18 research outputs found

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Biglycan deficiency causes spontaneous aortic dissection and rupture in mice

    No full text
    BACKGROUND - For the majority of cases, the cause of spontaneous aortic dissection and rupture is unknown. An inherited risk is associated with Marfan syndrome, Ehlers-Danlos syndrome type IV, and loci mapped to diverse autosomal chromosomes. Analysis of pedigrees however has indicated that it may be also inherited as an X-linked trait. The biglycan gene, found on chromosome X in humans and mice, encodes a small leucine-rich proteoglycan involved in the integrity of the extracellular matrix. A vascular phenotype has never been described in mice deficient in the gene for small leucine-rich proteoglycans. In the breeding of BALB/cA mice homozygous for a null mutation of the biglycan gene, we observed that 50% of biglycan-deficient male mice died suddenly within the first 3 months of life. METHODS AND RESULTS - Necropsies revealed a major hemorrhage in the thoracic or abdominal cavity, and histology showed aortic rupture that involved an intimal and medial tear as well as dissection between the media and adventitia. By transmission electron microscopy and biomechanical testing, the aortas of biglycan-deficient mice showed structural abnormalities of collagen fibrils and reduced tensile strength. Similar collagen fibril changes were observed in male as well as in female biglycan-deficient mice, which implies a role of additional determinants such as gender-related response to stress in the development of this vascular catastrophe only in male mice. CONCLUSIONS - The spontaneous death of biglycan-deficient male mice from aortic rupture implicates biglycan as essential for the structural and functional integrity of the aortic wall and suggests a potential role of biglycan gene defects in the pathogenesis of aortic dissection and rupture in humans. © 2007 American Heart Association, Inc
    corecore