Sovml-Sne, Jnti (8.3)
RFn

where Jg is a source term. Correlators are computed perturbatively using the Gaussian
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measure du(Y) = [[ ., dYre™ 2=k Y&* and we find
(Ys,Ys, - Y5, ) vou

= Z (—ng')” /du(Y) (Y51Y32 . .Y5k> < Z C(Rl,RQ,R3)YR1YR2YR3> : (8.4)

n=0 RiFn

The free propagator in this theory is naturally defined by (YrYg)free =Go(R, R')=0grpr-
Via the Wick theorem, N-point correlators expand in terms of Feynman graphs, as
(Ys,Ys, ... Yoy )3vyDM; pert. = g KgAg, with Ag(S1.52,...,Sn) a graph amplitude, and
Kg a combinatorial factor.

We evaluate a connected 3-point function a first order of perturbation:

(Ys,Y5,Y55)3-vDM; pert.s connected = —9 Y C(R1, Ra, Rs) [ T Go(Si> Roa))
Ry o€S3 1

= —31gC(Ry, Ry, R3) . (8.5)

There are 3! trees contributing to the correlator and each of them has the same weight
—gC(R1, Ra, R3). Thus at this first order of perturbation (Ys, Ys,Ys,)3-vDM; pert.; connected
is proportional to (Og, s, 55) up to the factor W[H;ﬁ:l N (S

Computing a connected 4-point function (Ys, Ys,Ys,Ys,)3-vDM: pert.; connected at second
order of perturbation, we have a sum of Feynman amplitudes. Consider the tree graph

So Ss3
o
which appears in that expansion, S Sa , the amplitude of which is given by
g2
Ay(81.8, 85, 81) = 5 > C(S1, S2, R)C(R, S5, S4) (8.6)
RFn

which is proportional to Og, s,.5,,5, (5.9). We conjecture that at any order m — 2 > 0 of
perturbation theory, (Og, s,.....s,.) corresponds to a tree (hence connected) Feynman graph
of the correlator (Ys, Ys, ... Ys,,)3-YDM: pert..connected UP tO a constant.

Dealing with an action Sgzvypu, it is direct to get at first order of perturbation:

<YS1 YSQ o YSd>d—YDM;pert‘;connected X <OS1,SQ,...,Sd> (87)

Beyond tree level, generic amplitudes should involve free sums over Young diagrams asso-
ciated with loops in the graphs, hence factors of the number of partitions p(n). In the limit
n — oo, where we have an infinite number of degrees of freedom, one should expect that a
YDM will have divergent amplitudes. It will be interesting to investigate the application
of quantum field theoretic renormalization techniques to make sense of this limit.

8.3 The space of holographic duals of tensor models

In the early applications of matrix models as holographic duals to quantum gravity in low
dimensions of the nineties [1, 2], a detailed map was achieved where the holographic duals
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included minimal model CFTs with ¢ < 1 coupled to Liouville theory and the standard
string theory b, ¢ ghost system, as well as a ¢ = —2 model coupled to Liouville and ghosts
as a dual for the Gaussian model [79]. A dual to the Gaussian model in terms of Belyi
maps and topological strings on CP! has also been investigated [67, 80-82], which should
be related to the earlier ¢ = —2 proposal.

The AdS2 dual for the double-scaled limit with a quartic interaction (Gurau-Witten
model) is currently of active interest, with motivations from black hole physics [28, 29]. The
rich mathematical structure of the Gaussian model raises the very interesting question of
what is the precise dual of this model. The description of permutation TFT2 constructions
for the correlators of the Gaussian model given in section 6 is a good starting point for
investigations along the lines of [67, 80-82]. The rich mathematics involving permutations,
Fourier transforms of group algebras, the structure of associative algebras, the role of
color-exchange symmetry underlying the space of tensor model observables suggests that
a complete description of holography for the space of tensor models will be a fascinating
challenge.

8.4 Computational complexity of central correlators in matrix versus tensor
models

One of the interesting results is that the one-point function in the representation basis, for
the d = 3 complex tensor model, is equal to the Kronecker coefficient (5.5), a number of
fundamental importance in Computational Complexity Theory.

Compare this with the extremal 3-point correlator for the half-BPS sector which is
directly proportional to the Littlewood-Richardson (LR) coefficient g(R,S,T') [42]

n!Dimy (T')

@@ (2N) = 98,8 TV

(8.8)
This correlator has been interpreted in terms of topology change [83]. The half-BPS sector
and its connections to topology change has also been investigated recently in [84, 85]. In
the AdS-CFT correspondence, Young diagrams can be used to parametrize space-times of
different topologies [42, 86, 87].

