7,249 research outputs found

    Theory and Design Techniques for Magnetic-core Memories, Volume I

    Get PDF
    Theory and design techniques for magnetic core memories for special purpose digital computers and control system

    Capabilities of the thermal acoustic fatigue apparatus

    Get PDF
    The Thermal Acoustic Fatigue Apparatus (TAFA) is a facility for applying intense noise and heat to small test panels. Modifications to TAFA have increased the heating capability to 44 BTU/(ft.-sec.), making it possible to heat test panels to 2000 F and concurrently apply 168 dB of noise. Results of acoustic and thermal surveys are shown. Two test items, a 0.09 in. steel panel and an insulated panel, were used in the thermal survey

    Poisson's ratio in cryocrystals under pressure

    Get PDF
    We present results of lattice dynamics calculations of Poisson's ratio (PR) for solid hydrogen and rare gas solids (He, Ne, Ar, Kr and Xe) under pressure. Using two complementary approaches - the semi-empirical many-body calculations and the first-principle density-functional theory calculations we found three different types of pressure dependencies of PR. While for solid helium PR monotonically decreases with rising pressure, for Ar, Kr, and Xe it monotonically increases with pressure. For solid hydrogen and Ne the pressure dependencies of PR are non-monotonic displaying rather deep minimums. The role of the intermolecular potentials in this diversity of patterns is discussed.Comment: Fizika Nizkikh Temperatur 41, 571 (2015

    Equilibrating temperature-like variables in jammed granular subsystems

    Full text link
    Although jammed granular systems are athermal, several thermodynamic-like descriptions have been proposed which make quantitative predictions about the distribution of volume and stress within a system and provide a corresponding temperature-like variable. We perform experiments with an apparatus designed to generate a large number of independent, jammed, two-dimensional configurations. Each configuration consists of a single layer of photoelastic disks supported by a gentle layer of air. New configurations are generated by alternately dilating and re-compacting the system through a series of boundary displacements. Within each configuration, a bath of particles surrounds a smaller subsystem of particles with a different inter-particle friction coefficient than the bath. The use of photoelastic particles permits us to find all particle positions as well as the vector forces at each inter-particle contact. By comparing the temperature-like quantities in both systems, we find compactivity (conjugate to the volume) does not equilibrate between the systems, while the angoricity (conjugate to the stress) does. Both independent components of the angoricity are linearly dependent on the hydrostatic pressure, in agreement with predictions of the stress ensemble

    New Discoveries from the Arecibo 327 MHz Drift Pulsar Survey Radio Transient Search

    Get PDF
    We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently, isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range 23.586.623.5 - 86.6 pc cm3^{-3} and periods in the range 0.1723.9010.172 - 3.901 s. The new pulsars have DMs in the range 23.6133.323.6 - 133.3 pc cm3^{-3} and periods in the range 1.2495.0121.249 - 5.012 s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of 10510^5 day1^{-1} for bursts with a width of 10 ms and flux density 83\gtrsim 83 mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models.Comment: 41 pages, 16 figures, 4 tables, accepted by ApJ; added minor corrections to final ApJ proo

    Bimodal distribution function of a 3d wormlike chain with a fixed orientation of one end

    Full text link
    We study the distribution function of the three dimensional wormlike chain with a fixed orientation of one chain end using the exact representation of the distribution function in terms of the Green's function of the quantum rigid rotator in a homogeneous external field. The transverse 1d distribution function of the free chain end displays a bimodal shape in the intermediate range of the chain lengths (1.3Lp,...,3.5Lp1.3L_{p},...,3.5L_{p}). We present also analytical results for short and long chains, which are in complete agreement with the results of previous studies obtained using different methods.Comment: 6 pages, 3 figure

    Production Systems Involving Stocker Cattle and Soft Red Winter Wheat

    Get PDF
    A three year study at the Livestock and Forestry Research Station near Batesville, Arkansas evaluated production systems involving stocker cattle and soft red winter wheat. Grazing of soft red winter wheat forage from October through February followed by harvesting wheat grain or grazing through April with stocker cattle offers an alternative to conventional farming. Soft red winter wheat, when planted by September 15, produces an ample supply of high-quality forage that supports rapid growth of stocker cattle during October through April. Net income from stocker cattle averaged over 100peracre.Anormalwheatgraincropcanalsobeharvested.Thesealternativeproductionsystemscouldincreasetheagriculturalincomebyover100 per acre. A normal wheat grain crop can also be harvested. These alternative production systems could increase the agricultural income by over 75,000,000 per year if 750,000 acres of wheat are grazed

