16 research outputs found

    Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle

    Get PDF
    The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature's primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics

    A probabilistic framework for particle-based reaction–diffusion dynamics using classical Fock space representations

    Get PDF
    The modeling and simulation of stochastic reaction–diffusion processes is a topic of steady interest that is approached with a wide range of methods. At the level of particle-resolved descriptions, where chemical reactions are coupled to the spatial diffusion of individual particles, there exist comprehensive numerical simulation schemes, while the corresponding mathematical formalization is relatively underdeveloped. The aim of this paper is to provide a framework to systematically formulate the probabilistic evolution equation, termed chemical diffusion master equation (CDME), that governs particle-based stochastic reaction–diffusion processes. To account for the non-conserved and unbounded particle number of this type of open systems, we employ a classical analogue of the quantum mechanical Fock space that contains the symmetrized probability densities of the many-particle configurations in space. Following field-theoretical ideas of second quantization, we introduce creation and annihilation operators that act on single-particle densities and provide natural representations of symmetrized probability densities as well as of reaction and diffusion operators. These operators allow us to consistently and systematically formulate the CDME for arbitrary reaction schemes. The resulting form of the CDME further serves as the foundation to derive more coarse-grained descriptions of reaction–diffusion dynamics. In this regard, we show that a discretization of the evolution equation by projection onto a Fock subspace generated by a finite set of single-particle densities leads to a generalized form of the well-known reaction–diffusion master equation, which supports non-local reactions between grid cells and which converges properly in the continuum limit

    Analysing-software for electrocardiographic desynchronization – which parameters needs the physician?

    No full text
    Introduction: Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy for heart failure (HF) patients with ventricular desynchronization and reduced left ventricular (LV) ejection fraction. The aim of this study was to evaluate electrical ventricular desynchronization with transthoracic and transesophageal signal averaging electrocardiography in HF, to better select patients for CRT. Methods: 13 HF patients (age 68 ± 10 years; 2 females, 11 males) with New York Heart Association (NYHA) class 2.8 ± 0.5, 28.6 ± 12.6 % LV ejection fraction and 155 ± 24 ms QRS duration (QRSD) were analysed with transthoracic and transesophageal electrocardiogram recording and novel National Intruments LabView 2009 signal averaging software. Esophageal TO Osypka catheter was perorally applied to the esophagus and placed in the position of maximum LV de-flection. The 0.05-Hz high-pass filtered surface electrocardiogram and the 10-Hz high-pass filtered bipolar transesophageal electrocardiogram were recorded with Bard EP-System and 1000-Hz sampling rate. Results: Transesophageal LV electrogram recording was possible in all HF patients (n=13). Transesophageal interventricular conduction delay (IVCD) was 51 ± 19 ms and measured between the earliest onset of QRS in the 12-channel surface electrocardiogram and the onset of the LV deflection in the transesophageal electrocardiogram. Transesophageal intra-left ventricular delay (LVCD) was 90 ± 16 ms and measured between the onset and offset of the LV deflection in the transesophageal electrocardiogram. QRSD to transesophageal IVCD ratio was 3.43 ± 1.31 ms, QRSD to transesophageal LVCD ratio was 1.75 ± 0.28 ms and QRSD was evaluated between onset and offset of QRS signal in the 12-channel surface electrocardiogram. Conclusion: Determination of IVCD, LVCD, QRSD-to-IVCD-ratio and QRSD-to-LVCD-ratio by transesophageal LV electrogram recording with LabView 2009 signal averaging technique may be useful parameters of ventricular desynchronisation to improve patient selection for CRT
    corecore