The LR coefficient has been of interest in the context of Computational Complexity
Theory. It has been shown that the determination of the vanishing or otherwise of the LR
coefficient can be done in polynonial time [88]. The actual evaluation of the LR coefficient
for general Young diagrams is # P-hard [89] (# P is the analog of NP when we go from
decision problems to counting problems). Recently it was found that deciding the vanishing
of Kronecker coefficients is NP-hard [90]. This is an interesting contrast between central
correlators in the 1-matrix problem (8.8) and the one-point function of central observables
in the tensor model (5.5). Characterizing the complexity of determining the vanishing of
extremal correlators of central observables in the 2-matrix case studied in [52] would be a
useful problem to solve in getting a more complete picture of the relative complexities in
matrix and tensor models.

It would be interesting to explore the implications of the above results in the context
of physical applications of matrix/tensor models, e.g. in black hole physics or early cos-
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mology. Different physical roles for computational complexity in these contexts have been
proposed [91, 92]. Finite N effects, of interest in the physics of the stringy exclusion priin-
ciple and giant gravitons, turn out to have drastic effects on the complexity questions [93],
tending to allow polynomial time algorithms.
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A Symmetric group, representation theory and group algebra

A.1 Symmetric group and representation

We collect some basic facts in the representation theory of symmetric groups. A useful
textbook discussion is in [77].

Irreducible representations of symmetric group .S, are labelled by Young diagrams or
partitions R of n, that we denote R  n. In the following, we interchangeably use and
assimilate an irrep with R. As a consequence of the Schur-Weyl duality, one associates also
a Young diagram R with an irreducible representation of the unitary group U(N), when
the length I(R) of the first column of R is bounded by N, i.e [(R) < N.

At fixed n, denote d(R) the dimension of the representation of S, and Dimy(R) the
dimension of representation of U(N), we write

d(R) =n!/h(R),  Dimy(R) = fn(R)/h(R) (A1)

where h(R) is the product of the so-called hook lengths, i.e. h(R) =[], ;(¢; —j+ri—i+1)
and fy(R) is the products of box weights

fn(R) =TV —i+7) (A.2)
0,3
where the pairs (4,7) label the boxes of the Young diagram: i is the row label and j is
the column label. r; is the row length of the ¢’th row. ¢; is the column length of the j'th
column.

The matrices Dg(a) of the representation R of a permutation o € S,, are d(R) x d(R)
and satisfy the following basic properties

Z Dgi(0)Dii(0") = Dgy(oa’),  Dgi(e) = day (A.3)

and are also orthogonal

n!
Z D} (o) Diy(0) = —— drs 6kt (A.4)
UESn d(R)
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This follows from Schur’s lemma. Note that we choose to work with orthogonal (and so
real) matrices obeying
R/ _— R
Dij(a 1) = Dji(g) (A.5)
such that (A.4) is again ) Dg(a)DﬁC(J_l).
Another important object in representation theory is of course the character of a

given representation. The character of the irrep R is simply the trace of D(o), xf(0) =
Tr(DE(0)) = Y, DE(0). 1t is immediate that

Xo) =x"(o ™) (A.6)

The Kronecker delta of the symmetric group (defined to be equal to 1 when the argument
is the identity and 0 otherwise) decomposes as

5(o) =Y —x"(0) (A7)
RFn

The summation R F n is a sum over partitions of R of n, equivalently over Young diagrams
with n boxes. We have also

> dyoy e =) Z n, Z Df o) DL (v) Di(7)

YESRH YESH RFn i,a,b,c
A4)
= Z Z Dﬁz(o) 51051117 Z X (A8)
RFn i,a,b,c RFn

If B is a central element, then

> X (AyBy!) =nl =Y Y DE(ADE)DE(B)DE ()

YESH a,b,c,d yESy,
n!
Z Df, (B)dbaded = X (AXT(B)  (A9)
d(R)
abcd
Hence )
R R R
AB) = —/—— A B Al
X(AB) = X MAN(B) (A.10)
Also useful to know that
— ZX )N = Dimy (R) (A.11)

where Dimy (R) is the dimension of the U(N) representation R (A.1).
The same type of the above calculation which involves (A.4) leads to other formulae

given by
n! — T1=72=id
Z xFlom)x®(om) = = drs XE () B Z X =nldrs
oES, d(R) gES,

(A.12)
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Finally, concerning identities involving the dimension of irrep R in U(NN), one has

A4 _
> DE@ND =15 (B) EY ST A R(o)N) = a(R) F(R) = nt Dimy ()
o€Sn oc€Sn
(A.13)
where ¢(o) is the number of cycles of o.
The following table lists the above formulas:
Ry _—1 R
XHo)=x"o) =x"(voy ™),  ¥yesh (A.15)
d(R
o) = 3 M0 () (A1
Rn
n!
> Dfi(0)Dji(o i) Srs Oikdjl (A.17)
0ESh
n! _
Z X om)x%(om) = AR Srs X(T173 ") (A.18)
0ES
> X" = nldrs (A.19)
0ESh
1
VB € Z(S,), x"(AB)= me(A)XR(B) (A.20)
> oyt =) o) (A.21)
YESK RFn
> Di(o)N®) =6 fn(R) (A.22)
0ESh
> x(0)N°) = d(R)f(R) = n! Dimy (R) (A.23)
O’GSn
Defining the central element 2 € C(S,,),
Q=Y N"g (A.24)
0'6571
equation (A.23), can be also written as
N™ .
X R(Q) = Dimy(R) (A.25)

