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Poisson’s ratio in cryocrystals under pressure 
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We present results of lattice dynamics calculations of Poisson’s ratio (PR) for solid hydrogen and rare gas 
solids (He, Ne, Ar, Kr and Xe) under pressure. Using two complementary approaches — the semi-empirical 
many-body calculations and the first-principle density-functional theory calculations we found three different 
types of pressure dependencies of PR. While for solid helium PR monotonically decreases with rising pressure, 
for Ar, Kr, and Xe it monotonically increases with pressure. For solid hydrogen and Ne the pressure dependen-
cies of PR are nonmonotonic displaying rather deep minimums. The role of the intermolecular potentials in this 
diversity of patterns is discussed. 

PACS: 67.80.F– Solids of hydrogen and isotopes; 
67.80.B– Solid 4He;
62.20.dj Poisson’s ratio. 
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At low temperatures and pressures solid helium is an ul-
timate quantum solid displaying such phenomena as zero-
temperature quantum melting and quantum diffusion. As 
atomic masses and interatomic forces increase in the se-
quence Ne, Ar, Kr, and Xe quantum effects in their proper-
ties become progressively less pronounced. Solid hydrogen 
is the only molecular quantum crystal where both transla-
tional and rotational motions of the molecules are quan-
tum. Translational quantum effects decrease with increas-
ing pressure. 

Quantum and classical solids respond to the applied 
pressure differently. When pressure is applied to a classical 
solid the atoms are “pushed into” the hard cores of the po-
tential; as a result of this core, the compressibility is usual-
ly quite small. Typically, the pressure of 1 GPa results in a 
few percent change in molar volume. At the same time, 
quantum solids hydrogen and helium are highly compress-

ible. For hydrogen the pressure of 1 GPa results in a 100% 
change in volume. The physical reason for this is that the 
lattice is highly blown up due to the zero-point kinetic en-
ergy. The initial compression works against the weaker 
“kinetic pressure” rather than the harder “core pressure”. 

One of fundamental thermodynamic characteristics de-
scribing behavior of a material under mechanical load is 
Poisson’s ratio [1,2]. For isotropic elastic materials the 
Poisson's ratio is uniquely determined by the ratio of the 
bulk modulus B  to the shear modulus G, which relate to 
the change in size and shape respectively [3]:  

1 3 / 2= .
2 3 / 1

B G
B G

−
σ

+
(1) 

As can be seen from this equation, PR can take values be-
tween –1 ( / 0)B G →  and 1/2 ( / ).B G →∞  The lower limit 
corresponds to the case where the material does not change 
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its shape and upper limit corresponds to the case when the 
volume remains unchanged. Materials with small PR 
(small / ),B G  such as cork, are more easily compressed 
than sheared, whereas those with PR approaching 1/2 
(large / )B G  are rubber-like: they strongly resist compres-
sion in favor of shear. 

For most isotropic materials PR lies in the range 
0.2 < 0.5≤ σ  [4]. Materials with 0 < < 0.2σ  are rare — 
beryllium ( = 0.03),σ  diamond ( = 0.1σ ) — and are very 
hard [1]. Typically, PR increases with pressure near 
linearly with the rate 3/ 10P −∂σ ∂  (GPa)–1 indicating a 
continuous loss of shear strength [5–7]. 

An unusual pressure dependence of PR decreasing with 
rising pressure in solid hydrogen in the pressure range up 
to 24 GPa [8] and solid helium up to 32 GPa [9] was found 
by Zha et al. With the aim to investigate the distinctions in 
the response of quantum and classical solids to the applied 
pressure we calculated pressure dependencies of PR in the 
quantum (He, H2, Ne) and classical (Ar, Kr, Xe) cryo-
crystals under pressure. The calculations were performed 
using complementary semi-empirical (SE) and density 
functional theory (DFT) with generalized gradient appro-
ximation (GGA) approaches. The DFT calculations were 
performed using the FP–LMTO code RSPt, while the SE 
calculations were done using our own code. The calcu-
lation details have been published previously [10]. It is 
important to notice that the two approaches treat solid 
hydrogen in fundamentally different ways. SE approach 
deals with interaction between H2 molecules, which are 
treated as nearly spherically symmetrical quantum rotators, 
while the DFT can only treat fully oriented (classical) H2 
molecules, ignoring the zero-point rotations. The 12Pca  
oriented structure has been used for our calculations. 

One of the signatures of a quantum crystal is that it melts 
at temperature mT  much lower the Debye temperature [11]:  

 / 1.D mTΘ >>  (2) 

Figure 1 shows pressure dependencies of DΘ  and mT  for 
solid hydrogen, helium, neon, and argon. At zero pressure 
and temperature the ratio /D mTΘ  is infinitely large for 
helium and 8.5 for parahydrogen. The ratio rather slowly 
decreases with rising pressure. For example, at 1 GPa it is 
still as high as 3.75 for helium and 3.0 for parahydrogen. 
For solid Ne at zero pressure /D mTΘ  = 2.7 thus making 
solid Ne a candidate for the manifestation of quantum 
effects. Other RGS, with /D mTΘ  = 1, 0.55, and 0.35 for 
Ar, Kr and Xe respectively, can be regarded as essentially 
classical solids. 

