419 research outputs found

    Environmental changes and radioactive tracers

    Get PDF

    Environmental changes and radioactive tracers

    Get PDF

    Phenotype-driven approaches to enhance variant prioritization and diagnosis of rare disease.

    Get PDF
    Rare disease diagnostics and disease gene discovery have been revolutionized by whole-exome and genome sequencing but identifying the causative variant(s) from the millions in each individual remains challenging. The use of deep phenotyping of patients and reference genotype-phenotype knowledge, alongside variant data such as allele frequency, segregation, and predicted pathogenicity, has proved an effective strategy to tackle this issue. Here we review the numerous tools that have been developed to automate this approach and demonstrate the power of such an approach on several thousand diagnosed cases from the 100,000 Genomes Project. Finally, we discuss the challenges that need to be overcome if we are going to improve detection rates and help the majority of patients that still remain without a molecular diagnosis after state-of-the-art genomic interpretation

    Large easy-axis anisotropy in the one-dimensional magnet BaMo(PO4)(2)

    Get PDF
    We present an extensive experimental and theoretical study on the low-temperature magnetic properties of the monoclinic anhydrous alum compound BaMo(PO4)(2). The magnetic susceptibility reveals strong antiferromagnetic interactions theta(CW) = -167 K and long-range magnetic order at T-N = 22 K, in agreement with a recent report. Powder neutron diffraction furthermore shows that the order is collinear, with the moments near the ac plane. Neutron spectroscopy reveals a large excitation gap Delta = 15 meV in the low-temperature ordered phase, suggesting a much larger easy-axis spin anisotropy than anticipated. However, the large anisotropy justifies the relatively high ordered moment, Neel temperature, and collinear order observed experimentally and is furthermore reproduced in a first-principles calculations by using a new computational scheme. We therefore propose BaMo(PO4)(2) to host S = 1 antiferromagnetic chains with large easy-axis anisotropy, which has been theoretically predicted to realize novel excitation continua

    SvAnna: efficient and accurate pathogenicity prediction of coding and regulatory structural variants in long-read genome sequencing.

    Get PDF
    Structural variants (SVs) are implicated in the etiology of Mendelian diseases but have been systematically underascertained owing to sequencing technology limitations. Long-read sequencing enables comprehensive detection of SVs, but approaches for prioritization of candidate SVs are needed. Structural variant Annotation and analysis (SvAnna) assesses all classes of SVs and their intersection with transcripts and regulatory sequences, relating predicted effects on gene function with clinical phenotype data. SvAnna places 87% of deleterious SVs in the top ten ranks. The interpretable prioritizations offered by SvAnna will facilitate the widespread adoption of long-read sequencing in diagnostic genomics. SvAnna is available at https://github.com/TheJacksonLaboratory/SvAnn a

    GA4GH Phenopackets: A Practical Introduction.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases

    GA4GH Phenopackets: A Practical Introduction

    Full text link
    The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases

    Modelling the implications of stopping vector control for malaria control and elimination

    Get PDF
    Increasing coverage of malaria vector control interventions globally has led to significant reductions in disease burden. However due to its high recurrent cost, there is a need to determine if and when vector control can be safely scaled back after transmission has been reduced.; A mathematical model of Plasmodium falciparum malaria epidemiology was simulated to determine the impact of scaling back vector control on transmission and disease. A regression analysis of simulation results was conducted to derive predicted probabilities of resurgence, severity of resurgence and time to resurgence under various settings. Results indicate that, in the absence of secular changes in transmission, there are few scenarios where vector control can be removed without high expectation of resurgence. These, potentially safe, scenarios are characterized by low historic entomological inoculation rates, successful vector control programmes that achieve elimination or near elimination, and effective surveillance systems with high coverage and effective treatment of malaria cases.; Programmes and funding agencies considering scaling back or withdrawing vector control from previously malaria endemic areas need to first carefully consider current receptivity and other available interventions in a risk assessment. Surveillance for resurgence needs to be continuously conducted over a long period of time in order to ensure a rapid response should vector control be withdrawn

    Recommendations for respiratory syncytial virus surveillance at national level

    Get PDF
    Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infections and hospitalisations among young children and is globally responsible for many deaths in young children, especially in infants aged <6 months. Furthermore, RSV is a common cause of severe respiratory disease and hospitalisation among older adults. The development of new candidate vaccines and monoclonal antibodies highlights the need for reliable surveillance of RSV. In the European Union (EU), no up-to-date general recommendations on RSV surveillance are currently available. Based on outcomes of a workshop with 29 European experts in the field of RSV virology, epidemiology and public health, we provide recommendations for developing a feasible and sustainable national surveillance strategy for RSV that will enable harmonisation and data comparison at the European level. We discuss three surveillance components: active sentinel community surveillance, active sentinel hospital surveillance and passive laboratory surveillance, using the EU acute respiratory infection and World Health Organization (WHO) extended severe acute respiratory infection case definitions. Furthermore, we recommend the use of quantitative reverse transcriptase PCR-based assays as the standard detection method for RSV and virus genetic characterisation, if possible, to monitor genetic evolution. These guidelines provide a basis for good quality, feasible and affordable surveillance of RSV. Harmonisation of surveillance standards at the European and global level will contribute to the wider availability of national level RSV surveillance data for regional and global analysis, and for estimation of RSV burden and the impact of future immunisation programmes
    corecore