14 research outputs found

    Underweight but not overweight is associated with excess mortality in septic ICU patients

    Get PDF
    Background Higher survival has been shown for overweight septic patients compared with normal or underweight patients in the past. This study aimed at investigating the management and outcome of septic ICU patients in different body mass index (BMI) categories in a large multicenter database. Methods In total, 16,612 patients of the eICU collaborative research database were included. Baseline characteristics and data on organ support were documented. Multilevel logistic regression analysis was performed to fit three sequential regression models for the binary primary outcome (ICU mortality) to evaluate the impact of the BMI categories: underweight (<18.5 kg/m2), normal weight (18.5 to < 25 kg/m2), overweight (25 to < 30 kg/m2) and obesity (≥ 30 kg/m2). Data were adjusted for patient level characteristics (model 2) as well as management strategies (model 3). Results Management strategies were similar across BMI categories. Underweight patients evidenced higher rates of ICU mortality. This finding persisted after adjusting in model 2 (aOR 1.54, 95% CI 1.15–2.06; p = 0.004) and model 3 (aOR 1.57, 95%CI 1.16–2.12; p = 0.003). No differences were found regarding ICU mortality between normal and overweight patients (aOR 0.93, 95%CI 0.81–1.06; p = 0.29). Obese patients evidenced a lower risk of ICU mortality compared to normal weight, a finding which persisted across all models (model 2: aOR 0.83, 95%CI 0.69–0.99; p = 0.04; model 3: aOR 0.82, 95%CI 0.68–0.98; p = 0.03). The protective effect of obesity and the negative effect of underweight were significant in individuals > 65 years only. Conclusion In this cohort, underweight was associated with a worse outcome, whereas obese patients evidenced lower mortality. Our analysis thus supports the thesis of the obesity paradox

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Red cell distribution width is independently associated with mortality in sepsis

    No full text
    Background: Mortality in sepsis remains high. Studies on small cohorts have shown that red cell distribution width (RDW) is associated with mortality. The aim of this study was to validate these findings in a large multicenter cohort. Methods: We conducted this retrospective analysis of the multicenter eICU Collaborative Research Database in 16,423 septic patients. We split the cohort in patients with low (≤15%; n = 7,129) and high (>15%; n = 9,294) RDW. Univariable and multivariable multilevel logistic regressions were used to fit regression models for the binary primary outcome of hospital mortality and the secondary outcome intensive care unit (ICU) mortality with hospital unit as random effect. Optimal cutoffs were calculated using the Youden index. Results: Patients with high RDW were more often older than 65 years (57% vs. 50%; p < 0.001) and had higher Acute Physiology and Chronic Health Evaluation (APACHE) IV scores (69 vs. 60 pts.; p < 0.001). Both hospital (adjusted odds ratios [aOR] 1.18; 95% CI: 1.16–1.20; p < 0.001) and ICU mortality (aOR 1.16; 95% CI: 1.14–1.18; p < 0.001) were associated with RDW as a continuous variable. Patients with high RDW had a higher hospital mortality (20 vs. 9%; aOR 2.63; 95% CI: 2.38–2.90; p < 0.001). This finding persisted after multivariable adjustment (aOR 2.14; 95% CI: 1.93–2.37; p < 0.001) in a multilevel logistic regression analysis. The optimal RDW cutoff for the prediction of hospital mortality was 16%. Conclusion: We found an association of RDW with mortality in septic patients and propose an optimal cutoff value for risk stratification. In a combined model with lactate, RDW shows equivalent diagnostic performance to Sequential Organ Failure Assessment (SOFA) score and APACHE IV score

    Interplay of Kinetic and Thermodynamic Reaction Control Explains Incorporation of Dimethylammonium Iodide into CsPbI3.

