120 research outputs found

    Qualitative changes in bifurcation structure for soft vs hard impact models of a vibro-impact energy harvester

    Get PDF
    Funding Information: The authors gratefully acknowledge partial funding for this work from NSF-CMMI (No. 2009270) and EPSRC (No. EP/V034391/1).Peer reviewedPublisher PD

    Dielectric Elastomers for Energy Harvesting

    Get PDF
    Dielectric elastomers are a type of electroactive polymers that can be conveniently used as sensors, actuators or energy harvesters and the latter is the focus of this review. The relatively high number of publications devoted to dielectric elastomers in recent years is a direct reflection of their diversity, applicability as well as nontrivial electrical and mechanical properties. This chapter provides a review of fundamental mechanical and electrical properties of dielectric elastomers and up-to-date information regarding new developments of this technology and it’s potential applications for energy harvesting from various vibration sources explored over the past decade

    Important considerations in optimising the structural aspect of a SDOF electromagnetic vibration energy harvester

    Get PDF
    This study investigates several important considerations to be made when optimising the structural aspects of a single-degree-of-freedom (SDOF) electromagnetic vibration energy harvester. Using the critically damped stress method, the damping and power output of the harvester were modelled and verified, displaying an excellent agreement with the experimental results. The SDOF harvester was structurally optimised under a certain set of constraints and it was found that under the fixed beam’s thickness condition, the harvester displayed an insignificant increase in power output as a function of volume when the device’s size was relatively larger. This highlights the importance of considering a smaller practical volume for this case. Additionally, when optimising the device using a low stress constraint and a low damping material, it was observed that considering the load resistance as an input parameter to the objective function would lead to a higher power output compared to the optimum load resistance condition. Further analysis indicated that there exists a power limit when the electromagnetic coupling coefficient approaches infinity. For the case of a high electromagnetic coupling coefficient value and a small volume constraint, it is possible to achieve approximately 80.0% of the harvester’s power limit. Finally, it was demonstrated that a high power output can be achieved for a SDOF electromagnetic harvester by considering a high-density proof mass centred at the free end of the beam

    Updatable Probabilistic Evaluation of Failure Rates of Mechanical Components in Power Take-Off Systems of Tidal Stream Turbines

    Get PDF
    This paper presents a method for the probabilistic evaluation of the failure rates of mechanical components in a typical power take-off (PTO) system of a horizontal-axis tidal stream turbine (HATT). The method is based on a modification of the method of the influence factors, when base failure rates, relevant influence factors and, subsequently, resulting failure rates are treated as random variables. The prior (i.e., initial) probabilistic distribution of the failure rates of a HATT component is generated using data for similar components from other industries, while taking into account actual characteristics of the component and site-specific operating and environmental conditions of the HATT. A posterior distribution of the failure rate is estimated numerically based on a Bayesian approach as new information about the component performance in an operating HATT becomes available. The posterior distribution is then employed to obtain the updated mean and lower and upper confidence limits of the failure rate. The proposed method is illustrated by applying it to the evaluation of the failure rates of two key components of the PTO system of a typical HATT—main seal and main bearing. In particular, it is shown that uncertainty associated with the method itself has a major influence on the failure rate evaluation. The proposed method is useful for the reliability assessment of both PTO designs of new HATTs and PTO systems of operating HATTs

    Dynamic response of the spherical pendulum subjected to horizontal Lissajous excitation

    Get PDF
    This paper examines the oscillations of a spherical pendulum with horizontal Lissajous excitation. The pendulum has two degrees of freedom: a rotational angle defined in the horizontal plane and an inclination angle defined by the pendulum with respect to the vertical z axis. The results of numerical simulations are illustrated with the mathematical model in the form of multi-colored maps of the largest Lyapunov exponent. The graphical images of geometrical structures of the attractors placed on Poincaré cross sections are shown against the maps of the resolution density of the trajectory points passing through a control plane. Drawn for a steady-state, the graphical images of the trajectory of a tip mass are shown in a three-dimensional space. The obtained trajectories of the moving tip mass are referred to a constructed bifurcation diagram

    Numerical Optimisation of a Classical Stochastic System for Targeted Energy Transfer

    Get PDF
    The paper studies stochastic dynamics of a two-degree-of-freedom system, where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping. While the primary mass is subjected to a zero-mean Gaussian white noise excitation, the main objective of this study is to maximise the efficiency of the targeted energy transfer in the system. A surrogate optimisation algorithm is proposed for this purpose and adopted for the stochastic framework. The optimisations are conducted separately for the nonlinear stiffness coefficient alone as well as for both the nonlinear stiffness and damping coefficients together. Three different optimisation cost functions, based on either energy of the system’s components or the dissipated energy, are considered. The results demonstrate some clear trends in values of the nonlinear energy sink coefficients and show the effect of different cost functions on the optimal values of the nonlinear system’s coefficients.publishedVersio
    corecore