    Effects of Octahedral Tilting on Band Structure and Thermoelectric Power Factor of Titanate Perovskites: A First-Principles Study on SrTiO₃

    Get PDF
    Doped SrTiO_{3} and other perovskite structured titanates are attracting interest as n-type thermoelectric materials due to their relatively high thermoelectric power factor, low toxicity, and modest cost. Taking SrTiO_{3} as an example, the effects of octahedral tilting on the electronic band structure and thermoelectric power factor of titanate perovskites have been studied from first-principles calculations. By utilizing Glazer’s notation, six representative tilt systems, including three out-of-phase (a^{0}a^{0}c^{–}, a^{0}b^{-}b^{–}, and a^{–}a^{–}a^{–}) and three in-phase tilt systems (a^{0}a^{0}c^{+}, a^{0}b^{+}b^{+}, and a^{+}a^{+}a^{+}), were investigated. It is found that out-of-phase tilting improves the optimum power factor as compared to the cubic aristotype, while in-phase tilting marginally lowers the optimum power factor. The largest increase in power factor (∼100%) is obtained in the one-tilt system a^{0}a^{0}c^{–} at a tilt angle of 15°, which can be achieved with an energy cost of only 44 kJ mol^{–1} per formula unit. These findings agree with the experimental evidence that increased power factors are found in a^{0}a^{0}c^{–} and a^{–}a^{–}a^{–} tilt systems of titanate perovskites. The predicted increase of Seebeck coefficient as a function of tilt angle in the a^{–}a^{–}a^{–} tilt system of SrTiO_{3} is also consistent with the experimental increase of Seebeck coefficient in a^{–}a^{–}a^{–} titanates of La_{0.55}K_{0.45}TiO_{3} and La_{0.5}Na_{0.5}Ti_{0.9}Nb_{0.1}O_{3}. Our simulations provide valuable insights into tuning the thermoelectric power factor of titanate perovskites by controlling octahedral tilting

    Resonance energy transfer: The unified theory revisited

    Get PDF
    Resonanceenergy transfer (RET) is the principal mechanism for the intermolecular or intramolecular redistribution of electronic energy following molecular excitation. In terms of fundamental quantum interactions, the process is properly described in terms of a virtual photon transit between the pre-excited donor and a lower energy (usually ground-state) acceptor. The detailed quantum amplitude for RET is calculated by molecular quantum electrodynamical techniques with the observable, the transfer rate, derived via application of the Fermi golden rule. In the treatment reported here, recently devised state-sequence techniques and a novel calculational protocol is applied to RET and shown to circumvent problems associated with the usual method. The second-rank tensor describing virtual photon behavior evolves from a Green’s function solution to the Helmholtz equation, and special functions are employed to realize the coupling tensor. The method is used to derive a new result for energy transfer systems sensitive to both magnetic- and electric-dipole transitions. The ensuing result is compared to that of pure electric-dipole–electric-dipole coupling and is analyzed with regard to acceptable transfer separations. Systems are proposed where the electric-dipole–magnetic-dipole term is the leading contribution to the overall rate

    Proton-3^{3}He elastic scattering at low energies

    Get PDF
    We present new accurate measurements of the differential cross section σ(θ)\sigma(\theta) and the proton analyzing power AyA_{y} for proton-3^{3}He elastic scattering at various energies. A supersonic gas jet target has been employed to obtain these low energy cross section measurements. The σ(θ)\sigma(\theta) distributions have been measured at EpE_{p} = 0.99, 1.59, 2.24, 3.11, and 4.02 MeV. Full angular distributions of AyA_{y} have been measured at EpE_{p} = 1.60, 2.25, 3.13, and 4.05 MeV. This set of high-precision data is compared to four-body variational calculations employing realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. For the unpolarized cross section the agreement between the theoretical calculation and data is good when a 3N3N potential is used. The comparison between the calculated and measured proton analyzing powers reveals discrepancies of approximately 50% at the maximum of each distribution. This is analogous to the existing ``AyA_{y} Puzzle'' known for the past 20 years in nucleon-deuteron elastic scattering.Comment: 22 pages, 9 figures, to be published in Physical Review C, corrected reference 4
    corecore