Rewriting Eq. (1) in terms of the ratio of the bulk 
(hydrodynamic) Bv  to the transverse (shear) sound 
velocity Sv  we have [2]:  

 
2
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The hydrodynamic or bulk sound velocity Bv  can be 
found from Equation of State: 

 
1/22

1/2= [ / ] = ,B
V PP

V
 ∂

∂ ∂ρ − 
µ ∂  

v  (4) 

where P  is pressure, µ  is molar mass, and V  is molar 
volume. In the calculations of Bv  for H 2  we used our SE 
and DFT–GGA EOS from Ref. 17, for He, Ar and Xe from 
Refs. 16, 18, and for Kr from Ref. 19. We have also 
included zero-point vibrations in the Debye approximation 
in our calculations of ( )P V  and ( )B Vv  [10]. 

Generally, to find sound velocities Pv  and Sv  one has 
to find a complete set of elastic moduli .ijC  In the case of 
hcp lattice there is a simplified scheme based on lattice 
dynamics [20,21], which makes it possible to circumvent 
the problem of calculations of elastic moduli. In particular, 
in this approach it is possible to relate frequency ν  of the 

Fig. 1. Debye temperature and melting temperature vs pressure. 
He and H2 (insert) (a); Ne and Ar (insert) (b). Experimental 
melting curves: He and Ne [12], Ar [13]. H2 melting curve 
corresponds to Kechin Eq. [14]. Debye temperatures were 
calculated using the many-body potentials: for He and H2 
[10,15], for Ne and Ar [16]. 

572 Low Temperature Physics/Fizika Nizkikh Temperatur, 2015, v. 41, No. 6 



Poisson’s ratio in cryocrystals under pressure 

Raman-active 2gE  phonon mode of hcp lattice and the 
shear elastic constant 44:C  

 2
44 2

1= ( ),
4 3 g

c mC E
a a

ν  (5) 

where a, c are the lattice parameters and m  is the mole-
cular mass. The pressure dependencies of 2( )gEν  and 

44C  were found for H2 [17] and hcp RGS (hcp He, Ar, Kr, 
and Xe) [18,22] using both ab initio DFT and SE lattice 
dynamics approaches. The shear velocity Sv  was obtained 
using the relation  

 44= / ,S C ρv  (6) 

where ρ  is the density, disregarding the elastic anisotropy 
of the crystal. A special case is solid Ne which preserves 
the fcc structure up to at least 208 GPa [23] which makes 
the outlined procedure impossible. For this reason for solid 
Ne we used results of lattice dynamics calculations by 
Gupta and Goyal [19]. 

The sound velocities for H2 and He are given in Ref. 15; 
the data for Ne by Gupta and Goyal were published in Ref. 
19; the data for Ar, Kr, and Xe will be published elsewhere. 
Pressure dependencies of Poisson’s ratios for helium, 
hydrogen, neon, argon, krypton, and xenon calculated from 
sound velocities using Eq. (3) are shown in Figs. 2–5. 

Figure 2 shows the pressure dependence of Poisson’s 
ratio in solid He obtained in the framework of SE and 
DFT–GGA approaches in comparison with experimental 
results from Refs. 9, 24. Results which account for zero-
point vibrations (ZPV) and those obtained disregarding 
ZPV are presented. Both SE and DFT–GGA calculations 
agree with the somewhat surprising experimental result of 
Poisson’s ratio decreasing with pressure. There is a 
reasonable fair agreement between the SE theoretical curve 
(comprising ZPV) and experimental data. Usually SE results 
are preferable at smaller pressures while at higher pressures 

the DFT approach works better. Comparing the SE and DFT 
theoretical curves it is hard to say in which way the low-
pressure SE results could continuously go over to the high-
pressure DFT ones. It should be noted that the experimental 
points may show that around 30 GPa there is a minimum 
point at the pressure dependence of PR. 

As was said above, typically [5–7] Poisson’s ratio 
increases with pressure and tends to 1/2 (the limit of zero 
compressibility) when pressure goes to infinity. It would 
appear reasonable to consider anomalous behavior of PR in 
such quantum solids as He and H2 as a manifestation of 
quantum effects. Reasons for such understanding is the 
following. It is known that the He and H2 lattices are 
swelled due to large zero-point vibrations (ZPV). If ZPV 
were not present, “classical” solid He and H2 would have 
much smaller zero molar volumes cl

0( (He)V ≈ 11.2 cm3/mol; 
cl

0 2(H )V ≈ 7.4 cm3/mol), i.e., the swelling effect is huge [18]. 
Until the volume reaches about cl

0 ,V  the main effect of the 
external pressure is the suppression of the zero-point 
vibrations and not the compression of the electron shells. 