A.2 Clebsch-Gordan coefficients

Consider two irreps Vg,, Vg, of S, corresponding to Young diagrams R;, Ry. We assume
that we have picked an orthogonal basis of states for the irreps e.g. |R, i) obeying

A representation ggr : S, — End(Vg) is given by a matrix D with entries determined
by 0s(0)|R, i) = Z?Sf) DE(0)|R,1) with o € S,,. We write in short gs(0) = o and then
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R, jlo|R,i) = DE(o). The tensor product representation Vp, ® Vg, can be decomposed
ji 1 2
into a direct sum of irreps Vg, with multiplicities

Vr, @ Vi, = @D Ve, ® VE, (A.27)
Rskn
One set of basis vectors in the tensor product space is |Ry,i1) ® |Ra,i2) =: |R1,i1; Ra,i2)

while the r.h.s. corresponds to a basis set |Rs, i3, Tr,). The label i3 runs over states in the
irrep R3, while 7g, runs over an orthogonal basis in the multiplicity space V.. Clebsch-

Gordan coefficients (CG’s) are transition coefficients between the two types of bases

R1,R2; R3, TRy
11,2513 )

= (Ry,41; Ra,12|R3, TRy, 13) = (R3, TRy, 13| R1,11; Ra, i2) (A.28)

The last relation is obtained from the reality property of the CG’s. We will then use
?17}?27 Mo s CT-R“?’-’R:&’RLR? A detailed discussion of the CG’s for symmetric groups
1,253 13;,°1,22

is in [77].

Linear operators for 0 ® o in Vg ® Vi have matrix elements
D%l( )D5§2( ) = (Ri1,i1]|0| Ry, j1) (R, i2|0|Ra, jo) =: (R1,11; Ra,i2| 0 |R1, j1; Ra, jo)
(A.29)

Inserting a complete set of states resolving the identity we get
Dt (0)D{2 (o) = > Y (Ri,i1; Ry, is|R3, 7h,, is) (R3, Try, i3] o |Rs, 7y, J3)
R37Ré7TR37T;33 Z‘37j3
X <R§a71/gf,j3\317j1; Ry, jo)
R . . .
= > ) (Ru,ir; Ry, ig|Rs, TRy, i) Opy Ry Orpyr!. ,D¢3§3(0)<R,3,ngg7]3|R1722; Ry, j2)
R37R37TR37TR3 1/37]3
Z Z Rl)il;RQ)i2|R3aTR37i3> Z3]3( )<R357R35j3|R17j15 R27]2> (A3O)
R3,7R; 13,53

Using the definition of the CG’s (A.30), can be also written as

ph (o) DR2 Z Z R17R27R377'R3DR3 (o )CﬁltRZAZRBuTR:i (A.31)

1171 szz 11,12;13 1373 J1,J2;93
R3,7 3,73

Because there is no possible confusion, 7g, is sometimes denoted 7 in the text.
The following identities hold

R Ry R1,Ro; R3, 7 __ Ri,R2; R3, 7 0 R
ZDZ1J1( )Di2j2(7)0j17j2§j3 - 011,12,13 Dz3]3(7) (A'SQ)
J1,52 i3
Ri1,R2; R3, T R17R2§Rg:7'/ _
Cir oy is i1,02; 3 = Oy Ry O’ Oigja (A.33)
11,52
R1,Ro; R3, 7 ~Ri1,Ro; R3, 7 __ ¢ ¢ .
Z 021722723 ijz,zs _5’1J1 5”32 (A‘34)
R3,i3, T
Ry ,Rz, R3, 7 HR3 R1,Ro; R3, T Ry Ry
D Cilns D (MO = Dl (0D, (4) (A.35)
R3,7313,53

Note that (A.31) is (A.35).
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Furthermore, we have by applying twice (A.32):

R R Ri1,Ro; R3, T __ R1,R2; R3, R R
Z D11;1< )D12J2< )D1333< )Cj11,j2;2j3 n= Z 0111,12,21 ’ TD1J§< )Disjs <7)

J1,J2,J3 VER
_ Rl,R27R3, R3 —1 _ Ri1,Ro;R3, T
- Z 11,8251 Z Dl]s D]313 ) - Ci17i2;i3 (A'36)
l

These equations can be put in diagrammatrics which lighten the proofs. We now recall
them. The diagrammatic notation for the CG coefficient will be a three valent black node:

11 Ry
Ry
01137217217%223,}23, _ >7'_ 13 (A.37)
. R

(3 2

A representation matrix Df}(a) is drawn like —{ o |-, the rest of the indices will be explicit
when the matrix will be composed with others coefficients. Then the above identities can
be translated as

Z‘1 R1
Ry Rs .
(A.32) ——i3 = > i3 (A.38)
io 1t
Ry
. Rs Ry
(A33) 13 e f J3 = i3 R3 j3 X5R3R§5TT’5i3j3 (A39)
Ry T
iRy " Ry _J1 i Ry i
3
(A'34) Z >—’—< = X 511j15i2j2 (A'4O)
Rs,m . R T T R . ig j2
1 2 2 J2 R,
R R n
ng i
(A35) > — 7 = (A1)
Rs;7 Rz Ry 2 J2
i J2 Ry
The following lemma is useful in the text.
Lemma 1. The following relation holds:
R1,R2;R3, R1,R2;R3,T:
cpten oru el Dl (y,6199) D2 (1109792) D2 (110372)
1,1
R,R,R,T R1,Ra;R3,T:
=D Ciatiais " Colag - Dty (0) D, (02) Dy, (0) (A.42)
1,01
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Proof. We have

R1,R2;R3,71 ~vR1,R2;R3,72 yR1 Ro R3
CZ17227Z3 CJ17J2,J3 Dllh (710-172)Di2j2 (71 0-272)Di3j3 (710372)

1,01

R R:- Ri1,R2;R3, R R R:
= ZDaﬂn Da22b2( Da3gb3 03 202171227123 3T1Dl1il1( )DZQZQ( )D%3fl3( )

ag,by
R1,R2;R3,7 "R R R:
X Z CJ17J27]3 Dbllh( )Db;z( )Dbais( )
R R, Ri1,Ro;R. Rq,R2;R3,
= Z DI, (01)DF3, (02) D5, (05) Ol Reiltam oy Rsfis (A.43)
ag,by
where we used (A.36). O

Integrating three representation matrices, the following relation is useful:

Lemma 2. We have

R Ry (o _ M Ry, Ra;Rs,7 R, RoiRa,T
Z Dlljl D1232( )Dis;s (U) - d(Rg) Ci1,’i2;i3 le,j%jg (A‘44)
oESy T

Proof. We use, successively, (A.31) and (A.17) to get:

R R1,R2;R,m ~yR1,Ro;R,T R
> DI (@)D, (0)Dfs,(0) = > | oD it el DE (0)| DE (o)

oc€Sh o R, a,b
|
_ R1,Ro2;R,7 ~R1,Ro;R,T
B d(R3) Z 0117127 le 2J2;b ORR3%ais 5bj3 (A.45)
R,7 ab
summing over R, a and b achieves the result. O

We can illustrate Lemma 2 in the following way:
o}
) ra J2 — T T (A.46)
i ra J1
Note that we have defined the Clebsch-Gordan coefficients in terms of inner products
between states in Vg, ® Vg, transforming as Vg, under the diagonal action of S,,. We could

also have defined them in terms of the states in Vg, ® Vg, ® Vg, which transform as the
trivial representation [n] of the diagonal S3. If we use the latter formulation the Clebsch’s

Gty ™7 = (R, i1, Ry, i, Ry, i3 [n], ) (A47)

11,12,3

will appear on the r.h.s. of Lemma 2 without the 1/d(R3) factor, so that

~R1,Re,R3;m 1 Ri1,Ra;R3,7 (A 48)

1,22,23 d(Rg) 1,22323
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A.3 Projectors for irreducible representations

We discuss some properties of projectors in the group algebra of C(S,,), which we use in
the text. For every irreducible representation R of C(S,) we have the characters x®(c)
which are used to define projectors Pr

Pp=—"" > xf(o)e (A.49)

gESy

Using character orthogonality we verify that

PrPs = dp sPr (A.50)
Consider a general representation W of S, which has a decomposition into irreducible
representations
DV>::€£>L@3@QV?? (A“51)
RFn

VR are irreducible representation spaces and V' are multiplicity spaces of dimension mﬁ,.

Taking the trace

try (Pg) = Z tTVR®V;g‘(PS ®1)

RFn
=Y mitry,(Ps) = Y d(R)mi}dns
R R
= miyd(S) (A.52)
We used
try, (Ps) = > dfl‘!g)xs(a)xf’xa) = d(S)dr.s (A.53)
oESh

which is an application of the orthogonality of characters. For the case where R is the
trivial representation Ry = [n], x®(c) = 1 and

1
Pry = — Yo (A.54)
O'ESTL

is the projection on the invariant space of W.

