296 research outputs found

    Telemedicine as a tool to improve access to specialist healthcare for ENT patients in rural Rwanda: pilot project

    Get PDF
    Patients in rural and remote areas frequently suffer poor access to specialist ear, nose and throat services despite comparatively high prevalence of ear disease in many populations. Telemedicine has been proposed as one solution to this issue, and the advent of high quality affordable digital otoscopes with improved access to mobile internet has brought this concept within the reach of many populations. We sought to test this technology in a group of patients presenting for the first time with undiagnosed ear complaints. Using the VSee telemedicine platform with a Welch Allyn Otoscope over a mobile 3G internet service 90% of patients were diagnosed accurately and furthermore competence in using the equipment was acquired within 30 minutes. This suggests that there is potential for this existing technology to be rolled out as a potential cost effective solution to widen access to specialist otology advice

    Out of sight and out of mind? A literature review of occupational safety and health leadership and management of distributed workers

    Get PDF
    Distributed workers – those who work autonomously and remotely from their organisation’s main locations for at least some of their work-time – are an important and growing proportion of the workforce that share common characteristics of temporal and spatial distance. Yet, many leadership styles and management practices assume face-to-face interaction, potentially rendering them less helpful in trying to ensure good occupational safety and health (OSH) outcomes for distributed workers. We conducted a systematic literature review to examine the leadership and management of OSH for distributed workers. Twenty-three papers were identified. Eleven papers identified established leadership styles, including leader-member exchange, (safety specific) transformational and considerate leadership. Twenty papers examined management. Findings from these 20 papers were interpreted as representing resources, deployed through management and utilised by managers to ensure OSH for distributed workers, including communication technologies, social support and a good safety climate. Despite limited research in this area, findings indicate the importance of both leadership and management in ensuring OSH for distributed workers. Findings suggest a fertile area for future enquiry

    Scoping study examining the behaviour of Boom Clay at disposal depths investigated in OPERA

    Get PDF
    The Onderzoeks Programma Eindberging Radioactief Afval (OPERA) is the third national research programme for the geological disposal of radioactive waste in the Netherlands, operating during the period 2011 to 2017. The rock types to host a geological disposal facility that are currently being considered in the Netherlands are salt and clay. Earlier Dutch work focussed mostly on salt, but the present programme OPERA is focused on a specific clay formation the Boom Clay. Previous studies have primarily focused on examining behaviour at the Belgium reference depth (~220m). The work presented in this study extends this knowledge-base to repository depths of potential interest in the Netherlands (~500m). In this report, results from a scoping study examining the hydromechanical properties of Boom Clay are presented, including investigations on consolidation, swelling, hydraulic, gas and deformation behaviour. These were performed on preserved core material retrieved from the HADES underground research laboratory, Belgium. Sections of core were then consolidated to a depth representative of the Netherlands. Permeability was sensitive to stress state and thermal load, though incremental changes in NaCl concentration had minimal impact. Hysteresis was observed in thermally induced changes in permeability. Gas entry was closely linked to the minimum principal stress component, with mass and volume changes of samples observed as a result of gas migration. Stress, porewater pressure and gas flow were integrally linked with pathways evolving temporally and spatially. A transition from brittle to ductile deformation was noted with increasing stress in both compression and shear. Boom Clay is both complex and anisotropic in its behaviour

    Defining simple and comprehensive assessment units for CO2 storage in saline formations beneath the UK North Sea and continental shelf

    Get PDF
    In the UK, by far the largest CO2 storage opportunities lie offshore. The North Sea in particular has a long and complex geological history, with potential reservoirs geographically widespread and occurring at multiple stratigraphic levels. Diverse storage estimates have been made, using a range of working methods, and yielding different values, e.g. SCCS (2009); Bentham (2006). Consequently the UK Storage Appraisal Project (UKSAP), commissioned and funded by the Energy Technologies Institute (ETI), is undertaking the most comprehensive assessment to date, using abundant legacy seismic and borehole data. This study has a remit to use best current practice, consistent between locations, to calculate the CO2 storage capacity of the entire UK Continental Shelf (UKCS) within saline aquifers and hydrocarbon fields. The potential storage formations have been subdivided into units for assessment, and filtered to remove units with only a small estimated storage capacity to concentrate resources on more viable units. The size of potential storage units approximate to a power law distribution, similar to that of hydrocarbon fields, with a large number of small units and a small number of large units

    Solid-state additive manufacturing for metallized optical fiber integration

    Get PDF
    The formation of smart, Metal Matrix Composite (MMC) structures through the use of solid-state Ultrasonic Additive Manufacturing (UAM) is currently hindered by the fragility of uncoated optical fibers under the required processing conditions. In this work, optical fibers equipped with metallic coatings were fully integrated into solid Aluminum matrices using processing parameter levels not previously possible. The mechanical performance of the resulting manufactured composite structure, as well as the functionality of the integrated fibers, was tested. Optical microscopy, Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) analysis were used to characterize the interlaminar and fiber/matrix interfaces whilst mechanical peel testing was used to quantify bond strength. Via the integration of metallized optical fibers it was possible to increase the bond density by 20–22%, increase the composite mechanical strength by 12–29% and create a solid state bond between the metal matrix and fiber coating; whilst maintaining full fiber functionality

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the Îłp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    CONTAIN D11 : integrated final results and conclusions

    Get PDF
    Carbon capture and storage is a technology capable of reducing CO2 outputs on a large scale; the concept usually requires CO2 to be removed from post-combustion flue gases and sequestered in geological formations. Depleted gas fields constitute “the most important storage type for the UK” and will provide a large and important potential future offshore storage capacity (DECC, 2012). Over the last 4 years, the CONTAIN research project has focussed on the geomechanical behaviour of depleted hydrocarbon fields in response to injection with CO2, combining a modelling and experimental approach with the public perceptions of CCS into three work packages. The project has provided a better understanding of the hydromechanical impacts of depletion on caprocks and the effect of subsequent CO2 injection, in order to assist with the implementation of CCS in this type of reservoir. Work package 1 outlined a phenomenological approach to assessing possible deformation during operation. Focus was placed on rock mechanics and transport experiments on material from the geologies of target formations in the North Sea, providing information that could be incorporated into numerical simulations. Work package 2 expanded this understanding by considering fractured caprock. Numerical modelling was used to study the deformation of an initially intact caprock caused by the depletion of an underlying reservoir during oil extraction. Deformation and flow were geomechanically modelled in three dimensions using a fully coupled poroelastic model, incorporating discrete fractures and faults into the caprock. Work package 3 offered new and valuable insight on future public awareness campaigns aimed at gaining acceptance of CCS. Qualitative expert interviews have been used, a CCS expert survey and a public survey across four countries to gain an understanding of perceptions of CCS risks and benefits, and has allowed for comparison of views on CCS between experts and public. In addition, the work package has explored the impact of different message framings on CCS attitudes. The findings of each work package are summarised in this report, with each work package represented by a report chapter. A synthesis of the findings and discussion of the work as a whole follows
    • …
    corecore