To check whether this explanation is correct we 
calculated PR of He disregarding ZPV, that is, for 
“classical” He both in the SE and DFT approaches (dot-
dash and dotted curves, respectively, Fig. 2). As can be seen, 
the pressure dependence of PR with and without ZPV is 
qualitatively the same. Thus, the anomalous (descending 
with rising pressure) behavior of PR is not a quantum effect. 
As can be seen from Fig. 2, the contribution of ZPV into PR 
is positive. This fact is easily understood if we take into 
account that the introduction of ZPV is a step to liquation 
but PR of liquid is an upper bound for PR of any substance. 
Naturally, the relative value of this contribution increases 
with decreasing pressure and as pressure goes to zero it 
increases up to 15%. The effect of ZPV is much higher in 
the case of 3He. Nieto et al. [24] showed that the mixture 
3He–4He has higher PR than pure 4He. For pure 3He they 
gave value of PR 0.473 rather close to the liquid limit. 

The theoretical and experimental pressure dependencies 
of PR for solid H2 are shown in Fig. 3. As can be seen, 
the SE and DFT–GGA approaches give the opposite signs 
of the pressure effect on PR: PR decreases with rising 
pressure for SE and increases for DFT–GGA. Since in the 
experimentally studied pressure range (up to 24 GPa) the SE 
result agrees qualitatively with experiment [8], we conclude 
that at low pressures PR decreases with rising pressure for 
solid H2. It is known that while the SE approach works well 
for molecular solids at low pressures, for higher pressures 
the DFT–GGA approach is preferable. Thus the PR(P) curve 
can be subdivided into three regions: At the low-pressure 
region SE is expected to work well, while at high pressures 
we can use the DFT–GGA approach. In the intermediate 
pressure range both approaches fail. The dot-dot dash curve 
shows schematically a possible continuous transition from 
the low-pressure asymptote to high-pressure one. Resulting 
pressure dependence of PR for H2 is nonmonotonic dis-

Fig. 2. (Color online). Poisson’s ratio of solid He as a function 
of pressure. Theory: this work. Experiment: Zha et al. [9]; 
Nieto et al. [24]. 
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playing rather deep minimum. It should be noted that the 
transient region from the descending to the ascending 
curves falls on phase II of the hydrogen phase diagram. As 
mentioned above, the SE and DFT approaches treat the 
orientational degrees of freedom in H2 in completely 
different ways: the former regards H2 molecules as nearly 
spherically symmetric quantum rotators (as in phase I), 
while the latter considers classically oriented H2 molecules 
(as in phase III), completely ignoring any quantum 
rotations or librations. It seems likely that this is the reason 
why SE and DFT give such drastically different PR(P) 
curves for H2, while results for helium are qualitatively 
similar. It would mean that the PR minimum in hydrogen 
is related to the orientational transition at around 110 GPa, 
however more detailed study of this question is beyond the 
scope of the present work. 

A similar curve with a deep minimum was obtained for 
PR in solid neon (Fig. 4). The pressure dependence of PR 
was obtained from the SE theoretical results on sound 

velocities obtained by Gupta and Goyal [19]. Unfor-
tunately, experimental data on sound velocities in solid Ne 
exist for very narrow pressure range 5–7 GPa [25]. In this 
region PR ≈ 0.37. 

Figure 5 shows the pressure dependencies of PR 
obtained in the SE approach for Ar, Kr, and Xe. In contrast 
with He, H2, and Ne, we obtained that PR for the heavy 
RGS increases with rising pressure. 

In conclusion, we present results of lattice dynamics 
calculations of Poisson’s ratio for solid hydrogen and rare 
gas solids (He, Ne, Ar, Kr and Xe) under pressure. Using 
two complementary approaches: lattice dynamics based on 
the semi-empirical many-body potentials and ab initio 
DFT–GGA we found three different types of the behavior 
of PR with pressure. While for solid He PR monotonically 
decreases with rising pressure, for Ar, Kr, and Xe it mono-
tonically increases with pressure. For solid H2 and Ne PR 
are nonmonotonic with pressure displaying rather deep 
minimums. To investigate the role of quantum effects we 
performed the calculations of PR disregarding zero-point 
vibrations and found qualitatively similar results, that is, we 
proved that the effects have a nonquantum origin. We may 
rather say that the anomalies, discovered for H2, He and Ne, 
and quantum effects in these cryocrystals have common 
origins: weak intermolecular interactions and small masses 
of constituent atoms and molecules. 

We thank J. Peter Toennies for valuable discussions. 
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