54 research outputs found

    Adipokines and Chronic Rheumatic Diseases: from Inflammation to Bone Involvement

    Get PDF
    AbstractBesides its well-known role as energy storage tissue, adipose tissue is a biologically active tissue that can also be considered as an endocrine organ, as it is able to secrete adipokines. These bioactive factors, similar in structure to cytokines, are involved in several physiological and pathological conditions, such as glucose homeostasis, angiogenesis, blood pressure regulation, control of food intake, and also inflammation and bone homeostasis via endocrine, paracrine, and autocrine mechanisms. Given their pleiotropic functions, the role of adipokines has been evaluated in chronic rheumatic osteoarticular inflammatory diseases, particularly focusing on their effects on inflammatory and immune response and on bone alterations. Indeed, these diseases are characterized by different bone complications, such as local and systemic bone loss and new bone formation. The aim of this review is to summarize the role of adipokines in rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, osteoarthritis, and osteoporosis, especially considering their role in the pathogenesis of bone complications typical of these conditions

    Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB

    Get PDF
    The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-κB. It has been argued that one of the pathways leading to the activation of NF-κB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF-κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF-κB, and that this negative regulation of ROS is the means through which NF-κB counters programmed cells

    Progressive skin fibrosis is associated with a decline in lung function and worse survival in patients with diffuse cutaneous systemic sclerosis in the European Scleroderma Trials and Research (EUSTAR) cohort.

    Get PDF
    Objectives To determine whether progressive skin fibrosis is associated with visceral organ progression and mortality during follow-up in patients with diffuse cutaneous systemic sclerosis (dcSSc). Methods We evaluated patients from the European Scleroderma Trials and Research database with dcSSc, baseline modified Rodnan skin score (mRSS) ≥7, valid mRSS at 12±3 months after baseline and ≥1 annual follow-up visit. Progressive skin fibrosis was defined as an increase in mRSS >5 and ≥25% from baseline to 12±3 months. Outcomes were pulmonary, cardiovascular and renal progression, and all-cause death. Associations between skin progression and outcomes were evaluated by Kaplan-Meier survival analysis and multivariable Cox regression. Results Of 1021 included patients, 78 (7.6%) had progressive skin fibrosis (skin progressors). Median follow-up was 3.4 years. Survival analyses indicated that skin progressors had a significantly higher probability of FVC decline ≥10% (53.6% vs 34.4%; p<0.001) and all-cause death (15.4% vs 7.3%; p=0.003) than non-progressors. These significant associations were also found in subgroup analyses of patients with either low baseline mRSS (≤22/51) or short disease duration (≤15 months). In multivariable analyses, skin progression within 1 year was independently associated with FVC decline ≥10% (HR 1.79, 95% CI 1.20 to 2.65) and all-cause death (HR 2.58, 95% CI 1.31 to 5.09). Conclusions Progressive skin fibrosis within 1 year is associated with decline in lung function and worse survival in dcSSc during follow-up. These results confirm mRSS as a surrogate marker in dcSSc, which will be helpful for cohort enrichment in future trials and risk stratification in clinical practice

    Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study

    Get PDF
    Objectives. Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations.Methods. SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses.Results. The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP.AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001].Conclusion. Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality

    Effects of Different Vitamin D Supplementation Schemes in Post-Menopausal Women: A Monocentric Open-Label Randomized Study

    No full text
    Background: The improvement of muscular strength is a well-known extra-skeletal effect of Vitamin D. The aim of the study was to evaluate the effectiveness of the calcifediol supplementation compared to various cholecalciferol administration schedules in increasing 25(OH)D serum levels and improving muscular function. Methods: 107 post-menopausal women with hypovitaminosis D were assigned to receive Vitamin D supplementation according to four different regimens: colecalciferol single, monthly, or weekly oral dose and calcifediol weekly oral dose. Serum levels of 25(OH)D and muscular function of lower limbs (Sit-to-Stand test and Timed-Up-and-Go test) were evaluated at baseline and during 6 months follow-up. Results: Calcifediol and weekly cholecalciferol induced a greater and faster increase of serum 25(OH)D, compared to monthly or single-dose cholecalciferol administration. The 25(OH)D increase was associated with an improvement of muscle function of lower limbs. The larger increase of serum 25(OH)D observed with calcifediol and with weekly cholecalciferol was associated with a concomitant greater improvement of muscle strength. Conclusions: Supplementation with calcifediol is more effective and faster compared to cholecalciferol in increasing 25(OH)D serum levels and is associated with a greater improvement of muscular function, thus representing a therapeutic alternative for treatment of hypovitaminosis D

    Molecular Basis of Bone Aging

    No full text
    A decline in bone mass leading to an increased fracture risk is a common feature of age-related bone changes. The mechanisms underlying bone senescence are very complex and implicate systemic and local factors and are the result of the combination of several changes occurring at the cellular, tissue and structural levels; they include alterations of bone cell differentiation and activity, oxidative stress, genetic damage and the altered responses of bone cells to various biological signals and to mechanical loading. The molecular mechanisms responsible for these changes remain greatly unclear and many data derived from in vitro or animal studies appear to be conflicting and heterogeneous, probably due to the different experimental approaches; nevertheless, understanding the main physio-pathological processes that cause bone senescence is essential for the development of new potential therapeutic options for treating age-related bone loss. This article reviews the current knowledge concerning the molecular mechanisms underlying the pathogenesis of age-related bone changes

    Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: The mutual crosstalk between ROS and NF-kB

    Get PDF
    The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-κB. It has been argued that one of the pathways leading to the activation of NF-κB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF-κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF-κB, and that this negative regulation of ROS is the means through which NF-κB counters programmed cells

    The Emerging Role of Curcumin in the Modulation of TLR-4 Signaling Pathway: Focus on Neuroprotective and Anti-Rheumatic Properties

    No full text
    Natural products have been used in medicine for thousands of years. Given their potential health benefits, they have gained significant popularity in recent times. The administration of phytochemicals existed shown to regulate differential gene expression and modulate various cellular pathways implicated in cell protection. Curcumin is a natural dietary polyphenol extracted from Curcuma Longa Linn with different biological and pharmacological effects. One of the important targets of curcumin is Toll-like receptor-4 (TLR-4), the receptor which plays a key role in the modulation of the immune responses and the stimulation of inflammatory chemokines and cytokines production. Different studies have demonstrated that curcumin attenuates inflammatory response via TLR-4 acting directly on receptor, or by its downstream pathway. Curcumin bioavailability is low, so the use of exosomes, as nano drug delivery, could improve the efficacy of curcumin in inflammatory diseases. The focus of this review is to explore the therapeutic effect of curcumin interacting with TLR-4 receptor and how this modulation could improve the prognosis of neuroinflammatory and rheumatic diseases
    corecore