B The permutation centralizer algebra IC(n)

B.1 Basis of K(n)

The semi-simple algebra K(n) is defined in terms of permutation equivalences in C(S,) ®
C(S,) ®C(Sy,) (double coset description) or in C(S,,) ® C(S,,) (centralizer description). By
Fourier transforming from the permutation basis of C(S;,) to the representation basis Qﬁ,
we have Fourier bases for (n) in either formulation. In this appendix, we prove that the
(Q-basis elements in each formalism are indeed invariant under the appropriate equivalence
relations, that they multiply like matrices (thus giving the WA decomposition) and that

they are orthogonal with respect to the non-degenerate bilinear pairing.
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Q-Basis of IC(n). We start by checking the invariance of the basis Qﬁ’ﬁ’f (3.19) under
the diagonal action:
(@) QEL (v TeyTh
R,S;T,m1 ~R,S;T, s _ _
= kRS Z Z Cuﬂmaﬁ ijz 137—2Dl]?]1( 1)Di 5, (02) vo17y '@ yogy !

01,02€85n 11,12,13,71,]2

. R,S;T, 711 ~R,S;T,72 1R -1 S -1
= FR,S Z Z 011722713 CJ1 ,J25i3 Diljl (7 Ul’y)DiQ]é (7 027) 01 & 02

01,02E€8n 11,12,13,71,J2

R,S;T,r1 ~R,S;T,m2 AR R
- ER’S Z Z 011,12,237—1 CJ1,]2,Z3T2 D’L1a1 ( )Dalbl (Gl)Dbljl (’7)
01,02€Sn 11,12,13,J1,52 ai,b;
S S
X Dlzaz( )Da2b2 (JQ)Dijg (7) 01 Q02 (B.l)

Using (A.32) of appendix A.2, we get
CLRINCAN O R

_ } : § : § : R,S;T\m1 2 : R,S;T,r2
- K/R,S Dalzl (127,2( )Cil,’ig;ig Dbl]l Db2]2( )Cj17j2§i3
01,02€8n ag,by iz Li1,i2 Ji.92
S
x DIty (01) D5y, (02) 01 @ 02
_ § : E : R,S;T,m1 1T 2 : R,S;T,m2 1T
= FRS Cal,a;;ll DlliS(V) Cbhbz;l; Dl21'3 ()
01,02€8n ag,byis L U la

S
X Dy (01) Dy, (02) 01 ® 0
R,S;T, R,S;T, S
= kRS Z Z Cal,az,l‘r1 Cln,bz7 TQDalbl( 1)Da262 (02) 01 Q02

01,02€8n a1,az2,b1,b2,l

= QEST (B.2)

71,72

where the factor ), Dle( )Dszi3 () evaluates using (A.3).

We prove now that QTl’ST;T’s multiply like matrices:

18T R,S;T, R,S;T,
BSTQE ST = kpskms Y > OO D (1) DY, (02)

T1,T2 T5,T3 11,1233 J1,J23%3 11J1
’ F— VA
Uivaiesn 1l7j7n7ll7‘77n

R'.S"\T' v ~R',S";T' 73 / S’ / / /
x 011712,23 le JJhsih D (Ul)Dz’z i (02) 0101 & 020,

o z : 2 : R,S;T,71 ~R,S;T,72 1R /—1 S /—1
- /{R-,SERlvsl Cil,iQ;’ig Cj] ]2,23 ‘D’Lljl (0101 )Di2j2(0—202 )

’ S
0i,0;€5n Zz,Jm,ll,Jin

R',S";T',75 ~R',S";T’ 73 S ’
x Ci/lvi/2§i:s C]17]2»L3 D (Ul)D‘, Vi (02) 01 & 02

( ) S;T,m1 ST T
:H%Sd( )d( 5RR/5SS/ Z Z Cl]iwfza CszT 3‘DEG( )Diszb(O—Q)Ul@aQ

€Sy i1,i2,i3,i 37‘1 b

> § CRvS?T/szlcﬁ’&T,Tz
J1,J2;i5 J1,J2313
J1,J2

kR,SORR 085 07T 07y
R,S;T,71 ~R,S;T',73 "R S
X § : 2 : § : 61313011,22,13 Ca \biil Dzla( 1)Digb(02)01 ® o2

T2 0;ESR il,i2;i3>i,37a7b
B R,S,T
= 5RR/(SSS’5TT’6TQT§ T1,T3 (Bg)

where we used the orthogonality relations (A.17) and (A.33).
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Next, we evaluate the pairing between two basis elements Q’s and check that there are

orthogonal:
RST.  AR,S"T'\ _ 2 RSTT]_ R,S;T\1] ~R',S";T' 79 ~R ST 7}
92 (QTI 71 ’ T2,Th ) = KRS Z Z 11,9213 CJ17J2713 011,12,13 031,32,13

O'if}’za'ﬁ;esn i1,]1 ’ll’]l
g9 -//-/ g1 -//-/ g9
x DI, (01)D3 . (a2) DY Dy

111 122
_ RSTTl RSTTl R’STTQ RS’T’7-2
- KRS Z 11,12;13 CJ17]27Z3 011712,13 03173277'5
Zl?]lﬂl?]l
(n!)