    Get PDF
    CsPbI3 is a promising material for optoelectronics owing to its thermal robustness and favorable bandgap. However, its fabrication is challenging because its photoactive phase is thermodynamically unstable at room temperature. Adding dimethylammonium (DMA) alleviates this instability and is currently understood to result in the formation of DMA x Cs1-x PbI3 perovskite solid solutions. Here, we use NMR of the 133Cs and 13C local structural probes to show that these solid solutions are not thermodynamically stable, and their synthesis under thermodynamic control leads to a segregated mixture of yellow one-dimensional DMAPbI3 phase and δ-CsPbI3. We show that mixed-cation DMA x Cs1-x PbI3 perovskite phases only form when they are kinetically trapped by rapid antisolvent-induced crystallization. We explore the energetics of DMA incorporation into CsPbI3 using first-principles calculations and molecular dynamics simulations and find that this process is energetically unfavorable. Our results provide a complete atomic-level picture of the mechanism of DMA-induced stabilization of the black perovskite phase of CsPbI3 and shed new light on this deceptively simple material

    Improving shared decision-making about cancer treatment through design-based data-driven decision-support tools and redesigning care paths: an overview of the 4D PICTURE project

    Get PDF
    Background: Patients with cancer often have to make complex decisions about treatment, with the options varying in risk profiles and effects on survival and quality of life. Moreover, inefficient care paths make it hard for patients to participate in shared decision-making. Data-driven decision-support tools have the potential to empower patients, support personalized care, improve health outcomes and promote health equity. However, decision-support tools currently seldom consider quality of life or individual preferences, and their use in clinical practice remains limited, partly because they are not well integrated in patients’ care paths. Aim and objectives: The central aim of the 4D PICTURE project is to redesign patients’ care paths and develop and integrate evidence-based decision-support tools to improve decision-making processes in cancer care delivery. This article presents an overview of this international, interdisciplinary project. Design, methods and analysis: In co-creation with patients and other stakeholders, we will develop data-driven decision-support tools for patients with breast cancer, prostate cancer and melanoma. We will support treatment decisions by using large, high-quality datasets with state-of-the-art prognostic algorithms. We will further develop a conversation tool, the Metaphor Menu, using text mining combined with citizen science techniques and linguistics, incorporating large datasets of patient experiences, values and preferences. We will further develop a promising methodology, MetroMapping, to redesign care paths. We will evaluate MetroMapping and these integrated decision-support tools, and ensure their sustainability using the Nonadoption, Abandonment, Scale-Up, Spread, and Sustainability (NASSS) framework. We will explore the generalizability of MetroMapping and the decision-support tools for other types of cancer and across other EU member states. Ethics: Through an embedded ethics approach, we will address social and ethical issues. Discussion: Improved care paths integrating comprehensive decision-support tools have the potential to empower patients, their significant others and healthcare providers in decision-making and improve outcomes. This project will strengthen health care at the system level by improving its resilience and efficiency

    Improving shared decision-making about cancer treatment through design-based data-driven decision-support tools and redesigning care paths : an overview of the 4D PICTURE project

    No full text
    Background:: Patients with cancer often have to make complex decisions about treatment, with the options varying in risk profiles and effects on survival and quality of life. Moreover, inefficient care paths make it hard for patients to participate in shared decision-making. Data-driven decision-support tools have the potential to empower patients, support personalized care, improve health outcomes and promote health equity. However, decision-support tools currently seldom consider quality of life or individual preferences, and their use in clinical practice remains limited, partly because they are not well integrated in patients’ care paths. Aim and objectives:: The central aim of the 4D PICTURE project is to redesign patients’ care paths and develop and integrate evidence-based decision-support tools to improve decision-making processes in cancer care delivery. This article presents an overview of this international, interdisciplinary project. Design, methods and analysis:: In co-creation with patients and other stakeholders, we will develop data-driven decision-support tools for patients with breast cancer, prostate cancer and melanoma. We will support treatment decisions by using large, high-quality datasets with state-of-the-art prognostic algorithms. We will further develop a conversation tool, the Metaphor Menu, using text mining combined with citizen science techniques and linguistics, incorporating large datasets of patient experiences, values and preferences. We will further develop a promising methodology, MetroMapping, to redesign care paths. We will evaluate MetroMapping and these integrated decision-support tools, and ensure their sustainability using the Nonadoption, Abandonment, Scale-Up, Spread, and Sustainability (NASSS) framework. We will explore the generalizability of MetroMapping and the decision-support tools for other types of cancer and across other EU member states. Ethics:: Through an embedded ethics approach, we will address social and ethical issues. Discussion:: Improved care paths integrating comprehensive decision-support tools have the potential to empower patients, their significant others and healthcare providers in decision-making and improve outcomes. This project will strengthen health care at the system level by improving its resilience and efficiency
    corecore