38 research outputs found

    Increased bone resorption and osteopenia are a part of the lymphoproliferative phenotype of mice with systemic over-expression of interleukin-7 gene driven by MHC class II promoter

    Get PDF
    Mice with interleukin (IL)-7 transgene under the control of E(alpha) promoter over-express IL-7 in MHC class II-positive cells and develop specific immune phenotype, marked by an increase in CD45R(+) cells in both the bone marrow and peripheral blood. We show that IL-7 transgenic mice have a bone phenotype characterized by an age-related loss of trabecular bone in both axial and long bones. Osteopenia was the result of increased number of active osteoclasts on the surface of trabecular bone. Furthermore, IL-7 transgenic mice showed increased osteoclastic but unchanged osteoblastic potential of the bone marrow in vitro. IL-7 over-expression also created osteoclastogenic microenvironment within the bone marrow which promoted the commitment of precursors towards the osteoclast lineage. These findings are important for immunological disturbances where IL-7 is involved and where alterations in the immune system are accompanied by changes in bone metabolism, such as multiple myeloma, rheumatoid arthritis and postmenopausal osteoporosis

    PDGF Modulates BMP2‐Induced Osteogenesis in Periosteal Progenitor Cells

    No full text
    ABSTRACT BMPs are used in various clinical applications to promote bone formation. The limited success of the BMPs in clinical settings and supraphysiological doses required for their effects prompted us to evaluate the influence of other signaling molecules, specifically platelet‐derived growth factor (PDGF) on BMP2‐induced osteogenesis. Periosteal cells make a major contribution to fracture healing. We detected broad expression of PDGF receptor beta (PDGFRβ) within the intact periosteum and healing callus during fracture repair. In vitro, periosteum‐derived progenitor cells were highly responsive to PDGF as demonstrated by increased proliferation and decreased apoptosis. However, PDGF blocked BMP2‐induced osteogenesis by inhibiting the canonical BMP2/Smad pathway and downstream target gene expression. This effect is mediated via PDGFRβ and involves ERK1/2 MAPK and PI3K/AKT signaling pathways. Therapeutic targeting of the PDGFRβ pathway in periosteum‐mediated bone repair might have profound implications in the treatment of bone disease in the future. © 2018 The Authors JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research

    Preosteocytes/Osteocytes Have the Potential to Dedifferentiate Becoming a Source of Osteoblasts

    Get PDF
    Presently there is no clear evidence for the ability of mature osteogenic lineage cells to dedifferentiate. In order to identify and trace mature osteogenic lineage cells, we have utilized transgenic mouse models in which the dentin matrix protein 1 (Dmp1) promoter drives expression of GFP (active marker) or Cre recombinase (historic label) in preosteocytes/osteocytes. In long bone chip outgrowth cultures, in which cells on the bone surface were enzymatically removed, cells with previous activity of the Dmp1 promoter migrated onto plastic and down-regulated Dmp1-GFP expression. Dmp1Cre-labeled cells from these cultures had the potential to re-differentiate into the osteogenic lineage, while the negative population showed evidence of adipogenesis. We observed numerous Dmp1Cre-labeled osteoblasts on the surface of bone chips following their in vivo transplantation. Our data indicate that cells embedded in bone matrix are motile, and once given access to the extra bony milieu will migrate out of their lacunae. This population of cells is phenotypically and functionally heterogeneous in vitro. Once the preosteocytes/osteocytes leave lacunae, they can dedifferentiate, potentially providing an additional source of functional osteoblasts
    corecore