X W(SRR’(SSS’(SZUI 52212 5]1]1 5]2]

R,S;T\ 71 ~R,S;T' ;15 RSTT1 R,S;T’ 7-2
’iRvs(SRR'(SSS/ Z CZ1,®2,Z3 011,12,13 0]1,]277«3 Cj1,]2,z3

Ly
20,J15%357;

= kiR,sd(T") Opr 055 07T 671750717 (B.4)

which shows that according to the normalization that we are using the matrices ) are
orthogonal but not normalized.

Qun-basis of ICyn(n). We now give few properties of the Qu,-basis (3.43). We will skip
steps since the derivations are similar to the above case.
The Qun-basis is stable under left and right actions of the diagonal Diag(C(S,)):

S,
( ) QEHTITQ ( ®3)_ (B5)
R,S;T, 11 ~R,S;T,T _
= FRST Z ZZ 011722713 '} 71,7213 2Dllfal (’71 )Dfﬂn (Ul)Dlﬁjl (72 1)

0i€Sn Wi aiby
S — S S —
X DZQGQ( 1)Da2b2 (0-2)Db2j2 (72 )D;I;,ag( l)Dg;bg (0-3)Dg;]5 (’72 1) 01 & 02 ® 03

We use (A.32) and (A.3) (of appendix A.2) to reduce the above to er’f‘r{w

Taking a product of Qu,-elements, we change variables o; — o;0'; 1, use (A.17) to get

QRST QRST

un;71,72 ¥ un; 7'2,73

RSTn R,S;T,mo ~R,S"; T ;75 ~R',S";T ;13
HR STK:R/ S/ T Z Z 7‘177‘2713 le7j27j3 C11712’743 0]1’321]3

gl ,O'Z i 77'l )]l ’]l

-1\ S —1\ T R 5’ T
X Dl1 31(010’1 Dy, s (090, )Diy s (030”3 )DZl 31( )Dlwh( )D (03)01 ® 02 ® 03
= 6RR/6S8/6TT/ 7.27.2 fﬂilile3 (B6)

which shows that @, multiply like matrices.
Computing the pairing of two elements of the Qy,-basis, we obtain
RST AHR.,ST _ R,S;T\m1 ~R.SiT,m5 ~R,S;T,m2 ~R,S;T\T3
% (Qunm’TQQun o) KR.STORR 055 0TT" Z Civizsia Civlizsis - Citaigs Cirraiia
1,1

= kRS 1dT) SRR 055 077761, 14 Oy (B.7)
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Qun-basis from a tensor product basis- There is a nice way to arrive at the Qu,-basis
for K(n) by starting from the representation theoretic Fourier basis for the tensor product
C(Sp) ® C(Sy) @ C(Sy).

Consider in the group algebra C(S),), the elements

KR
h= - > Dfi(o)o (B.8)
’ CTGSn

with kg is a normalization factor that we will fix after introducing the pairing. R is any
irreducible representation of S, parametrised by partitions of n or Young diagrams withn
boxes. The indices 4,5 run over an orthonormal basis set for the representation. The
number of these Qg is equal to n! thanks to a standard group theory identity

> (d(R))* = n! (B.9)

RFn

These Q form a representation theoretic Fourier basis for C(S,).
We have the following important properties:

ZDM ) QE, fr=>_Qff Dh(n) (B.10)
l

There is a pairing on C(S,)?, such that
5(01® - ®ag;01 @ @ay) =6(or0y ). oo ol )

and such that
2

RRRR! / HL
(ngin = R R ZD DR (o) = 'd(R) — 2y ORR Oiir Ojj1 = ORR! Oiir O (B.11)
with £% = nld(R). Then
6 (Q @ @ QO @ @ QU ) = O, m S Dyt OOt O, (B12)
1171 iaja i) = Ry R} Y141 95157 - - - ORqR!, Y%iq3!, % jaj), .

Hence, the basis {Qi;l ®-® de %, is an orthonormal (Fourier-like) basis for C(S,)%.
Let us restrict now to rank d = 3 (the following extends to any d easily). Consider
pr(11) and pgr(72) the left and right diagonal action on the tensor product C(S,)%. Then

we write:

R R R
Z PL 71 pR(UQ) Qlul ® Q2232 ® lem Z o1 Qi1;102 ® UlQi2§’2 02 ® 01621'3;)'302

01,02 701,02
R1 Ry Ro Rs Ro R3 R3
Z Z Dplll puh D]lQl (02) ® Dp2l2( 1)Qp2q2DJ2q2 (02) ® Dp313( )QPS‘B 7393 (02)
01,02 P1,q1
”' R RaiRa.r R RoiR Ri1,Ra;R:
_ 1,122;R3,7 1,12;R3,T 1,R2;R3,7" ~R1,R2;R3,T’
2 pl,pz,PS CZl 182313 C]l ,J2;73 CQMD,(B Qpl(h ® QP242 ® QPqu
pu,q T,

(B.13)
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where we used (B.10) and Lemma 2 for summing o1, 02, (in appendix A.2). Then we couple
the last result with two CG’s, and use (A.33) , in such a way to have:

R1,R2;R3,T ~R1,R2;R3,7’
Ciinsi Cj17j2;j3 Z PL o1 pR(Ug) Qll]l ® lejz ® Q1333

11,22313
ilvjl 01,02
2 :E : Rl,R27R377’CR17R21R37QCR1:R27R377' CRl’RQ’RB’
2 11,22,13 11,22;13 71,7253 J1,72573
R3
b1, o, .Q ll7]l
R1,R2;R3,0vR1,R2;R3,0
X Cpl ,P2;P3 Ct]h‘lzﬂla Qplql ® szQz ® QPS(B
— (] § : R1,R2;R3,7 ~R1,R2;R3,7’
- (n) Cp17p2,p3 Cq17<J27q3 Qpl‘h Qp2q2 Qpaqs (B'14)
DLl
: R1,R2,R3 : :
The last expression matches Q172" up to a normalization (3.43).
From
R1,R2;R3,7 ~R1,R2;R3,7’
Z Ciy insis CszJs Z pr(o1)pr(02) th Ql2]2 Qws (B.15)
i1 01,02
. . . . . . R1,R2,R3
we can infer invariance under left and right diagonal action of Qun e fix 1, vo,

pr(M)pr(72) [Z pr(o1)pr(o2) ] =Y pr(mo)pr(eon) = Y pr(o1)pr(02).

01,02 01,02 01,02

Finally, similar derivations allows one to get QRl’RQ’RS (3.19) in terms of diagonal adjoint
action coupled with CG’s.

B.2 Basis of Z(IKC(n))

Overcompleteness of the zg, r,;r,-basis in Z(/C(n)). Consider the elements

2R, RoiRs = (2R, ® ZRy) " 2Ry 5 2Ry = ZXRL2 (o), Z XR3 Jo®@o (B.16)
g

which are elements of Z(K(n)). We evaluate now the overlapping between the basis
PRuR2REs and the elements 2R, Rb;RY:

Ri,Ra,Rs.
92 (P o 3,ZR’1,R'2;RQ>

= Y XM(e0)x 2 (02)x 5 (03)82(QE 5 0103 @ 0303)

T 0;ESh
_ R17R27R5,T R1,Ro;R3,T
= FR1,Ry Z Z 11,12,23 CJ1,J2,13
T 0],00€8n W,

x D% (01) D)2 (05)x ™ (01)x 2 (02)x % (03) 82(0 ® 0; 9103 @ 0203)

21]J1 1272
_ R17R27R3» R1,R2;R3,7
= KRi,Ry Z Z 21712713 le:]é;is
T 01€Sn 1,01
Ry Ry Ro Ro R Ry Ry
Z D21a1 g1 Da1]1 (03)D22a2 (JZ)DGQD (03)Db1 b1 (Jl)Dbzbz (02)Db3b3 (03)
ag,by
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() R1,R2;R3,m7 ~R1,R2;R3,T
=KRRi,Ro 77 p N1 N d(R )d(R 5313 5R2R 222021}127%23 ’ CJ1}J2,123 T

T g1 O

R R Ry
X Z5i1515a11)151'21)26&2172Da11]1( )Da22jg( )Db;l’yg(o-)

ay,by

s g e 33 3 Y Gl G
= K/Rl:RQ d(R )d(R RIR RQR i1,i23i3 1,42313

T by ug O

x DI (0)DF2 (0)Dy5, (o)

2171 1272
Ri1,R2;R3,T R ,Ro;R3,T R
- 5R1R15R2R/ ZZZZCH}WJQ‘; o 217122712 ’ Dbsbs( )Dllj( 9)
T b3l iy O
= ORr,R,OR,r, C(R1, R2, Rs) ZZD o) Dy (o)
bl o
= n!5313115323/25333/3C(R1,R2,R3) (Bl?)

Overcompleteness of the z/2F2Rs_pasis in Z(KCun(n)). The elements of interest
are of the form

2oty — op @ 2p, ® ZR3 ZR; = Z (o) (B.18)

which are elements of Z(/C(n)). Note that they are more symmetric in the three indices
than the previous central element. We compute the overlap:

Ri1,Ra,R R',R},R!
63 (Zunl, 25 B;Punl 2 3

R RY,R!
=D > X (o)x(02)x " (03)85(01 © 02 © 03; Quikin? )
T o

ey Y Se O Ry Ry, T Ry Ry Ry w
— "WR,R5, Ry 11,1213 ]1,]2733
T 01,0]€Sn Wi

R! R/,
x " (1) x ™2 (02)x ™ (03)D111]1 (01)D;,%5,(03) D% (05)d3(01 @ 02 ® 03301 ® 05 @ 03)

— R17R27R37 R17R/21R377-
= FR{,Ry, R, Z Z 2021722713 31,12,]3

T 01E€ESh UL
X T (o)X (02)x ™ (03) DI, (01) Dis;, (02) Dy, (03)
2)X 3) 71,1 \O1) g 52\ 02) Hig 35103
R 7R 7R b R 7R 7R b
- 5R1R/ 5R2R/ 5R3R/ Z Z 01171127123 o i1 7112&23 o
= d(R3)C(Ry, Ry, R3)5R1R’1 ORyR,ORs R, (B.19)
That coefficient is not vanishing in general hence Pf1:-52./ 3dmits an expansion in the

ZRl,Rg,Rg‘baSiS-

C Multiplication table of rank d = 3, n = 3 colored tensor graphs
We list, in this appendix, the multiplication table of the 10 invariants (recall that there are

©
(3
11 invariants but the row for the identity element £ = © is trivial) of rank d = 3 at 2n =6
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number of vertices. The index ¢ = 1,2,3 is a color label of a graph. Define ¢ = 1,2,3
such that ¢ # ¢, and ¢ = 1,2, 3 which can be neither ¢ nor ¢, we obtain table 5 giving the
multiplication between the 10 possible elements.

The table teaches us that the basic products are all commutatives and so is the algebra
Kun(3). Furthermore, some elements admit a or multiple factorizations:

e

g = % @ (C.1)
d.e o . S 8B.8 8

D Correlators of tensor observables

Correlators involves insertions and evaluation of general observables in the Gaussian path
integral. We will restrict attention to d = 3 and consider the Gaussian model

Z = / ADdD ¢ 7 Liy Pinizis Piriais (D.1)

The index i, takes values in {1--- N, }, for a € {1,2,3}. The propagator or 2-point function
is of the form

<(I)i1i2i3q)j1j2j3> = 03151 0iga Oy (D.2)
The observables, invariant under U(N) x U(N) x U(N), are labelled by permutations
(01,09,03) subject to equivalence (o1,02,03) ~ (V10172, V10272, 710372). We will write
these observables subjected to the equivalence as Oy, 5y.05 = O5101792,710272,710372- We recall

Ocron0s = O Pirjuks Pignhy - - Pivsjukn

i,J1,k
X Pig 1oy ykos (1) Py @@ rkos @)+ Pioy (mioymkozm (D-3)
The integral the such operators is given by the Wick theorem
1 - _1 -
<001702,03> = Z/dq)dcb e 2 Zi’j’k <I>”kq)”k001,02,03
- Z Z Oiti(ay (1) Oi2in(oy 2) *  * Oiniy(oy ()
i1,J1,k1 pESR
X 5j1ju(02(1))6j2ju(02(2)) "'6j"ju(02(n)) 5k1ku(03(1))5k2ku(03(2)) "'6k”ku(03(n))
= Z Nelpor)te(poz)+e(uos) (D.4)

HESH
where c(«) is the number of cycles of & € S,,. We have used the fact that, given o € S,
i€ [LN],l=1,...,n,
i in  _ prc(o)
Z R (D.5)
i

This allows us to recover (2.10).
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Two point-functions (Opy 9,050y .ma,m5) can be also computed in a similar way. We
give a summary of appendix C in [41] (note that we correct a few mistakes appearing this
appendix below). We are taking the observables to be “normal ordered” so we only allow
contractions to take place between the ®’s from the first observable to the ®’s from the
second (parametrized by p,) and between the ®’s from the first observable to the ®’s from
the second (parametrized by v,):

(Op1.090.050m1 19m3) = Z Z trvl®n(01url_lu)trv2®n (UQMTz_lV)tI'V3®n (o3urs'v)  (D.6)
UESy VESK

that could be translated as

—1 —1 —1
A . c(orpury V) yrc(oouty V) y C(o3uTy V)
<001702,U30T1,T2,T3>_ E : E Nl N2 N3
HESH VES,

=3 3 Y NN INT O s ur van) (oo ' vas)d(oury vas)
WESH VES) a; €Sy,

= > NPNPN§s(orpry ' v)d(oapry ' vQ)8(ospTs ' 102s) (D.7)
}LESn VeSn
with c(a) = c¢(a™!), and

N"Q=N">" Ne@q, (D.8)
aESn

Finally, setting v1 = i, and 2 = v, and keeping in mind that @ﬁ,mﬁa =0_1_-1_-1,

T Ty ,Ta

(O1.02030m mams) = 3 N¥"8[(01 @ 02 @ 03773 (11 @ 72 @ 73)75% (1 ® Q2 @ Q3)] (D.9)
V1,72

which is the starting point (5.23).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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